首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
The effects of 12 summer crop rotation treatments on population densities of Meloidogyne arenaria race 1 and on yields of subsequent spring vegetable crops were determined in microplots. The crop sequence was: (i) rotation crops during summer 1991 ; (ii) cover crop of rye (Secale cereale) during winter 1991-92; (iii) squash (Cucurbita pepo) during spring 1992; (iv) rotation crops during summer 1992; (v) rye during winter 1992-93; (vi) eggplant (Solanum melongena) during spring 1993. The 12 rotation treatments were castor (Ricinus communis), cotton (Gossypium hirsutum), velvetbean (Mucuna deeringiana), crotalaria (Crotalaria spectabilis), fallow, hairy indigo (Indigofera hirsuta), American jointvetch (Aeschynomene americana), sorghum-sudangrass (Sorghum bicolor x S. sudanense), soybean (Glycine max), horsebean (Canavalia ensiformis), sesame (Sesamum indicum), and peanut (Arachis hypogaea). Compared to peanut, the first eight rotation treatments resulted in lower (P ≤ 0.05) numbers of M. arenaria juveniles on most sampling dates. Soybean, horsebean, and sesame rotations were less effective in suppressing nematodes. Yield of squash was greater (P ≤ 0.05) following castor, cotton, velvetbean, and crotalaria than following peanut. Compared to the peanut rotation, yield of eggplant was enhanced (P ≤ 0.10) following castor, crotalaria, hairy indigo, American jointvetch, and sorghum-sudangrass. Several of these rotation crops may provide a means for depressing M. arenaria population densities on a short-term basis to enhance yields in a subsequent susceptible vegetable crop.  相似文献   

2.
The efficacy of fallow and coastal bermudagrass (Cynodon dactylon) as a rotation crop for control of root-knot nematode (Meloidogyne incognita race 1) and soilborne fungi in okra (Hibiscus esculentus cv. Emerald), squash (Cucurbita pepo cv. Dixie Hybrid), and sweet corn (Zea mays cv. Merit) was evaluated in a 3-year field trial. Numbers of M. incognita in the soil and root-gall indices were greater on okra and squash than sweet corn and declined over the years on vegetable crops following fallow and coastal bermudagrass sod. Fusarium oxysporum and Pythium spp. were isolated most frequently from soil and dying okra plants. Numbers of colony-forming units of soilborne fungi generally declined as the number of years in sod increased, but were not affected by coastal bermudagrass sod. Yields of okra following 2-year and 3-year sod and squash following 2-year sod were greater than those following fallow. Yield of sweet corn was not different following fallow and coastal bermudagrass sod.  相似文献   

3.
During a 6-year study of 1-, 2-, and 3-year crop rotations, population densities of Pratylenchus brachyurus, Trichodorus christiei, and Meloidogyne incognita were significantly affected by the choice of crops but not by length of crop rotation. The density of P. brachyurus and T. christiei increased rapidly on milo (Sorghum vulgate). In addition, populations of P. brachyurus increased significantly in cropping systems that involved crotalaria (C. rnucronata), millet (Setaria italica), and sudangrass (Sorghum sudanense). Lowest numbers of P. brachyurus occurred where okra (Hibiscus esculentus) was grown or where land was fallow. The largest increase in populations of T. christiei occurred in cropping systems that involved millet, sudangrass, and okra whereas the smallest increase occurred in cropping systems that involved crotalaria or fallow. A winter cover of rye (Secale cereale) had no distinguishable effect on population densities of P. brachyurus or T. christiei. Meloidogyne incognita was detected during the fourth year in both newly cleared and old agricultural land when okra was included in the cropping system. Detectable populations of M. incognita did not develop in any of the other cropping systems. Yields of tomato transplants were higher on the newly cleared land than on the old land. Highest yields were obtained when crotalaria was included in the cropping system. Lowest yields were obtained when milo, or fallow were included in the cropping system. Length of rotation had no distinguishable effect on yields of tomato transplants.  相似文献   

4.
Pearl millet (Pennisetum glaucum) has potential as a grain crop for dryland crop production in the southeastern United States. Whether or not pearl millet will be compatible in rotation with cotton (Gossypium hirsutum), corn (Zea mays), and peanut (Arachis hypogaea) will depend, in part, on its host status for important plant-parasitic nematodes of these crops. The pearl millet hybrid ''TifGrain 102'' is resistant to both Meloidogyne incognita race 3 and M. arenaria race 1; however, its host status for other plant-parasitic nematodes was unknown. In this study, the reproduction of Belonolaimus longicaudatus, Paratrichodorus minor, Pratylenchus brachyurus, and Meloidogyne javanica race 3 on pearl millet (''HGM-100'' and TifGrain 102) was compared relative to cotton, corn, and peanut. Separate greenhouse experiments were conducted for each nematode species. Reproduction of B. longicaudatus was lower on peanut and the two millet hybrids than on cotton and corn. Reproduction of P. minor was lower on peanut and TifGrain 102 than on cotton, corn, and HGM-100. Reproduction of P. brachyurus was lower on both millet hybrids than on cotton, corn, and peanut. Reproduction of M. javanica race 3 was greater on peanut than on the two millet hybrids and corn. Cotton was a nonhost. TifGrain 102 was more resistant than HGM-100 to reproduction of B. longicaudatus, P. minor, and M. javanica. Our results demonstrated that TifGrain 102 was a poor host for B. longicaudatus and P. brachyurus (Rf < 1) and, relative to other crops tested, was less likely to increase densities of P. minor and M. javanica.  相似文献   

5.
In a rapeseed-squash cropping system, Meloidogyne incognita race 1 and M. javanica did not enter, feed, or reproduce in roots of seven rapeseed cultivars. Both nematode species reproduced at low levels on roots of the third crop of rapeseed. Reproduction of M. incognita and M. javanica was high on squash following rapeseed, hairy vetch, and fallow. The application of fenamiphos suppressed (P = 0.05) root-gall indices on squash following rapeseed, hairy vetch, and fallow; and on Dwarf Essex and Cascade rapeseed, but not Bridger and Humus rapeseed in 1987. The incorporation of 30-61 mt/ha green biomass of rapeseed into the soil 6 months after planting did not affect the population densities of Criconemella ornata, M. incognita, M. javanica, Pythium spp., Rhizoctonia solani AG-4; nor did it consistently increase yield of squash. Hairy vetch supported larger numbers of M. incognita and M. javanica than rapeseed cultivars or fallow. Meloidogyne incognita and M. javanica survived in fallow plots in the absence of a host from October to May each year at a level sufficient to warrant the use of a nematicide to manage nematodes on the following susceptible crop.  相似文献   

6.
Two experiments were conducted in north-central Florida to examine the effects of various winter cover crops on plant-parasitic nematode populations through time. In the first experiment, six winter cover crops were rotated with summer corn (Zea mays), arranged in a randomized complete block design. The cover crops evaluated were wheat (Triticum aestivum), rye (Secale cereale), oat (Avena sativa), lupine (Lupinus angustifolius), hairy vetch (Vicia villosa), and crimson clover (Trifolium incarnatum). At the end of the corn crop in year 1, population densities of Meloidogyne incognita were lowest on corn following rye or oat (P ≤ 0.05), but no treatment differences were observed in year 2. Wheat was a good host to Paratrichodorus minor, whereas vetch was a poor host, but numbers of P. minor were not lower in vetch-planted plots after corn was grown. The second experiment used a split-plot design in which rye or lupine was planted into field plots with histories of five tropical cover crops: soybean (Glycine max), cowpea (Vigna unguiculata), sorghum-sudangrass (Sorghum bicolor × S. sudanense), sunn hemp (Crotalaria juncea), and corn. Population densities of M. incognita and Helicotylenchus dihystera were affected by previous tropical cover crops (P ≤ 0.05) but not by the winter cover crops present at the time of sampling. Plots planted to sunn hemp in the fall maintained the lowest M. incognita and H. dihystera numbers. Results suggest that winter cover crops tested did not suppress plant-parasitic nematodes effectively. Planting tropical cover crops such as sunn hemp after corn in a triple-cropping system with winter cover crops may provide more versatile nematode management strategies in northern Florida.  相似文献   

7.
Soil-incorporated rotation/green manure crops were evaluated for management of potato early dying caused by Verticillium dahliae and Pratylenchus penetrans. After two years of rotation/green manure and a subsequent potato crop, P. penetrans numbers were less after ‘Saia’ oat/‘Polynema’ marigold, ‘Triple S’ sorghum-sudangrass, or ‘Garry’ oat than ‘Superior’ potato or ‘Humus’ rapeseed. The area under the disease progress curve (AUDPC) for early dying was lowest after Saia oat/marigold, and tuber yields were greater than continuous potato after all crops except sorghum-sudangrass. Saia oat/marigold crops resulted in the greatest tuber yields. After one year of rotation/green manure, a marigold crop increased tuber yields and reduced AUDPC and P. penetrans. In the second potato crop after a single year of rotation, plots previously planted to marigolds had reduced P. penetrans densities and AUDPC and increased tuber yield. Rapeseed supported more P. penetrans than potato, but had greater yields. After two years of rotation/green manure crops and a subsequent potato crop, continuous potato had the highest AUDPC and lowest tuber weight. Rotation with Saia oats (2 yr) and Rudbeckia hirta (1 yr) reduced P. penetrans and increased tuber yields. AUDPC was lowest after R. hirta. Two years of sorghum-sudangrass did not affect P. penetrans, tuber yield or AUDPC. These results demonstrate that P. penetrans may be reduced by one or two years of rotation to non-host or antagonistic plants such as Saia oat, Polynema marigold, or R. hirta and that nematode control may reduce the severity of potato early dying.  相似文献   

8.
Substantial reproduction of Meloidogyne incognita on winter cover crops may lead to damaging populations in a subsequent cotton (Gossypium hirsutum) crop. The amount of population increase during the winter depends on soil temperature and the host status of the cover crop. Our objectives were to quantify M. incognita race 3 reproduction on rye (Secale cereale) and several leguminous cover crops and to determine if these cover crops increase population densities of M. incognita and subsequent damage to cotton. The cover crops tested were ‘Bigbee’ berseem clover (Trifolium alexandrinum), ‘Paradana’ balansa clover (T. balansae), ‘AU Sunrise’ and ‘Dixie’ crimson clover (T. incarnatum), ‘Cherokee’ red clover (T. pratense), common and ‘AU Early Cover’ hairy vetch (Vicia villosa), ‘Cahaba White’ vetch (V. sativa), and ‘Wrens Abruzzi’ rye. In the greenhouse tests, egg production was greatest on berseem clover, Dixie crimson clover, AU Early Cover hairy vetch, and common hairy vetch; intermediate on Balansa clover and AU Sunrise crimson clover; and least on rye, Cahaba White vetch, and Cherokee red clover. In both 2002 and 2003 field tests, enough heat units were accumulated between 1 January and 20 May for the nematode to complete two generations. Both AU Early Cover and common hairy vetch led to greater root galling than fallow in the subsequent cotton crop; they also supported high reproduction of M. incognita in the greenhouse. Rye and Cahaba White vetch did not increase root galling on cotton and were relatively poor hosts for M. incognita. Only those legumes that increased populations of M. incognita reduced cotton yield. In the southern US, M. incognita can complete one to two generations on a susceptible winter cover crop, so cover crops that support high nematode reproduction may lead to damage and yield losses in the following cotton crop. Planting rye or Meloidogyne-resistant legumes as winter cover crops will lower the risk of increased nematode populations compared to most vetches and clovers.  相似文献   

9.
Soils and roots of field crops in low-rainfall regions of the Pacific Northwest were surveyed for populations of plantparasitic and non-plant-parasitic nematodes. Lesion nematodes (Pratylenchus species) were recovered from 123 of 130 non-irrigated and 18 of 18 irrigated fields. Pratylenchus neglectus was more prevalent than P. thornei, but mixed populations were common. Population densities in soil were affected by crop frequency and rotation but not by tillage or soil type (P < 0.05). Many fields (25%) cropped more frequently than 2 of 4 years had potentially damaging populations of lesion nematodes. Pratylenchus neglectus density in winter wheat roots was inversely correlated with grain yield (r2 = 0.64, P = 0.002), providing the first field-derived evidence that Pratylenchus is economically important in Pacific Northwest dryland field crops. Stunt nematodes (Tylenchorhynchus clarus and Geocenamus brevidens) were detected in 35% of fields and were occasionally present in high numbers. Few fields were infested with pin (Paratylenchus species) and root-knot (Meloidogyne naasi and M. chitwoodi) nematodes. Nematodes detected previously but not during this survey included cereal cyst (Heterodera avenae), dagger (Xiphinema species), and root-gall (Subanguina radicicola) nematodes.  相似文献   

10.
Buildup of plant-parasitic nematode populations on corn (Zea mays), soybean (Glycine max), and sorghum (Sorghum bicolor) were compared in 1991 and 1992. Final population densities (Pf) of Meloidogyne incognita were lower following sorghum than after soybean in both seasons, and Pf after sorghum was lower than Pf after corn in 1992. In both seasons, Pf differed among the sorghum cultivars used. No differences in Pf on corn, sorghum, and soybean were observed for Criconemella spp. (a mixture of C. sphaerocephala and C. ornata) or Paratrichodorus minor in either season. Pf levels of Pratylenchus spp. (a mixture of P. brachyurus and P. scribneri) were greatest after corn in 1992, but no differences with crop treatments were observed in 1991. When data from field tests conducted with corn and sorghum during the past four seasons were pooled, negative linear relationships between ln(Pf/Pi) and ln(Pi) were observed for Criconemella spp. and P. minor on each crop, and for M. incognita on corn (Pi = initial population density). Although ln(Pf/Pi) and ln(Pi) were not related for M. incognita with pooled sorghum data, separate relationships were derived for various sorghum cultivars. Regression equations from pooled data were used to obtain estimates of equilibrium density and maximum reproductive rate, and these estimates were used to construct models expressing nematode Pf across a range of initial densities. Many of these models were robust, encompassing a range of sites, season, crop cultivars, and planting dates. Quadratic models derived from pooled field data provided an alternative method for expressing Pf as a function of Pi.  相似文献   

11.
Belonolaimus longicaudatus has been reported as damaging both potato (Solanum tuberosum) and cotton (Gossypium hirsutum). These crops are not normally grown in cropping systems together in areas where the soil is infested with B. longicaudatus. During the 1990s cotton was grown in a potato production region that was a suitable habitat for B. longicaudatus. It was not known how integrating the production of these two crops by rotation or double-cropping would affect the population densities of B. longicaudatus, other plant-parasitic nematodes common in the region, or crop yields. A 3-year field study evaluated the viability of both crops in monocropping, rotation, and double-cropping systems. Viability was evaluated using effects on population densities of plant-parasitic nematodes and yields. Rotation of cotton with potato was found to decrease population densities of B. longicaudatus and Meloidogyne incognita in comparison with continuous potato. Population densities of B. longicaudatus following double-cropping were greater than following continuous cotton. Yields of both potato and cotton in rotation were equivalent to either crop in monocropping. Yields of both crops were lower following double-cropping when nematicides were not used.  相似文献   

12.
Brassicaceous cover crops can be used for biofumigation after soil incorporation of the mowed crop. This strategy can be used to manage root-knot nematodes (Meloidogyne spp.), but the fact that many of these crops are host to root-knot nematodes can result in an undesired nematode population increase during the cultivation of the cover crop. To avoid this, cover crop cultivars that are poor or nonhosts should be selected. In this study, the host status of 31 plants in the family Brassicaceae for the three root-knot nematode species M. incognita, M. javanica, and M. hapla were evaluated, and compared with a susceptible tomato host in repeated greenhouse pot trials. The results showed that M. incognita and M. javanica responded in a similar fashion to the different cover cultivars. Indian mustard (Brassica juncea) and turnip (B. rapa) were generally good hosts, whereas most oil radish cultivars (Raphanus. sativus ssp. oleiferus) were poor hosts. However, some oil radish cultivars were among the best hosts for M. hapla. The arugula (Eruca sativa) cultivar Nemat was a poor host for all three nematode species tested. This study provides important information for chosing a cover crop with the purpose of managing root-knot nematodes.  相似文献   

13.
Aldicarb and Bay 68138 (ethyl 4-(methylthio)-m-tolyl isopropylphosphoramidate) were effective in increasing the plant height and yield of millet and sorghum-sudangrass hybrids. Stunting of plants and reduction in yield were inversely proportional to the number of Pratylenchus spp. and Belonolaimus longicaudatus present in the rhizosphere. Millet and sorghum-sudangrass hybrids supported large numbers of Criconemoides ornatus, Pratylenchus spp., B. longicaudatus, and Xiphinema americanum. Funk''s sorghum × sudangrass Hybrid 78 was more sensitive to injury by the nematode complex than were Tift 23A × 186 or Gahi-I pearl millet. ''Tiflate'' pearl millet was more resistant than other millets or sorghums to injury caused by C. ornatus, Pratylenchus spp., Trichodorus christiei, and B. longicaudatus. Millet and sorghum-sudangrass hybrids are poor summer cover crops because they favor intensive development of P. brachyurus, P. zeae, T. christiei, and B. longicaudatus.  相似文献   

14.
Effect of cover crops intercropped with pineapple (Ananas comosus) on Rotylenchulus reniformis population densities and activity of nematode-trapping fungi (NTF) were evaluated in two cycles of cover crop and pineapple. Sunn hemp (Crotalaria juncea), rapeseed (Brassica napus), African marigold (Tagetes erecta), or weeds were intercropped with pineapples. Beds planted with sunn hemp or rapeseed had lower population densities of R. reniformis than African marigold, weeds, or pineapple plots during cover crop growth, and the subsequent pineapple-growing periods. Rapeseed was a good host to Meloidogyne javanica and resulted in high population densities of M. javanica in the subsequent pineapple crop. Fireweed (Erigeron canadensis) occurred commonly and was a good host to R. reniformis. Bacterivorous nematode population densities increased (P ≤ 0.05) most in sunn hemp, especially early after planting. Nematode-trapping fungi required a long period to develop measurable population densities. Population densities of NTF were higher in cover crops than weeds or pineapples during the first crop cycle (P < 0.05). Although pineapple produced heavier fruits following sunn hemp than in the other treatments (P < 0.05), commercial yields were not different among rapeseed, weed, and sunn hemp treatments.  相似文献   

15.
Terminated small grain cover crops are valuable in light textured soils to reduce wind and rain erosion and for protection of young cotton seedlings. A three-year study was conducted to determine the impact of terminated small grain winter cover crops, which are hosts for Meloidogyne incognita, on cotton yield, root galling and nematode midseason population density. The small plot test consisted of the cover treatment as the main plots (winter fallow, oats, rye and wheat) and rate of aldicarb applied in-furrow at-plant (0, 0.59 and 0.84 kg a.i./ha) as subplots in a split-plot design with eight replications, arranged in a randomized complete block design. Roots of 10 cotton plants per plot were examined at approximately 35 days after planting. Root galling was affected by aldicarb rate (9.1, 3.8 and 3.4 galls/root system for 0, 0.59 and 0.84 kg aldicarb/ha), but not by cover crop. Soil samples were collected in mid-July and assayed for nematodes. The winter fallow plots had a lower density of M. incognita second-stage juveniles (J2) (transformed to Log10 (J2 + 1)/500 cm3 soil) than any of the cover crops (0.88, 1.58, 1.67 and 1.75 Log10(J2 + 1)/500 cm3 soil for winter fallow, oats, rye and wheat, respectively). There were also fewer M. incognita eggs at midseason in the winter fallow (3,512, 7,953, 8,262 and 11,392 eggs/500 cm3 soil for winter fallow, oats, rye and wheat, respectively). Yield (kg lint per ha) was increased by application of aldicarb (1,544, 1,710 and 1,697 for 0, 0.59 and 0.84 kg aldicarb/ha), but not by any cover crop treatments. These results were consistent over three years. The soil temperature at 15 cm depth, from when soils reached 18°C to termination of the grass cover crop, averaged 9,588, 7,274 and 1,639 centigrade hours (with a minimum threshold of 10°C), in 2005, 2006 and 2007, respectively. Under these conditions, potential reproduction of M. incognita on the cover crop did not result in a yield penalty.  相似文献   

16.
Criconemella onoensis (Luc) Luc and Raski increased to high (458-1,290/100 cm³) soil population densities in four fields planted to cover crops of sorghum-sudangrass (Sorghum bicolor (L.) Moench × S. arundinaceum (Desv.) Stapf var. sudanense (Stapf) Hitchc. ''Funk FP-4'') during the summer of 1984 in southeastern Florida. Three pathogenicity tests conducted in the greenhouse with C. onoensis on potato (Solanum tuberosum L. ''La Rouge'') using three different methods (inoculation, chemical treatment of infested soil, or pasteurization of infested soil) revealed no significant (P = 0.10) differences in plant growth, despite significant (P = 0.05) differences in population densities of C. onoensis between treated and control pots in each test. In these three tests, the maximum initial density of C. onoensis used was 720/100 cm³ soil and the maximum final density was 686/100 cm³ soil. Application of 933 liters/ha of Vapam to a field site with a pretreatment density of 1,120 C. onoensis/100 cm³ soil significantly (P = 0.05) reduced populations compared with untreated control plots, but yields remained higher in control plots. Apparently C. onoensis has no significant effect on potato growth at the population densities tested.  相似文献   

17.
Current strategies for management of Pratylenchus penetrans in both white potato and tomato consist of the use of fumigant or non-fumigant nematicides or crop rotation. The objective of this study was to determine if double-cropping African marigolds (Tagetes erecta) with potatoes or tomatoes could reduce P. penetrans populations. Plots were 10 m × 3 m arranged in a randomized complete block design with four replications. Treatments included marigolds, potatoes or tomatoes, and natural weedy fallow followed by either potatoes or tomatoes. Nematode populations were sampled before spring planting, between crops in August and after harvest in November. During the 3 years of the study, P. penetrans soil population density declined by an average of 93% from the pre-plant level when marigold was grown in rotation with potato and by 98% when marigold was grown.in rotation with tomato. Weedy fallow preceding potato resulted in an average decline in P. penetrans soil population density of 38%, and a similar decrease (37%) was seen when fallow preceded tomato. There was a significant reduction in the number of P. penetrans found in both potato and tomato roots when the crops followed marigolds. These results suggest that P. penetrans population density may be significantly reduced when marigolds are double-cropped with potatoes or tomatoes.  相似文献   

18.
Wheat, cotton, and peanut were arranged in three cropping sequences to determine the effects of fenamiphos (6.7 kg a.i./ha) and cropping sequence on nematode population densities and crop yields under conservation tillage and irrigation for 6 years. The cropping sequences included a wheat winter cover crop each year and summer crops of cotton every year, peanut every year, or cotton rotated every other year with peanut. The population densities of Meloidogyne spp. and Helicotylenchus dihystera were determined monthly during the experiment. Numbers of M. incognita increased on cotton and decreased on peanut, whereas M. arenaria increased on peanut, and decreased on cotton; both nematode species remained in moderate to high numbers in plots of wheat. Root damage was more severe on cotton than peanut and was not affected by fenamiphos treatment. The H. dihystera population densities were highest in plots with cotton every summer, intermediate in the cotton-peanut rotation, and lowest in plots with peanut every summer. Over all years and cropping sequences, yield increases in fenamiphos treatment over untreated control were 9% for wheat, 8% for cotton, and 0% for peanut. Peanut yields following cotton were generally higher than yields following peanut. These results show that nematode problems may be manageable in cotton and peanut production under conservation tillage and irrigation in the southeastern United States.  相似文献   

19.
The significance of double crop (intercrop and sequential crop), single crop (rainy season crop fallow from June to September), and rotations on densities of Heterodera cajani, Helicotylenchus retusus, and Rotylenchulus reniformis was studied on Vertisol (Typic Pellusterts) between 1987 and 1993. Cowpea (Vigna sinensis), mungbean (Phaseolus aureus), and pigeonpea (Cajanus cajan) greatly increased the population densities of H. cajani and suppressed the population densities of other plant-parasitic nematodes. Mean population densities of H. cajani were about 8 times lower in single crop systems than in double crop systems, with pigeonpea as a component intercrop. Plots planted to sorghum, safflower, and chickpea in the preceding year contained fewer H. cajani eggs and juveniles than did plots previously planted to pigeonpea, cowpea, or mungbean. Continuous cropping of sorghum in the rainy season and safflower in the post-rainy season markedly reduced the population density of H. cajani. Sorghum, safflower, and chickpea favored increased population densities of H. retusus. Adding cowpea to the system resulted in a significant increase in the densities of R. reniformis. Mean densities of total plant-parasitic nematodes were three times greater in double crop systems, with pigeonpea as a component intercrop than in single crop systems with rainy season fallow component. Cropping systems had a regulatory effect on the nematode populations and could be an effective nematode management tactic. Intercropping of sorghum with H. cajani tolerant pigeonpea could be effective in increasing the productivity of traditional production systems in H. cajani infested regions.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号