首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Vertical distribution of five plant-parasitic nematodes was examined in two north Florida soybean fields in 1987 and 1988. Soil samples were collected from 0-15 cm, 15-30 cm, and 30-45 cm deep at each site. Soil at the three depths consisted of approximately 96% sand. More than 50% of Belonolaimus longicaudatus population densities occurred in the upper 15-cm soil layer at planting, but the species became more evenly distributed through the other depths as the season progressed. Criconemella sphaerocephala was evenly distributed among the three depths in one field but was low (< 20% of the total density) in the upper 15 cm at a second site. Maximum population densities of Pratylenchus brachyurus were observed at 15-30 cm on most sampling dates. Vertical distributions of Meloidogyne incognita and Paratrichodorus minor were erratic and showed seasonal variation. A diagnostic sample from the upper 0-15 cm of these soybean fields revealed only a minority of the populations of most of the phytoparasitic species present.  相似文献   

2.
Compatibility of Soil Amendments with Entomopathogenic Nematodes   总被引:1,自引:0,他引:1  
The impact of inorganic and organic fertilizers on the infectivity, reproduction, and population dynamics of entomopathogenic nematodes was investigated. Prolonged (10- to 20-day) laboratory exposure to high inorganic fertilizer concentrations inhibited nematode infectivity and reproduction, whereas short (1-day) exposures increased infectivity. Heterorhabditis bacteriophora was more sensitive to adverse effects than were two species of Steinernema. In field studies, organic manure resulted in increased densities of a native population of Steinernema feltiae, whereas NPK fertilizer suppressed nematode densities regardless of manure applications. Inorganic fertilizers are likely to be compatible with nematodes in tank mixes and should not reduce the effectiveness of nematodes used for short-term control as biological insecticides, but may interfere with attempts to use nematodes as inoculative agents for long-term control. Organic manure used as fertilizer may encourage nematode establishment and recycling.  相似文献   

3.
Plant breeders and nematologists have developed improved cultivars of important crop species with resistance to plant-parasitic nematodes. The effectiveness of these breeding efforts has depended on the availability of efficient screening procedures, identification of adequate sources of durable resistance, nature of the nematode feeding habit, and knowledge of the inheritance of resistance. These factors determine to a large degree the breeding method and potential success of the research. Systematic searches for nematode resistance have identified resistant germplasm lines within crop species or from related species. When the resistance gene(s) is from related species, incongruity barriers or sterility of the resulting hybrids often must be overcome. In these situations, backcrossing is usually necessary to incorporate the resistance gene(s) and recover the desirable commercial traits of the crop species. If the resistance gene(s) is present within the crop species, the choice of breeding method depends on the inheritance of the resistance, type of screening procedure, and other important breeding objectives for the species. In the future, plant molecular biologists and geneticists will make available novel sources of nematode resistance through incorporation of transgenes from other genera. These efforts will likely require conventional breeding strategies before commercial utilization of an improved resistant cultivar.  相似文献   

4.
In a series of microcosm experiments with an arable, sandy loam soil amended with sugarbeet leaf, the short-term (8 weeks) dynamics of numbers of nematodes were measured in untreated soil and in γ-irradiated soil inoculated with either a field population of soil microorganisms and nematodes or a mixed population of laboratory-propagated bacterivorous nematode species. Sugarbeet leaf stimulated an increase in bacterivorous Rhabditidae, Cephalobidae, and a lab-cultivated Panagrolaimus sp. Differences were observed between the growth rates of the nematode population in untreated and γ-irradiated soils, which were caused by two nematophagous fungi, Arthrobotrys oligospora and Dactylaria sp. These fungi lowered the increase in nematode numbers due to the organic enrichment in the untreated soil. We estimated the annually produced bacterivous nematodes to consume 50 kg carbon and 10 kg nitrogen per ha, per year, in the upper, plowed 25 cm of arable soil.  相似文献   

5.
Nematodes of three genera (Acrobeloides sp., Aphelenchus avenae, and Scutellonema brachyurum) were induced to coil and enter anhydrobiosis in drying soil of two types: sandy loam and loamy sand. Coiling was studied in relationship to soil moisture characteristics. Coiling and the physiological state of anhydrobiosis occurred before the water in sandy soils reached a water potential of -15 bars. Coiling was maximum at 3-6 bars, depending on the soil type and nematode species. It appeared that induction of coiling and anhydrohiosis were determined by the physical forces exerted by the water film surrounding the nematode, which, for these three species, was 6-9 monomolecular layers of water, rather than the % moisture and relative humidity of the soil per se.  相似文献   

6.
7.
Baermann funnels were modified to eliminate or reverse the small temperature gradient (1-2 C/cm) across the soil layer that normally results from water evaporation. Effects of modifications on extraction efficiency were examined at various ambient temperatures and after overnight adaptation of three nematode species at 20 and 30 C. Extraction of Meloidogyne incognita from sandy loam, Tylenchulus semipenetrans from sandy clay loam, and Rotylenchulus reniformis from silt was greatly accelerated simply by covering funnels to prevent evaporation. In most cases, covering increased the nematodes extracted by 10-100 times after 5.5-48 hours. Faster and more efficient extraction of R. reniformis occurred over a wide range of ambient temperature (18-29 C). Effects of ambient temperature and temperature gradient direction on Baermann funnel extraction of R. reniformis were partly inconsistent with the behavior of R. reniformis in agar. Nematodes in agar moved toward cold at some ambient temperatures and toward heat at other temperatures. They always appeared to move toward cold on Baermann funnels. Differences were not attributable to blockage of gas exchange by covers. In agar and in funnels, the patterns of response to ambient temperature were shifted in the direction of the storage temperature.  相似文献   

8.
The effects of extraction technique, sample size, soil moisture level, and overflow rate on recovery of Globodera rostochiensis and (or) Heterodera schachtii cysts from organic soils were investigated. A modified Fenwick can (MFC) and an underflow elutriator (UE) described in this paper were evaluated and compared for cyst recovery efficiency and amount of organic flotsam collected. The MFC and UE extracted similar numbers of cysts, but the UE collected 50% less flotsam than the MFC. Sample size was negatively correlated with cyst recovery and positively correlated with amount of flotsam. The amount of flotsam recovered with the MFC was correlated with overflow speed. Presoaking air dried samples for 30 minutes halved the amount of flotsam without affecting cyst recovery. Extracting cysts from wet soil without prior drying resulted in negligible recovery with both extraction techniques. There were no significant differences in cyst recovery of the two genera tested.  相似文献   

9.
A field trial was conducted for 2 years in an Arredondo fine sand containing a tillage pan at 15-20 cm deep to determine the influence of subsoiling on the distribution of corn roots and plant-parasitic nematodes. Soil samples were taken at various depths and row positions at 30, 60, and 90 days after planting in field corn subsoiled under the row with two chisels and in non-subsoiled corn. At 30 and 60 days, in-row nematode population densities to 60 cm deep were not affected by subsoiling compared with population densities in nonsubsoiled plots. After 90 days, subsoiling had not affected total root length or root weight at the 20 depth-row position sampling combinations, but population densities of Meloidogyne incognita and Criconemella spp. had increased in subsoiled corn. Numbers of Pratylenchus zeae were not affected. Subsoiling generally resulted in a change in distribution of corn roots and nematodes in the soil profile but caused little total increase in either roots or numbers of nematodes. Corn yield was increased by subsoiling.  相似文献   

10.
11.
The feasibility of counting plant-parasitic nematodes in aqueous suspensions by measuring light transmittance through aqueous suspensions with an ELISA microplate reader was explored. Absorbance readings for eggs or vermiform stages of three species were linearly related (R² > 0.99) to concentrations between 0 and 10,000 nematodes/ml. Coefficients of variation ranged from 12-23%, depending on the species and developmental stage used. The method, therefore, was at least as accurate as direct counts of nematodes in aliquots on a microscope and more than 100 times as fast. The method should have direct application in research programs on plant resistance to nematodes, nematode population dynamics, and nematode behavior.  相似文献   

12.
Abamectin is nematicidal to Meloidogyne incognita and Rotylenchulus reniformis, but the duration and length of cotton taproot protection from nematode infection by abamectin-treated seed is unknown. Based on the position of initial root-gall formation along the developing taproot from 21 to 35 d after planting, infection by M. incognita was reduced by abamectin seed treatment. Penetration of developing taproots by both nematode species was suppressed at taproot length of 5 cm by abamectin-treated seed, but root penetration increased rapidly with taproot development. Based on an assay of nematode mobility to measure abamectin toxicity, the mortality of M. incognita associated with a 2-d-old emerging cotton radicle was lower than mortality associated with the seed coat, indicating that more abamectin was on the seed coat than on the radicle. Thus, the limited protection of early stage root development suggested that only a small portion of abamectin applied to the seed was transferred to the developing root system.  相似文献   

13.
Numbers of Steinernema sp. (CB2B) and S. carpocapsae (Agriotos) exponentially declined after application into a clay loam soil. Over a 35-day sampling period, Steinernema sp. (CB2B) was more persistent than S. carpocapsae (Agriotos). The presence or absence of the second-stage cuticle on the third-stage juveniles (J3) at the time of application did not alter the rate of population decline of Steinernema sp. (CB2B). Nearly all J3 of Steinernema sp. (CB2B) and S. carpocapsae (Agriotos) lost their cuticle within 24 hours of being in soil. Centrifugal flotation recovered the greatest number of nematodes, with a lower variance than either the live bait or Baermann funnel techniques. A strong positive linear relationship was evident between numbers of nematodes present in the soil and the numbers that established in a bait insect. Approximately 40% of Steinernema sp. (CB2B) and 30% of the S. carpocapsae (Agriotos) present in the soil established in Galleria mellonella larvae. The extraction techniques had different efficiencies and gave different relative estimates of persistence for the two species. Persistence and infectivity was best measured using a combination of live bait and flotation techniques.  相似文献   

14.
Plant-parasitic nematodes can be very damaging to turfgrasses. The projected cancellation of the registration for fenamiphos in the near future has generated a great deal of interest in identifying acceptable alternative nematode management tactics for use on turfgrasses. Two field experiments were conducted to evaluate the effectiveness of repeated applications of several commercially available nematicides and root biostimulants for reducing population densities of plant-parasitic nematodes and (or) promoting health of bermudagrass in nematode-infested soil. One experimental site was infested with Hoplolaimus galeatus and Trichodorus obtusus, the second with Belonolaimus longicaudatus. In both trials, none of the experimental treatments reduced population densities (P ≤ 0.1) of plant-parasitic nematodes, or consistently promoted turf visual performance or turf root production. Nematologists with responsibility to advise turf managers regarding nematode management should thoroughly investigate the validity of product claims before advising clientele in their use.  相似文献   

15.
Three field experiments were established in a loamy sand soil in the Coastal Plain of North Carolina to determine downward movement of aldicarb and fenamiphos with a nematode bioassay. Penetration of bioassay plant roots by Meloidogyne incognita was measured at 1, 3, 7, 14, 21, and 28 days after treatment in the greenhouse as a means of determining nematicide effectiveness. Chemical movement was similar in planted and fallow soil. Nematicidal activity was greater in soil collected from the 0 to 10 cm depth than from the 10 to 20 cm depth. Fenamiphos suppressed host penetration by the nematode more than aldicarb under the high rainfall (19 cm) and low soil temperatures that occurred soon after application in the spring. During the summer, which had 13 cm precipitation and warmer soil temperatures, both chemicals performed equally well at the 0 to 10 cm depth. At the lower soil level (10 to 20 cm), aldicarb limited nematode penetration of host roots more quickly than fenamiphos. Both of these chemicals moved readily in the sandy soil in concentrations sufficient to control M. incognita. Although some variability was encountered in similar experiments, nematodes such as M. incognita have considerable potential as biomonitors of nematicide movement in soil.  相似文献   

16.
The first internally transcribed spacer region (ITS1) from cyst nematode species (Heteroderidae) was compared by nucleotide sequencing and PCR-RFLP. European, Asian, and North American isolates of five heterodefid species were examined to assess intraspecific variation. PCR-RFLP patterns of amplified ITS1 DNA from pea cyst nematode, Heterodera goettingiana, from Northern Ireland were identical with patterns from Washington State. Sequencing demonstrated that ITS1 heterogeneity existed within individuals and between isolates, but did not result in different restriction patterns. Three Indian and two U.S. isolates of the corn cyst nematode, Heterodera zeae, were compared. Sequencing detected variation among ITS1 clones from the same individual, between individuals, and between isolates. PCR-RFLP detected several restriction site differences between Indian and U.S. isolates. The basis for the restriction site differences between isolates from India and the U.S. appeared to be the result of additional, variant ITS1 regions amplified from the U.S. isolates, which were not found in the three India isolates. PCR-RFLP from individuals of the U.S. isolates created a composite pattern derived from several ITS1 types. A second primer set was specifically designed to permit discrimination between soybean (H. glycines) and sugar beet (H. schachtii) cyst nematodes. Fok I digestion of amplified product from soybean cyst nematode isolates displayed a uniform pattern, readily discernible from the pattern of sugar beet and clover cyst nematode (H. trifolii).  相似文献   

17.
Sunn hemp (SH), Crotolaria juncea, is known to suppress Rotylenchulus reniformis and weeds while enhancing free-living nematodes involved in nutrient cycling. Field trials were conducted in 2009 (Trial I) and 2010 (Trial II) to examine if SH cover cropping could suppress R. reniformis and weeds while enhancing free-living nematodes if integrated with soil solarization (SOL). Cover cropping of SH, soil solarization, and SH followed by SOL (SHSOL) were compared to weedy fallow control (C). Rotylenchulus reniformis population was suppressed by SHSOL at the end of cover cropping or solarization period (Pi) in Trial I, but not in Trial II. However, SOL and SHSOL did not suppress R. reniformis compared to SH in either trial. SH enhanced abundance of bacterivores and suppressed the % herbivores only at Pi in Trial II. At termination of the experiment, SH resulted in a higher enrichment index indicating greater soil nutrient availability, and a higher structure index indicating a less disturbed nematode community compared to C. SOL suppressed bacterivores and fungivores only in Trial II but not in Trial I. On the other hand, SHSOL enhanced bacterivores and fungivores only at Pi in Trial I. Weeds were suppressed by SH, SOL and SHSOL throughout the experiment. SHSOL suppressed R. reniformis and enhanced free-living nematodes better than SOL, and suppressed weeds better than SH.  相似文献   

18.
Blueberry replant disease (BRD) is an emerging threat to continued blueberry (Vaccinium spp.) production in Georgia and North Carolina. Since high populations of ring nematode Mesocriconema ornatum were found to be associated with commercially grown blueberries in Georgia, we hypothesized that M. ornatum may be responsible for predisposing blueberry to BRD. We therefore tested the pathogenicity of M. ornatum on 10-wk-old Rabbiteye blueberries (Vaccinium virgatum) by inoculating with initial populations (Pi) of 0 (water control), 10, 100, 1,000. and 10,000 mixed stages of M. ornatum/pot under both greenhouse (25 ± 2°C) and field microplot conditions. Nematode soil population densities and reproduction rates were assessed 75, 150, 225, and 255, and 75, 150, 225, and 375 d after inoculation (DAI) in both the greenhouse and field experiments, respectively. Plant growth parameters were recorded in the greenhouse and field microplot experiments at 255 and 375 DAI, respectively. The highest M. ornatum population density occurred with the highest Pi level, at 75 and 150 DAI under both greenhouse (P < 0.01) and field (P < 0.01) conditions. However, M. ornatum rate of reproduction increased significantly in pots receiving the lowest Pi level of 10 nematodes/plant compared with the pots receiving Pi levels of 100, 1,000, and 10,000 nematodes 75 DAI. Plant-parasitic nematode populations were determined in commercial blueberry replant sites in Georgia and North Carolina during the 2010 growing season. Mesocriconema ornatum and Dolichodorus spp. were the predominant plant-parasitic nematodes in Georgia and North Carolina, respectively, with M. ornatum occurring in nearly half the blueberry fields sampled in Georgia. Other nematode genera detected in both states included Tylenchorhynchus spp., Hoplolaimus spp., Hemicycliophora spp., and Xiphinema spp. Paratrichodorus spp. was also found only in Georgia. In Georgia, our results indicate that blueberry is a host for M. ornatum and its relationship to BRD warrants further investigation.  相似文献   

19.
This paper assesses our state of knowledge of physiological processes involved in the relationships between insects and their mermithid nematode parasites. Three major components of the host-parasite relationship(s) are reviewed: effects of mermithids on host physiology, effects of host physiology on mermithids, and the physiology of the nematodes themselves. Mermithids induce an array of changes in host physiology, and the effects on host metabolism and endocrinology are discussed at some length. Few studies have been done to ascertain the effects of the host on the parasites from a physiological standpoint. Whereas host immunity mechanisms against mermithids have been described at the ultrastructural level, the physiological basis of such responses is not known. Mermithids are atypical nematodes, both structurally and physiologically. In the absence of a functional gut, nutrients are absorbed across the outer cuticle and stored in a trophosome. The transcuticular mode of feeding, storage within the trophosome, and metabolism of storage products are discussed. The usefulness of physiological information toward expediting in vitro culture of these nematodes is discussed, and problems that need to be addressed are defined.  相似文献   

20.
A molecular analysis of eight described species of seed gall nematode, along with six undescribed isolates from different hosts, has revealed a strong association between nucleotide sequence polymorphism and host status. Each anguinid nematode associated with a unique host produced a unique PCR-RFLP pattern for the ITS1 region. Anguina species that had been synonymized in the past, Anguina agrostis, A. funesta, and A. wevelli (Afrina wevelli), were readily discriminated. Two undescribed species from northern New South Wales and southeastern South Australia, reported to be vectors of Rathyaibacter toxicus in the disease called ''''floodplain staggers,'''' were differentiated by a single restriction enzyme, and both could be separated easily from A. funesta, the vector of R. toxicus in annual ryegrass toxicity. Other species differentiated in this study include A. agropyronifloris, A. graminis, A. microlaenae, A. pacificae, and undescribed species from host species Dactylis glomerata, Agrostis avenacea, Polypogon monospeliensis, Stipa sp., Astrebla pectinata, and Holcus lanatus. Phylogenetic analysis of the ITS1 region suggests that considerable anguinid genetic diversification has accompanied specialization on different host species.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号