首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Use of resistant Phaseolus vulgaris germplasm has a potential role in limiting damaging effects of Meloidogyne spp. on bean production. Effects of two genetic resistance systems in common bean germptasm on penetration and development of Meloidogyne spp. were studied under growth room conditions at 22°C to 25°C. Nemasnap (gene system 1) and G1805 (gene system 2) were inoculated with second-stage juveniles (J2) of M. incognita race 2 and M. arenaria race 1, respectively; Black Valentine was used as the susceptible control. Up to 7 days after inoculation, there were no differences in numbers of M. incognita J2 penetrating roots of Black Valentine and Nemasnap; subsequently, more nematodes were present in Black Valentine roots (P < 0.05). More nematodes reached advanced stages of development in Black Valentine than in Nemasnap roots (P < 0.05). Total numbers of M. arenaria were greater in Black Valentine than in G 1805 roots from 14 days after inoculation (P < 0.05). Advanced stages of development occurred earlier and in greater numbers in Black Valentine plants than in G1805 plants. In these studies, resistance to M. incognita race 2 and M. arenaria race 1 in bean germplasm, which contain gene system 1 and gene system 2, respectively, was expressed by delayed nematode development rather than by differential penetration compared with susceptible plants.  相似文献   

2.
Penetration of second-stage juveniles (J2) of Meloidogyne incognita into tomato root explants and in vitro propagated peach plantlet roots were compared. Five inoculum levels were used: 25, 50, 75, 100, and 200 J2 for tomato; and 50, 100, 200, 500, and 1,000J2 for peach. The greatest root penetration into tomato was 30% at the 75 J2 level, but the maximum penetration into peach roots was only 8% at the 200 J2 level. The difference (P = 0.05) in penetration of M. incognita at all inoculum levels into these two hosts indicates that penetration versus inoculum density for in vitro studies need to be determined for different plant species.  相似文献   

3.
One susceptible (D6) and two resistant (E2 and N4) clones of Solanum sparsipilum × (S. phureja × haploid of S. tuberosum) were used to study the responses of potato roots and tubers to race 1 of Meloidogyne incognita (Kofoid &White) Chitwood. The compatible response was characterized by rapid penetration of large numbers of second-stage juveniles (J2) into roots, cessation of root growth, and occasional curving of root tips. The life cycle of M. incognita in the susceptible clone was completed in 25 days at 23-28 C. The incompatible response was characterized by penetration of fewer J2 into roots, necrosis of feeding sites within 2-7 days, and lack of nematode development. There were no differences in response of tubers from resistant and susceptible clones to nematode infection. Small numbers of J2 were detected in tubers, but they did not develop.  相似文献   

4.
The effects of planting date, rye (Secale cereale cv. Wren Abruzzi) and wheat (Triticura aestivum cv. Coker 797), crop destruction, fallow, and soil temperature on managing Meloidogyne incognita race 1 were determined in a 2-year study. More M. incognita juveniles (J2) and egg-producing adults were found in roots of rye planted 1 October than in roots of rye planted 1 November and wheat planted 1 November and 1 December. Numbers of M. incognita adults with and without egg masses were near or below detectable levels in roots of rye planted 1 November and wheat planted 1 November and 1 December. Meloidogyne incognita survived the mild winters in southern Georgia as J2 and eggs. The destruction of rye and wheat as a trap crop 1 March suppressed numbers of J2 in the soil temporarily but did not provide long-term benefits for susceptible crops that followed. In warmer areas where rye and wheat are grown in winter, reproduction of M. incognita may be avoided by delaying planting dates until soil temperature declines below the nematode penetration threshold (18 C), but no long-term benefits should be expected. The temperature threshold may be an important consideration in managing M. incognita population densities in areas having lower winter soil temperatures than southern Georgia.  相似文献   

5.
Meloidogyne incognita penetration and development were studied in roots of highly resistant (PI 96354, PI 417444), resistant (Forrest), and susceptible (Bossier) soybean genotypes. Although more second-stage juveniles (J2) had penetrated roots of PI 96354 and PI 417444 than roots of Forrest and Bossier by 2 days after inoculation, fewer J2 were present in roots of PI 96354 at 4 days after inoculation. Juvenile development in all genotypes was evident by 6 days after inoculation, with the highest number of swollen J2 present in roots of Bossier. At 16 days after inoculation, roots of PI 96354 had 87%, 74%, and 53% fewer J2 than were present in roots of Bossier, Forrest, and PI 417444, respectively. Differential emigration of J2, not fewer invasion sites, was responsible for the low number of nematodes in roots of the highly resistant PI 96354. Some 72% of the J2 penetrating the roots of this genotype emerged within 5 days after inoculation, whereas 4%, 54%, and 83% emerged from roots of Bossier, Forrest, and PI 417444, respectively. Penetration of roots of PI 96354 decreased the ability of J2 emerging from these roots to infect other soybean roots.  相似文献   

6.
Maize is a well-known host for Meloidogyne incognita, and there is substantial variation in host status among maize genotypes. In previous work it was observed that nematode reproduction increased in the moderately susceptible maize inbred line B73 when the ZmLOX3 gene from oxylipid metabolism was knocked out. Additionally, in this mutant line, use of a nonspecific primer for phenyl alanine ammonialyase (PAL) genes indicated that expression of these genes was reduced in the mutant maize plants whereas expression of several other defense related genes was increased. In this study, we used more specific gene primers to examine the expression of six PAL genes in three maize genotypes that were good, moderate, and poor hosts for M. incognita, respectively. Of the six PAL genes interrogated, two (ZmPAL3 and ZmPAL6) were not expressed in either M. incognita–infected or noninfected roots. Three genes (ZmPAL1, ZmPAL2, and ZmPAL5) were strongly expressed in all three maize lines, in both nematode-infected and noninfected roots, between 2 and 16 d after inoculation (DAI). In contrast, ZmPAL4 was most strongly expressed in the most-resistant maize line W438, was not detected in the most-susceptible maize line CML, and was detected only at 8 DAI in the maize line B73 that supported intermediate levels of reproduction by M. incognita. These observations are consistent with at least one PAL gene playing a role in modulating host status of maize toward M. incognita and suggest a need for additional research to further elucidate this association.  相似文献   

7.
The early events of Meloidogyne incognita behavior and associated host responses following root penetration were studied in resistant (cv. Moapa 69) and susceptible (cv. Lahontan) alfalfa. Ten-day-old seedlings of alfalfa cultivars were inoculated with second-stage juveniles (J2) and harvested 12, 24, 48, and 72 hours and 7, 14, and 21 days later. Both cultivars supported similar root penetration and initial J2 migration. By 72 hours after inoculation the majority of J2 were amassed inside the vascular cylinder in roots of susceptible Lahontan, while J2 had not entered the vascular cylinder of resistant Moapa 69 and remained clumped at the root apex. Nematode development progressed normally in Lahontan, but J2 were not observed in Moapa 69 after day 7. The greatest differences between RNA translation products isolated from inoculated and uninoculated roots of Lahanton occurred 72 hours after inoculation. Only minor differences in gene expression were observed between inoculated and uninoculated Moapa 69 roots at 72 hours. Comparison of translation products from inoculated versus mechanically wounded Lahontan roots revealed products that were specific to or enhanced in nematode-infected plants. Moapa 69 appears to possess a type of resistance to M. incognita that does not depend on a conventional hypersensitive response.  相似文献   

8.
Guardian peach rootstock was evaluated for susceptibility to Meloidogyne incognita race 3 (Georgia-peach isolate) and M. javanica in the greenhouse. Both commercial Guardian seed sources produced plants that were poor hosts of M. incognita and M. javanica. Reproduction as measured by number of egg masses and eggs per plant, eggs per egg mass, and eggs per gram of root were a better measure of host resistance than number of root galls per plant. Penetration, development, and reproduction of M. incognita in Guardian (resistant) and Lovell (susceptible) peach were also studied in the greenhouse. Differences in susceptibility were not attributed to differential penetration by the infectivestage juveniles (J2) or the number of root galls per plant. Results indicated that M. incognita J2 penetrated Guardian roots and formed galls, but that the majority of the nematodes failed to mature and reproduce.  相似文献   

9.
Variability in penetration, development, and reproduction of two resistance-breaking field pathotypes (pt.) of Meloidogyne arenaria, M. incognita, and a population of mixed Meloidogyne spp. virulent to grape hosts were compared on two resistant Vitis rootstocks ''Freedom'' and ''Harmony'' in separate tests. ''Cabernet Sauvignon'' was included as a susceptible host to all four nematode populations. Secondstage juveniles (J2) of the mixed population failed to penetrate Freedom roots. By contrast, 6% of J2 in the M. incognita population penetrated Freedom roots but did not develop beyond the swollen J2 stage. The two resistance-breaking populations of M. arenaria differed in their virulence except on susceptible roots of Cabernet Sauvignon. More J2 of M. arenaria pt. Freedom penetrated Freedom roots and reached adult stage than did M. arenaria pt. Harmony. Later life stages of M. arenaria pt. Freedom occurred earlier and in greater numbers in Harmony roots than did M. arenaria pt. Harmony. Reproduction of M. arenaria pt. Freedom was greater in Freedom and Harmony roots than M. arenaria pt. Harmony. Thus, one population of M. arenaria is highly virulent and the other is moderately virulent.  相似文献   

10.
A study of life-history traits was made to determine factors associated with the fitness of Meloidogyne incognita isolates virulent to resistance gene Rk in cowpea. Egg hatch, root penetration, egg mass production, and fecundity (eggs per egg mass) of avirulent and virulent phenotypes were compared among M. incognita isolates, isofemale lines, and single descent lines over multiple generations on resistant and susceptible cowpea. Variation (P ≤ 0.05) in both hatch and root penetration rates was found among isolates at a given generation. However, this variation was not consistent within nematode lines among generations, and there was no correlation with level of virulence, except for penetration and virulence on resistant cowpea at generation 20. Resistant and susceptible cowpea roots were penetrated at similar levels. Differences in reproductive factors on resistant plants were correlated with levels of virulence expression. In some isofemale lines, single descent lines, and isolates, lower (P ≤ 0.05) rates of egg mass production and fecundity on susceptible cowpea were associated with virulence to Rk, indicating a trade-off between reproductive fitness and virulence. Other virulent nematode lines from the same isolates did not have reduced reproductive ability on susceptible cowpea over 27 generations. Thus, virulent lineages varied in reproductive ability on susceptible cowpea, contributing to adaptation and maintenance of virulence within M. incognita populations under stabilizing selection.  相似文献   

11.
The response of two soybean plant introductions, PI 96354 and PI 417444, highly resistant to Meloidogyne incognita, to increasing initial soil population densities (Pi) (0, 31, 125, and 500 eggs/100 cm³ soil) of M. incognita was studied in field microplots for 2 years. The plant introductions were compared to the cultivars Forrest, moderately resistant, and Bossier, susceptible to M. incognita. Averaged across years, the yield suppressions of Bossier, Forrest, PI 417444, and PI 96354 were 97, 12, 18, and < 1%, respectively, at the highest Pi when compared with uninfested control plots. Penetration of roots by second-stage juveniles (J2) increased linearly with increasing Pi at 14 days after planting. At the highest Pi, 62% fewer J2 were present in roots of PI 96354 than in roots of the other resistant genotypes. Soil population densities of M. incognita were lower on both plant introductions than on Forrest. At 75 and 140 days after planting, PI 96354 had the lowest number of J2 in the soil, with 49% and 56% fewer than Forrest at the highest Pi. The resistance genes in PI 96354 should be useful in a breeding program to improve the level of resistance to M. incognita in soybean cultivars.  相似文献   

12.
Nematode population densities and yield of sweet corn and sweet potato as affected by the nematicide fenamiphos, in a sweet corn-sweet potato-vetch cropping system, were determined in a 5-year test (1981-85). Sweet potato was the best host of Meloidogyne incognita of these three crops. Fenamiphos 15G (6.7 kg a.i./ha) incorporated broadcast in the top 15 cm of the soil layer before planting of each crop increased (P ≤ 0.05) yields of sweet corn in 1981 and 1982 and sweet potato number 1 grade in 1982 and 1983. Yield of sweet corn and numbers of M. incognita second-stage juveniles (J2) in the soil each month were negatively correlated from planting (r = - 0.47) to harvest (r = -0.61) in 1982. Yield of number 1 sweet potato was inversely related to numbers of J2 in the soil in July-October 1982 and July-September 1983. Yield of cracked storage roots was positively related to the numbers of J2 in the soil on one or more sampling dates in all years except 1985. Some factor(s), such as microbial degradation, resistant M. incognita development, or environment, reduced the effect of fenamiphos.  相似文献   

13.
Resistance to the southern root-knot nematode, Meloidogyne incognita races 1 and 3, has been identified, incorporated, and deployed into commercial cultivars of tobacco, Nicotiana tabacum. Cultivars with resistance to other economically important root-knot nematode species attacking tobacco, M. arenaria, M. hapla, M. javanica, and other host-specific races of M. incognita, are not available in the United States. Twenty-eight tobacco genotypes of diverse origin and two standard cultivars, NC 2326 (susceptible) and Speight G 28 (resistant to M. incognita races 1 and 3), were screened for resistance to eight root-knot nematode populations of North Carolina origin. Based on root gall indices at 8 to 12 weeks after inoculation, all genotypes except NC 2326 and Okinawa were resistant to M. arenaria race 1, and races 1 and 3 of M. incognita. Except for slight root galling, genotypes resistant to M. arenaria race 1 responded similarly to races 1 and 3 of M. incognita. All genotypes except NC 2326, Okinawa, and Speight G 28 showed resistance to M. javanica. Okinawa, while supporting lower reproduction of M. javanica than NC 2326, was rated as moderately susceptible. Tobacco breeding lines 81-R-617A, 81-RL- 2K, SA 1213, SA 1214, SA 1223, and SA 1224 were resistant to M. arenaria race 2, and thus may be used as sources of resistance to this pathogen. No resistance to M. hapla and only moderate resistance to races 2 and 4 of M. incognita were found in any of the tobacco genotypes. Under natural field infestations of M. arenaria race 2, nematode development on resistant tobacco breeding lines 81-RL-2K, SA 1214, and SA 1215 was similar to a susceptible cultivar with some nematicide treatments; however, quantity and quality of yield were inferior compared to K 326 plus nematicides.  相似文献   

14.
The motility of Meloidogyne incognita second-stage juveniles (J2) and their ability to induce root galls in tomato were progressively decreased upon exposure to nicotine at concentrations of 1-100 μg/ml. EC₅₀ values ranged from 14.5 to 22.3 μg/ml, but J2 motility and root-gall induction were not eliminated at 100 μg/ml nicotine. Nicotine in both resistant NC 89 and susceptible NC 2326 tobacco roots was increased significantly 4 days after exposure to M. incognita. The increase was greater in resistant than in susceptible tobacco. Root nicotine concentrations were estimated to be 661.1-979.1 μg/g fresh weight. More M. incognita were detected in roots of susceptible than in roots of resistant tobacco. Numbers of nematodes within resistant roots decreased as duration of exposure to M. incognita was increased from 4 to 16 days. Concentrations of nicotine were apparently sufficient to affect M. incognita in both susceptible and resistant tobacco roots. Localization of nicotine at infection sites must be determined to ascertain its association with resistance.  相似文献   

15.
The southern root-knot nematode, Meloidogyne incognita, is the most damaging pathogen of cotton in the United States, and both resistance and tolerance to M. incognita could be valuable management approaches. Our objectives were to evaluate advanced cotton breeding lines for resistance and tolerance to M. incognita and to determine if a relationship between resistance and tolerance exists. Reproduction of M. incognita was evaluated on 17 breeding lines, a susceptible control (Delta and Pine Land DP5415), and a resistant control (M-120) in two greenhouse trials with six replications in a randomized complete block design. Two-week-old seedlings were inoculated with 8,000 M. incognita eggs and assessed for egg production 8 weeks later. Reproduction on the resistant control was only 10% of that on the susceptible control. Eight breeding lines supported 45% to 57% less (P <= 0.05) nematode reproduction than the susceptible control, and none of them were as resistant as M-120. Yield was determined in 2001 and 2002 in fumigated (1,3-dichloropropene at 56 liters/ha) and nonfumigated plots in a strip-plot design with three replications in a field naturally infested with M. incognita. Yield suppression caused by nematode infection differed among genotypes (P ≤ 0.05 for genotype × fumigation interaction). Six genotypes in 2001 and nine in 2002 were tolerant to M. incognita based on no difference in yield between the fumigated and nonfumigated plots (P ≥ 0.10). However, only three genotypes had no significant yield suppression in both years, of which two also were resistant to M. incognita. Regression analysis indicated that yield suppression decreased linearly as nematode resistance increased.  相似文献   

16.
The rates of soybean root penetration by freshly hatched second-stage juveniles (J2) of Meloidogyne arenaria, M. hapla, M. incognita, M. javanica, and Heterodera glycines races 1 and 5 were examined over a period of 1 to 240 hours. Heterodera glycines entered roots more quickly than Meloidogyne spp. Penetration by most nematodes was accomplished within 48 hours. The increases in penetration after 48 hours were insufficient to warrant further assessments. Penetration of J2 into roots of soybean seedfings in a styrofoam container was as good or better than in a clay pot. Thus, rapid and accurate root-penetration assessments can be made at 48 hours after inoculation.  相似文献   

17.
Rates of penetration of Meloidogyne incognita, M. arenaria, and M. javanica into tobacco cultivars NC2326 (susceptible to all three species) and K399 (resistant to M. incognita) and a breeding line that had been selected for resistance to M. incognita were compared. Meloidogyne incognita penetrated NC2326 rapidly during the first 24 hours after inoculation. Numbers of M. incognita continued to increase gradually through the 14-day experiment. Higher numbers of M. incognita were observed in the roots of K399 during the first 24 hours than were observed in NC2326. The number of M. incognita in K399 peaked 4 days after inoculation, then declined rapidly as the nematodes that were unable to establish a feeding site left the root or died. Numbers of M. incognita in the breeding line followed the same pattern as with K399, but in lower numbers. Numbers of M. arenaria showed little difference between cultivars until 7 days after inoculation, then numbers increased in NC2326. Numbers of M. javanica fluctuated in all cultivars, resulting in patterns of root population different from those observed for M. incognita or M. arenaria. Resistance to M. incognita appears to be expressed primarily as an inability to establish a feeding site rather than as a barrier to penetration. Some resistance to M. arenaria may also be present in K399 and the breeding line.  相似文献   

18.
Three field experiments were established in a loamy sand soil in the Coastal Plain of North Carolina to determine downward movement of aldicarb and fenamiphos with a nematode bioassay. Penetration of bioassay plant roots by Meloidogyne incognita was measured at 1, 3, 7, 14, 21, and 28 days after treatment in the greenhouse as a means of determining nematicide effectiveness. Chemical movement was similar in planted and fallow soil. Nematicidal activity was greater in soil collected from the 0 to 10 cm depth than from the 10 to 20 cm depth. Fenamiphos suppressed host penetration by the nematode more than aldicarb under the high rainfall (19 cm) and low soil temperatures that occurred soon after application in the spring. During the summer, which had 13 cm precipitation and warmer soil temperatures, both chemicals performed equally well at the 0 to 10 cm depth. At the lower soil level (10 to 20 cm), aldicarb limited nematode penetration of host roots more quickly than fenamiphos. Both of these chemicals moved readily in the sandy soil in concentrations sufficient to control M. incognita. Although some variability was encountered in similar experiments, nematodes such as M. incognita have considerable potential as biomonitors of nematicide movement in soil.  相似文献   

19.
Four bean genotypes (IPA-1, A-107, A-211, and Calima), representing all possible combinations of resistance and susceptibility to Fusarium oxysporum f. sp. phaseoli (Fop) and Meloidogyne incognita, were each inoculated with three population densities of these pathogens. Calima and A-107 were resistant to Fop; A-107 and A-211 were resistant to M. incognita; and IPA-1 was susceptible to both pathogens. In Fop-susceptible lines (IPA-1 and A-211), the presence of M. incognita contributed to an earlier onset and increased severity of Fusarium wilt symptoms and plant stunting. However, the Fop-resistant Calima developed symptoms of Fusarium wilt only in the presence of M. incognita. Genotype A-107 (resistant to both M. incognita and Fop) exhibited Fusarium wilt symptoms and a moderately susceptible reaction to Fop only after the breakdown of its M. incognita resistance by elevated incubation temperatures (27 C). Root galling and reproduction of M. incognita was generally increased as inoculum density of M. incognita was increased on the M. incognita susceptible cultivars. However, these factors were decreased as the inoculum density of Fop was increased. It was concluded that severe infections of bean roots by M. incognita increase the severity of Fusarium wilt on Fop-susceptible genotypes and may modify the resistant reaction to Fop.  相似文献   

20.
In a rapeseed-squash cropping system, Meloidogyne incognita race 1 and M. javanica did not enter, feed, or reproduce in roots of seven rapeseed cultivars. Both nematode species reproduced at low levels on roots of the third crop of rapeseed. Reproduction of M. incognita and M. javanica was high on squash following rapeseed, hairy vetch, and fallow. The application of fenamiphos suppressed (P = 0.05) root-gall indices on squash following rapeseed, hairy vetch, and fallow; and on Dwarf Essex and Cascade rapeseed, but not Bridger and Humus rapeseed in 1987. The incorporation of 30-61 mt/ha green biomass of rapeseed into the soil 6 months after planting did not affect the population densities of Criconemella ornata, M. incognita, M. javanica, Pythium spp., Rhizoctonia solani AG-4; nor did it consistently increase yield of squash. Hairy vetch supported larger numbers of M. incognita and M. javanica than rapeseed cultivars or fallow. Meloidogyne incognita and M. javanica survived in fallow plots in the absence of a host from October to May each year at a level sufficient to warrant the use of a nematicide to manage nematodes on the following susceptible crop.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号