共查询到20条相似文献,搜索用时 0 毫秒
1.
Most of the 15 carrot cultivars tested were moderate to good hosts to Meloidogyne chitwoodi race 1, whereas all except Orlando Gold were nonhosts or poor hosts for M. chitwoodi race 2. All carrot cultivars were good hosts for M. hapla. The plant weights of the carrot cultivars Red Cored Chantenay and Orlando Gold infected with either race of M. chitwoodi were significantly less than uninoculated checks in pots. Under field microplot conditions, however, detrimental effects on quality were rarely observed. M. hapla was pathogenic to both cultivars in the greenhouse and the field. The tolerance level of Orlando Gold to M. hapla was lower than Red Cored Chantenay. 相似文献
2.
Meloidogyne chitwoodi races 1 and 2 and M. hapla reproduced on 12 cultivars of Brassica napus and two cultivars of B. campestris. The mean reproductive factors (Rf), Rf = Pf at 55 days ÷ 5,000, for the three nematodes were 8.3, 2.2, and 14.3, respectively. All three nematodes reproduced more efficiently (P < 0.05) on B. campestris than on B. napus. Amending M. chitwoodi-infested soil in plastic bags with chopped shoots of Jupiter rapeseed reduced the nematode population more (P < 0.05) than amendment with wheat shoots. Incorporating Jupiter shoots to soil heavily infested with M. chitwoodi in microplots reduced the nematode population more (P < 0.05) than fallow or corn shoot treatments. The greatest reduction in nematode population density was attained by cropping rapeseed for 2 months and incorporating it into the soil as a green manure. 相似文献
3.
The reproductive factor (R = final egg density at 55 days ÷ 5,000, initial egg density) of Meloidogyne chitwoodi race 2 (alfalfa race) on 46 crop cultivars ranged from 0 to 130. The reproductive efficiency of M. chitwoodi race 1 (non-alfalfa race) and M. chitwoodi race 2 was compared on selected crop cultivars. The basic difference between the two races lay in their differential reproduction on Thor alfalfa and Red Cored Chantenay carrot. M. chitwoodi race 2 reproduced on alfalfa but not on carrot. Conversely, alfalfa was a poor host and carrots were suitable for M. chitwoodi race 1. Based on host responses to M. chitwoodi races and M. hapla, a new differential host test was proposed to distinguish the common root-knot nematode species of the Pacific Northwest. 相似文献
4.
Responses of egg masses, free eggs, and second-stage juveniles (J2) ofMeloidogyne hapla and M. chitwoodi to ethoprop were evaluated. The results indicated that J2 were the most sensitive, followed by free eggs and egg masses. In general, M. chitwoodi was more susceptible to ethoprop than M. hapla. Ethoprop at 7.2 μg a.i./g soil protected tomato roots from upward migrating M. chitwoodi for 5 weeks. The zone of protection was extended to 10 and 20 cm below the root zone when 3.6 and 7.2 cm water were applied over 8 days. Ethoprop at 1.8, 3.6, and 7.2 μg a.i./g soil degraded faster and killed fewer M. chitwoodi J2 in potato field soil previously exposed to ethoprop than in unexposed soil or sterilized exposed soil. The enhanced biodegradation property of the exposed soil lasted 17 months after the last application of ethoprop. The limited downward movement of ethoprop in the soil, migration of M. chitwoodi J2 into the treated zone, presence of resistant life stage(s) at the time of application, and loss of efficacy due to enhanced biodegradation may have a significant effect on the performance of ethoprop. 相似文献
5.
Second-stage juveniles (J2) of races 1 and 2 of Meloidogyne chiiwoodi and M. hapla readily penetrated roots of Thor alfalfa and Columbian tomato seedlings; however, few individuals of M. chitwoodi race 1 were able to establish feeding sites and mature on alfalfa. Histopathological studies indicate that J2 of race 1 either failed to initiate feeding sites or they caused cell enlargement without typical cell wall thickening. The protoplasm of these cells coagulated, and juveniles of race 1 did not develop beyond the swollen J2 stage. A few females of race 1 fed on small giant cells and deposited a few eggs at least 20 and 30 days later than M. chitwoodi race 2 and M. hapla, respectively. Failure of race 1 to establish feeding sites was related to egression of J2 from the roots. The M. chitwoodi race 1 J2 egression from alfalfa roots was higher than egression of race 2 and M. hapla. Egression of J2 of M. chitwoodi races 1 and 2 from tomato roots was similar and higher than that of M. hapla. Thus egression plays an important role in the host-parasite relationship of M. chitwoodi and alfalfa. 相似文献
6.
The effect of the Mi gene on the reproductive factor of Meloidogyne chitwoodi and M. hapla, major nematode pests of potato, was measured on nearly isogenic tomato lines differing in presence or absence of the Mi gene. The Mi allele controlled resistance to reproduction of race 1 of M. chitwoodi and to one of two isolates of race 2. No resistance to race 3 of M. chitwoodi or to M. hapla was found. Variability in response to isolates of race 2 may reflect diversity of virulence genotypes heretofore undetected. Resistance to race 1 of M. chitwoodi could be useful in potato if the Mi gene were functional following transferral by gene insertion technology into potato. Since the Mi gene is not superior to RMc₁ derived from Solarium bulbocastanum, the transferral by protoplast fusion appears to offer no advantage. 相似文献
7.
Population dynamics of Meloidogyne chitwoodi were studied for 2 years in a commercial potato field and microplots. Annual second-stage juvenile (J2) densities peaked at harvest in mid-fall, declined through the winter, and were lowest in early summer. In the field and in one microplot study, population increase displayed trimodal patterns during the 1984 and 1985 seasons. Overwintering nematodes produced egg masses on roots by 600-800 degree-days base 5 C (DD₅) after planting. Second-generation and third-generation eggs hatched by 950-1,100 DD₅ and 1,500-1,600 DD₅, respectively, and J2 densities rapidly increased in the soil. A fourth generation was observed at 2,150 DD₅ in 1985 microplot studies. Tubers were initiated by 450-500 DD₅, but J2 were not observed in the tubers until after the second generation hatched at 988-1,166 DD₅. A second period of tuber invasion was observed when third generation J2 hatched. The regional variation in M. chitwoodi damage on potato may be explained by degree-day accumulation in different potato production regions of the western United States. 相似文献
8.
From September 1980 to June 1981, a survey was conducted in the major potato growing regions of northern California, Idaho, Nevada, Oregon. and Washington to determine the distribution of Meloidogyne chitwoodi and other Meloidogyne spp. Meloidogyne chitwoodi and M. hapla were the only root-knot nematode species detected parasitizing potato in all the states surveyed. Meloidogyne chitwoodi occurred alone in 83% of the samples and M. hapla in 11%, with 6% of all samples containing both species. The greater incidence of M. chitwoodi, as compared to M. hapla, may be due to the cool growing season encountered in 1980 (which favored M. chitwoodi but not M. hapla) and to the increased acreage of small grains (which are good hosts for M. chitwoodi but not M. hapla) planted in rotation with potato. Differentiation between these two species can be determined by a differential host test, perineal patterns of mature females, and shape of the tail tip amt of the tail hypodermal terminus of L₂ juveniles. 相似文献
9.
In experiments on competition between Pratylenchus neglectus and Meloidogyne chitwoodi in barley, the species that parasitized the roots first inhibited penetration by the latter species. Prior presence of P. neglectus impeded the development of M. chitwoodi. Pratylenchus neglectus reduced egg production, final population levels, and reproductive index of M. chitwoodi. The reduction was linearly related to initial population densities of P. neglectus. Initial population densities of M. chitwoodi had no effect on final population levels of P. neglectus. Carbon assimilation by barley plants was reduced when either nematode species was present alone, but not when both were present together. Both nematode species assimilated lower amounts of carbon when present together than when present alone. A split-root experiment demonstrated that translocatable chemicals were not involved in the competition between the two species. 相似文献
10.
Legumes of the genera Astragalus (milkvetch), Coronilla (crownvetch), Lathyrus (pea vine), Lotus (birdsfoot trefoil), Medicago (alfalfa), Melilotus (clover), Trifolium (clover), and Vicia (common vetch) were inoculated with a population of Melaidogyne chitwoodi from Utah or with one of three M. hapla populations from California, Utah, and Wyoming.Thirty-nine percent to 86% of alfalfa (M. scutellata) and 10% to 55% of red clover (T. pratense) plants survived inoculation with the nematode populations at a greenhouse temperature of 24 ± 3°C. All plants of the other legume species survived all nematode populations, except 4% of the white clover (T. repens) plants inoculated with the California M. hapla population. Entries were usually more susceptible to the M. hapla populations than to M. chitwoodi. Galling of host roots differed between nematode populations and species. Root-galling indices (1 = none, 6 = severely galled) ranged from 1 on pea vine inoculated with the California population of M. hapla to 6 on yellow sweet clover inoculated with the Wyoming population of M. hapla. The nematode reproductive factor (Rf = final nematode population/initial nematode population) ranged from 0 for all nematode populations on pea vine to 35 for the Wyoming population of M. hapla on alfalfa (M. sativa). 相似文献
11.
Meloidogyne chitwoodi reduced the growth of winter wheat ''Nugaines'' directly in relation to nematode density in the greenhouse, The relationship between top dry weight and initial nematode density suggests a tolerance limit of Nugaines wheat to M. chitwoodi of between 0.03 and 0.18 eggs/cm³ of soil; the value for relative minimum plant top weight was 0.45 g and 0.75 g, respectively. Growth of wheat in field microplots containing four population densities (0.003, 0.05, 0.75 and 9 eggs/cm³ soil) was not affected significantly at any inoculum level compared to controls during September to July, However, suppression of head weights of ''Fielder'' spring wheat grown May-July occurred in microplots initially infested with 0.75 and 9 eggs/cm³ soil. Reproduction (Pf/Pi) was poorer at these two inoculum levels as compared to the lower densities. In another greenhouse experiment, roots of wheat cultivars Fielder, ''Fieldwin,'' ''Gaines,'' ''Hyslop,'' and Nugaines became infected by M. chitwoodi, but not by M. hapla. Reproduction of M. chitwoodi was less on Gaines and Nugaines than on Fielder, Fieldwin, or Hyslop. 相似文献
12.
13.
H. Mojtahedi R. E. Ingram G. S. Santo J. N. Pinkerton G. L. Reed J. H. Wilson 《Journal of nematology》1991,23(2):162-169
Seasonal vertical migration of Meloidogyne chitwoodi through soil and its impact on potato production in Washington and Oregon was studied. Nematode eggs and second-stage juveniles (J2) were placed at various depths (0-180 cm) in tubes filled with soil and buried vertically or in holes dug in potato fields. Tubes were removed at intervals over a 12-month period and soil was bioassayed on tomato roots. Upward migration began in the spring after water had percolated through the tubes. Nematodes were detected in the top 5 cm of tubes within 1-2 months of burial, depending on depth of placement. Potatoes were grown in field plots for 4 or 5 months before the tubers were evaluated for infection. One hundred eggs and J2 per gram soil placed at 60 and 90 cm caused significant tuber damage at the Washington and Oregon sites, respectively. At the Washington site, inoculum placed at 90, 120, and 150 cm caused potato root infection without serious impact on tuber quality, but inoculum diluted 2-8 times and placed at 90 cm did not cause root or tuber infection. Nematode migration was dependent on soil texture; 9 days after placement at the bottoms of tubes, J2 had moved up 55 cm in sandy loam soil (Oregon) but only 15 cm in silt loam (Washington). Thus, the importance of M. chitwoodi which occur deep in a soil profile may depend on soil texture, population density, and length of the growing season. 相似文献
14.
V. M. Williamson E. P. Caswell-Chen B. B. Westerdahl F. F. Wu G. Caryl 《Journal of nematology》1997,29(1):9-15
Random amplified polymorphic DNA (RAPD) bands that distinguish Meloidogyne hapla and M. chitwoodi from each other, and from other root-knot nematode species, were identified using a series of random octamer primers. The species-specific amplified DNA fragments were cloned and sequenced, and then the sequences were used to design 20-mer primer pairs that specifically amplified a DNA fragment from each species. Using the primer pairs, successful amplifications from single juveniles were readily attained. A mixture of four primers in a single PCR reaction mixture was shown to identify single juveniles of M. hapla and M. chitwoodi. To confirm specificity, the primers were used to amplify DNA from several isolates of M. hapla that originated from different crops and locations in North America and also from isolates of M. chitwoodi that differed in host range. In characterizing the M. hapla isolates, it was noted that there was a mitochondrial DNA polymorphism among isolates for cleavage by the restriction endonuclease DraI. 相似文献
15.
Per H. McCord 《Journal of nematology》2012,44(4):387-390
In the Pacific Northwest, alfalfa (Medicago sativa) is host to two species of root-knot nematodes, including race 2 of the Columbia root-knot nematode (Meloidogyne chitwoodi) and the northern root-knot nematode (Meloidogyne hapla). In addition to the damage caused to alfalfa itself by M. hapla, alfalfa’s host status to both species leaves large numbers of nematodes available to damage rotation crops, of which potato is the most important. A nematode-resistant alfalfa germplasm release, W12SR2W1, was challenged with both nematode species, to determine the correlation, if any, of resistance to nematode reproduction. Thirty genotypes were screened in replicated tests with M. chitwoodi race 2 or M. hapla, and the reproductive factor (RF) was calculated. The distribution of natural log-transformed RF values was skewed for both nematode species, but more particularly for M. chitwoodi race 2, where more than half the genotypes screened were non-hosts. Approximately 30 percent of genotypes were non-hosts or very poor hosts of M. hapla, but RF values for M. hapla on susceptible genotypes were generally much higher than RF values for genotypes susceptible to M. chitwoodi race 2. The Spearman rank correlation was positive (0.52) and significant (p-value = 0.003), indicating there is some relationship between resistance to these two species of root-knot nematode in alfalfa. However the relationship is not strong enough to suggest genetic loci for resistance are identical, or closely linked. Breeding for resistance or immunity will require screening with each species separately, or with different DNA markers if marker-assisted breeding is pursued. A number of genotypes were identified which are non-hosts to both species. These plants will be intercrossed to develop a non-host germplasm. 相似文献
16.
A somatic hybrid, CBP-233, between resistant Solanum bulbocastanum (SB-22) and susceptible S. tuberosum (R4) was tested for resistance to Meloidogyne chitwoodi race 1. One week after inoculation, only 0.04-0.4% of the initial inoculum (Pi, 5,000 eggs) as second stage-juveniles infected SB-22 and CBP-233 root systems, compared to 2% in R4. After 8 weeks, the number of M. chitwoodi in SB-22 and CBP-233 roots remained lower (0.3-1.5% of Pi) compared to R4, which increased from 2% to ca. 27%. Development of M. chitwoodi was delayed on SB-22 and CBP-233 by at least 2 weeks, and only half of the infective nematodes established feeding sites and matured in resistant clones compared to 99% in susceptible R4. Necrotic tissue surrounded nematodes that failed to develop in SB-22 and CBP-233. The reproductive factor (ratio of final number of eggs recovered from roots to Pi) was <0.01 for both SB-22 and CBP-233 and 46.8 for R4. Delaying inoculation of CBP-233 from 1 to 3 months after planting did not increase the chance or rate of tuber infection. Only a few M. chitwoodi developed to maturity on CBP-233 tubers and deposited a small number of eggs. SB-22 rarely produced tubers in these experiments, and like CBP-233 were resistant to M. chitwoodi. It appeared that the mechanisms of resistance to M. chitwoodi in roots and tubers of CBP-233 are similar. 相似文献
17.
An accession of Solanum hougasii, a wild tuber-bearing potato species native to Mexico, was found to be resistant to races 1 and 2 of Meloidogyne chitwoodi. A resistant selection was selfed and its progeny possessed the same combined resistance uniformly. A selected resistant seedling from the selfed progeny was crossed to cultivated tetraploid potato (S. tuberosum) to form an F₁ hybrid, and was backcrossed to cultivated tetraploid potato to form a BC₁ population in which resistance to the two races segregated. Progeny of the BC₁ were tested in inoculation experiments with four replicates for each progeny genotype for each race of nematode. Resistance was evaluated on the basis of extracted egg counts from the entire root system of pot-grown plants. Considering resistance to each race separately, for race 1, non-host (Rf ≤ 0.1) status was exhibited by approximately half of the BC₁. About one-third of the progeny showed non-host status to race 2. Egg production among progeny that showed non-host status for both races was higher with race 2 than with race 1. Analysis of co-segregation established that genetic control for the two races appears to be independently segregating. Although genes for resistance to race 1 derived from S. bulbocastanum and S. fendleri were previously described, this report is the first analysis showing independent genetic control in Solanum spp. for resistance to race 2 of M. chitwoodi only. 相似文献
18.
Meloidogyne hapla reproduced and suppressed growth (P < 0.05) of susceptible Lahontan and Moapa alfalfa at 15, 20, and 25 C. At 30 C, resistant Nevada Syn XX lost resistance to M. hapla. M. hapla invaded and reproduced on Rhizobium meliloti nodules of Lahontan and Moapa, inducing giant cell formation and structural disorder of vascular bundles of nodules without disrupting bacteroids. At 15, 20, and 25 C a M. chitwoodi population from Utah reproduced on Lahontan, Moapa, and Nevada Syn XX alfalfa, suppressing growth (P < 0.05). Final densities of the Utah M. chitwoodi population were greater (P < 0.05) than those of Idaho and Washington State populations on Lahontan at 15 and 25 C and on Nevada Syn XX at 15 C, but were less consistent and smaller (P < 0.05) than those of M. hapla on Lahontan and Moapa at 20 and 25 C. Inconsistent reproduction of the Utah M. chitwoodi population on alfalfa suggests the possible existence of nematode strains revealed by variability in alfalfa resistance. No reproduction or inconsistent final nematode population densities with no damage were observed on Lahontan, Moapa, and Nevada Syn XX plants grown in soil infested with Idaho and Washington State M. chitwoodi populations. 相似文献
19.
Stands of several cultivars and experimental lines of sainfoin (Onobrychis viciifolia) were severely reduced (92% average loss) in a field naturally infested with Meloidogyne hapla. Stands of two alfalfa cultivars included in the test were unaffected. In studies conducted in the greenhouse with plants inoculated at the time of seeding, average mortality was 55% for sainfoin entries and 7% for Ladak alfalfa. Little mortality occurred when plants were inoculated after establishment. Three months after inoculation, all sainfoin entries were heavily galled (range of 3.3-3.7 on a scale of 1-4) while roots of Ladak were only slightly galled (rating of 1.6). Intermating of plants selected in the field plots for resistance to M. hapla showed a slight increase in resistance. Of the 147 plant introduction lines tested in the greenhouse, none were resistant to M. hapla. 相似文献
20.
The effects of Meloidogyne incognita on the Big Jim, Jalapeno, and New Mexico No. 6 chile (Capsicum annuum) cultivars were investigated in microplots for two growing seasons. All three cultivars were susceptible to M. incognita and reacted similarly to different initial populations of this nematode. Severe stunting and yield suppressions occurred at all initial M. incognita densities tested ranging from 385 to 4,230 eggs and larvae/500 cm³ soil. Regression analysis of the microplot data from a sandy loam soil showed yield losses of 31% for the 1978 season and 25% for the 1979 season for the three cultivars for each 10-fold increase in the initial population of M. incognita. 相似文献