首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Three new structures of Escherichia coli succinate-quinone oxidoreductase (SQR) have been solved. One with the specific quinone-binding site (Q-site) inhibitor carboxin present has been solved at 2.4 Å resolution and reveals how carboxin inhibits the Q-site. The other new structures are with the Q-site inhibitor pentachlorophenol and with an empty Q-site. These structures reveal important details unresolved in earlier structures. Comparison of the new SQR structures shows how subtle rearrangements of the quinone-binding site accommodate the different inhibitors. The position of conserved water molecules near the quinone binding pocket leads to a reassessment of possible water-mediated proton uptake networks that complete reduction of ubiquinone. The dicarboxylate-binding site in the soluble domain of SQR is highly similar to that seen in high resolution structures of avian SQR (PDB 2H88) and soluble flavocytochrome c (PDB 1QJD) showing mechanistically significant structural features conserved across prokaryotic and eukaryotic SQRs.Succinate:quinone oxidoreductase (SQR,4 succinate dehydrogenase) and menaquinol:fumarate oxidoreductase (QFR, fumarate reductase), members of the Complex II family, are homologous integral membrane proteins which couple the interconversion of succinate and fumarate with quinone and quinol (14). SQR is a key enzyme in the Krebs cycle, oxidizing succinate to fumarate during aerobic growth and reducing quinone to quinol and, thus, acts as a direct link between the Krebs cycle and the respiratory chain. QFR is found in anaerobic or facultative bacteria and lower eukaryotes, where it couples the oxidation of reduced quinones to the reduction of fumarate (1, 4). Escherichia coli SQR has four subunits, two hydrophilic subunits exposed to the cytoplasm (SdhA and SdhB), which interact with two hydrophobic membrane-intrinsic subunits (SdhC and SdhD) (5). SdhA contains the dicarboxylate-binding site and a covalently bound FAD cofactor which cycles between FAD and FADH2 redox states during succinate oxidation (6). The electrons from succinate oxidation are sequentially transferred via a [2Fe-2S], a [4Fe-4S], and a [3Fe-4S] iron-sulfur cluster relay system in SdhB to a quinone-binding site (QP) located at the interface of the SdhB, SdhC, and SdhD subunits. SdhC and SdhD are both composed of three transmembrane helices and coordinate a low spin b-type heme via His residues contributed by each subunit (7, 8).The first structural information about members of the Complex II family came from x-ray structures of the QFR enzymes from E. coli at 3.3 Å resolution (9) and Wolinella succinogenes at 2.2 Å resolution (10). These structures revealed details of the overall architecture of the subunits, the position of key redox cofactors, the electron transfer pathway, and the quinone-binding sites. At around the same time, the structures of soluble fumarate reductases found in anaerobic and microaerophilic bacteria and structurally homologous to the flavoprotein subunit of Complex II were solved by x-ray crystallography (1). Analysis of these soluble fumarate reductases has proven particularly informative in describing the mechanism of fumarate reduction and succinate oxidation at the dicarboxylate-binding site (1114).Structures of SQRs lagged behind those of the QFRs until the structure of the E. coli enzyme was solved at 2.6 Å (15). This structure, solved in space group R32, revealed that the E. coli enzyme is packed as a trimer. The structures of the SdhA and SdhB subunits were highly similar to those of E. coli and W. succinogenes QFRs, but the transmembrane SdhC and SdhD subunits showed differences compared with their QFR counterparts. The structure revealed the position of the redox sites and the dicarboxylate- and quinone-binding (Q) sites. The heme b molecule was shown to lie away from the electron transfer pathway, suggesting electrons are preferentially transferred from the [3Fe-4S] cluster to ubiquinone, on the grounds of the edge-to-edge distances and redox potentials of the relevant groups. The structure revealed density in the Q-site that was interpreted as ubiquinone, and the position of the binding site was confirmed by the structure of the E. coli enzyme co-crystallized with the Q-site inhibitor 2-(1-methyl-hexyl)-4,6-dinitrophenol (DNP-17, PDB code 1NEN (15)). The E. coli enzyme was subsequently co-crystallized with the Q-site inhibitor Atpenin A5 (AA5) (PDB code 2ACZ (16)). This inhibitor was bound deeper into the quinone-binding site than ubiquinone or DNP-17, suggesting that there are two binding positions for ubiquinone in its binding site. The structure also identified a water-mediated proton pathway, proposed to deliver protons to the quinone-binding site. The first structure of a mitochondrial SQR was from porcine heart at 2.4 Å resolution (PDB code 1ZOY (17). This structure revealed a monomer in the asymmetric unit, suggesting that mitochondrial SQRs were likely to function as monomers. Superposition of the porcine and E. coli SQR structures revealed the high structural similarity of the SdhA and SdhB subunits and the conservation in position of the redox cofactors. Larger divergences were observed in the transmembrane subunits.Further structural information about SQRs was obtained by analysis of structures of avian SQR crystallized with oxaloacetate (2.2 Å resolution, PDB code 1YQ3), with 3-nitropropionate (2.4 Å resolution, PDB code 1YQ4), and with the Q-site inhibitor carboxin (2.1 Å resolution, PDB code 2FBW) (18). These structures revealed important differences in the position of key residues in the dicarboxylate-binding site compared with the E. coli and porcine structures. Arg-297 (equivalent to Arg-298 in porcine and Arg-286 in E. coli SQRs) was ideally located to act as a general base catalyst, accepting a proton during dehydrogenation of succinate, as in the soluble Shewanella flavocytochrome c3 (PDB code 1QJD) (11), suggesting conservation of mechanism between these distantly related enzymes. An unusual cis-serine peptide bond was proposed to position another arginine residue for binding dicarboxylates. Density for the dicarboxylate in 1YQ3 and 2FBW was shown to be distinctly non-planar and could be modeled by the “malate-like intermediate” seen in 1QJD. The nature of the ligand in the dicarboxylate site was further analyzed in a 1.74 Å resolution structure of avian SQR (PDB code 2H88), confirming the high structural similarity of the ligand and binding site residues in the SQR and flavocytochrome c3 structures (11, 12, 14).Despite the structural information described above, there are still unresolved issues regarding the structure and function of SQRs and QFRs. These include the location of conserved waters, which may form a channel involved in protonation of quinone, and the ability of the Q-site to accommodate different quinones and inhibitors. To further address these issues, we pursued structure-function studies of E. coli SQR. We developed alternative crystallization conditions that provided crystals more reproducibly and diffracting to higher resolution. By exchanging the enzyme into decyl-β-d-maltoside (DM) during purification, it was possible to crystallize the enzyme in the orthorhombic P212121 space group. These crystals routinely diffracted in the 3–3.5 Å resolution range. Co-crystallization with the biochemically well characterized Q-site inhibitor carboxin improved diffraction to 2.1–2.8 Å. This structure shows new features related to the dicarboxylate-binding site of E. coli SQR including a rare cis-peptide bond in SdhA, as found in avian SQR (14), which helps shape the geometry of the active site. Comparisons of the structure with those of SQR binding PCP and SQR with an empty Q-site show how subtle rearrangements of the Q-site accommodate the different inhibitors. The orientation of carboxin in the Q-site differs with computational predictions (16) and with that seen in avian SQR (2FBW). The position of conserved water molecules around the Q-site suggests a new water-mediated proton uptake pathway consistent with recent mutational and biophysical studies (19).  相似文献   

2.
Succinate:quinone reductase catalyzes electron transfer from succinate to quinone in aerobic respiration. Carboxin is a specific inhibitor of this enzyme from several different organisms. We have isolated mutant strains of the bacterium Paracoccus denitrificans that are resistant to carboxin due to mutations in the succinate:quinone reductase. The mutations identify two amino acid residues, His228 in SdhB and Asp89 in SdhD, that most likely constitute part of a carboxin-binding site. This site is in the same region of the enzyme as the proposed active site for ubiquinone reduction. From the combined mutant data and structural information derived from Escherichia coli and Wolinella succinogenes quinol:fumarate reductase, we suggest that carboxin acts by blocking binding of ubiquinone to the active site. The block would be either by direct exclusion of ubiquinone from the active site or by occlusion of a pore that leads to the active site.  相似文献   

3.
BACKGROUND: The lymphocyte-specific kinase Lck is a member of the Src family of non-receptor tyrosine kinases. Lck catalyzes the initial phosphorylation of T-cell receptor components that is necessary for signal transduction and T-cell activation. On the basis of both biochemical and genetic studies, Lck is considered an attractive cell-specific target for the design of novel T-cell immunosuppressants. To date, the lack of detailed structural information on the mode of inhibitor binding to Lck has limited the discovery of novel Lck inhibitors. RESULTS: We report here the high-resolution crystal structures of an activated Lck kinase domain in complex with three structurally distinct ATP-competitive inhibitors: AMP-PNP (a non-selective, non-hydrolyzable ATP analog); staurosporine (a potent but non-selective protein kinase inhibitor); and PP2 (a potent Src family selective protein tyrosine kinase inhibitor). Comparison of these structures reveals subtle but important structural changes at the ATP-binding site. Furthermore, PP2 is found to access a deep, hydrophobic pocket near the ATP-binding cleft of the enzyme; this binding pocket is not occupied by either AMP-PNP or staurosporine. CONCLUSIONS: The potency of staurosporine against Lck derives in part from an induced movement of the glycine-rich loop of the enzyme upon binding of this ligand, which maximizes the van der Waals interactions present in the complex. In contrast, PP2 binds tightly and selectively to Lck and other Src family kinases by making additional contacts in a deep, hydrophobic pocket adjacent to the ATP-binding site; the amino acid composition of this pocket is unique to Src family kinases. The structures of these Lck complexes offer useful structural insights as they demonstrate that kinase selectivity can be achieved with small-molecule inhibitors that exploit subtle topological differences among protein kinases.  相似文献   

4.
Complex II (succinate-ubiquinone oxidoreductase) is the smallest complex in the respiratory chain and contains four nuclear-encoded subunits SdhA, SdhB, SdhC, and SdhD. It functions both as a respiratory chain component and an essential enzyme of the TCA cycle. Electrons derived from succinate can thus be directly transferred to the ubiquinone pool. Major insights into the workings of complex II have been provided by crystal structures of closely related bacterial enzymes, which have also been genetically manipulated to answer questions of structure-function not approachable using the mammalian system. This information, together with that accrued over the years on bovine complex II and by recent advances in understanding in vivo synthesis of the non-heme iron co-factors of the enzyme, is allowing better recognition of improper functioning of human complex II in diseased states. The discussion in this review is thus limited to cytopathies arising because the enzyme itself is defective or depleted by lack of iron-sulfur clusters. There is a clear dichotomy of effects. Enzyme depletion and mutations in SDHA compromise TCA activity and energy production, whereas mutations in SDHB, SDHC, and SDHD induce paraganglioma. SDHC and SDHD are the first tumor suppressor genes of mitochondrial proteins.  相似文献   

5.
Mitochondrial complex II is a tumor suppressor comprised of four subunits (SdhA, SdhB, SdhC, and SdhD). Mutations in any of these should disrupt complex II enzymatic activity, yet defects in SdhA produce bioenergetic deficiency while defects in SdhB, SdhC, or SdhD induce tumor formation. The mechanisms underlying these differences are not known. We show that the inhibition of distal subunits of complex II, either pharmacologically or via RNA interference of SdhB, increases normoxic reactive oxygen species (ROS) production, increases hypoxia-inducible factor alpha (HIF-α) stabilization in an ROS-dependent manner, and increases growth rates in vitro and in vivo without affecting hypoxia-mediated activation of HIF-α. Proximal pharmacologic inhibition or RNA interference of complex II at SdhA, however, does not increase normoxic ROS production or HIF-α stabilization and results in decreased growth rates in vitro and in vivo. Furthermore, the enhanced growth rates resulting from SdhB suppression are inhibited by the suppression of HIF-1α and/or HIF-2α, indicating that the mechanism of SdhB-induced tumor formation relies upon ROS production and subsequent HIF-α activation. Therefore, differences in ROS production, HIF proliferation, and cell proliferation contribute to the differences in tumor phenotype in cells lacking SdhB as opposed to those lacking SdhA.  相似文献   

6.
The X-ray crystal structures of covalent complexes of the Actinomadura R39 dd-peptidase and Escherichia coli penicillin-binding protein (PBP) 5 with β-lactams bearing peptidoglycan-mimetic side chains have been determined. The structure of the hydrolysis product of an analogous peptide bound noncovalently to the former enzyme has also been obtained. The R39 dd-peptidase structures reveal the presence of a specific binding site for the d-α-aminopimelyl side chain, characteristic of the stem peptide of Actinomadura R39. This binding site features a hydrophobic cleft for the pimelyl methylene groups and strong hydrogen bonding to the polar terminus. Both of these active site elements are provided by amino acid side chains from two separate domains of the protein. In contrast, no clear electron density corresponding to the terminus of the peptidoglycan-mimetic side chains is present when these β-lactams are covalently bound to PBP5. There is, therefore, no indication of a specific side-chain binding site in this enzyme. These results are in agreement with those from kinetics studies published earlier and support the general prediction made at the time of a direct correlation between kinetics and structural evidence. The essential high-molecular-mass PBPs have demonstrated, to date, no specific reactivity with peptidoglycan-mimetic peptide substrates and β-lactam inhibitors and, thus, probably do not possess a specific substrate-binding site of the type demonstrated here with the R39 dd-peptidase. This striking deficiency may represent a sophisticated defense mechanism against low-molecular-mass substrate-analogue inhibitors/antibiotics; its discovery should focus new inhibitor design.  相似文献   

7.
The transfer of electrons and protons between membrane-bound respiratory complexes is facilitated by lipid-soluble redox-active quinone molecules (Q). This work presents a structural analysis of the quinone-binding site (Q-site) identified in succinate:ubiquinone oxidoreductase (SQR) from Escherichia coli. SQR, often referred to as Complex II or succinate dehydrogenase, is a functional member of the Krebs cycle and the aerobic respiratory chain and couples the oxidation of succinate to fumarate with the reduction of quinone to quinol (QH(2)). The interaction between ubiquinone and the Q-site of the protein appears to be mediated solely by hydrogen bonding between the O1 carbonyl group of the quinone and the side chain of a conserved tyrosine residue. In this work, SQR was co-crystallized with the ubiquinone binding-site inhibitor Atpenin A5 (AA5) to confirm the binding position of the inhibitor and reveal additional structural details of the Q-site. The electron density for AA5 was located within the same hydrophobic pocket as ubiquinone at, however, a different position within the pocket. AA5 was bound deeper into the site prompting further assessment using protein-ligand docking experiments in silico. The initial interpretation of the Q-site was re-evaluated in the light of the new SQR-AA5 structure and protein-ligand docking data. Two binding positions, the Q(1)-site and Q(2)-site, are proposed for the E. coli SQR quinone-binding site to explain these data. At the Q(2)-site, the side chains of a serine and histidine residue are suitably positioned to provide hydrogen bonding partners to the O4 carbonyl and methoxy groups of ubiquinone, respectively. This allows us to propose a mechanism for the reduction of ubiquinone during the catalytic turnover of the enzyme.  相似文献   

8.
The inducible microsomal prostaglandin E(2) synthase 1 (MPGES1) is an integral membrane protein coexpressed with and functionally coupled to cyclooxygenase 2 (COX-2) generating the pro-inflammatory molecule PGE(2). The development of effective inhibitors of MPGES1 holds promise as a highly selective route for controlling inflammation. In this paper, we describe the use of backbone amide H/D exchange mass spectrometry to map the binding sites of different types of inhibitors of MPGES1. The results reveal the locations of specific inhibitor binding sites that include the GSH binding site and a hydrophobic cleft in the protein thought to accommodate the prostaglandin H(2) substrate. In the absence of three-dimensional crystal structures of the enzyme-bound inhibitors, the results provide clear physical evidence that three pharmacologically active inhibitors bind in a hydrophobic cleft composed of sections of transmembrane helices Ia, IIb, IIIb, and IVb at the interface of subunits in the trimer. In principle, the H/D exchange behavior of the protein can be used as a preliminary guide for optimization of inhibitor efficacy. Finally, a comparison of the structures and H/D exchange behavior of MPGES1 and the related enzyme MGST1 in the presence of glutathione and the inhibitor glutathione sulfonate confirms the unusual observation that two proteins from the same superfamily harbor GSH binding sites in different locations.  相似文献   

9.
Detailed comparison of the refined crystal structures of the hexokinase A: glucose complex (HKA · G) and native hexokinase B shows that, in addition to the 12 ° rotation of one lobe of the enzyme relative to the other as described previously (Bennett & Steitz, 1978) there are small systematic differences in the conformation of the polypeptide backbones of the two structures adjacent to the glucose binding site and crystal packing contacts. In the HKA · G complex, the cleft between the two lobes of the hexokinase molecule is narrowed, substantially reducing the accessibility of the active site to solvent. The HKA · G structure suggests specific contacts with a bound glucose molecule that cannot form in the more open native structure. The closed conformation of the HKA · G complex can be formed by either subunit in the heterologous dimer configuration of hexokinase B (Anderson et al. 1974); new or different interactions between subunits, or with ligands bound to the intersubunit ATP site, may be made when the upper subunit of the dimer is in the closed conformation and may contribute to the cooperative interactions observed in the crystalline dimer and in solution.  相似文献   

10.
The active site of the catalytic domain of stromelysin-1 (matrix metalloproteinase-3, MMP-3) was probed by fluorescence quenching, lifetime, and polarization of its three intrinsic tryptophans and by the environmentally sensitive fluorescent reporter molecule bisANS. Wavelength-dependent acrylamide quenching identified three distinct emitting tryptophan species, only one of which changes its emission and fluorescence lifetime upon binding of the competitive inhibitor Batimastat. Significant changes in the tryptophan fluorescence polarization occur upon binding by any of the three hydroxamate inhibitors Batimastat, CAS108383-58-0, and Celltech CT1418, all of which bind in the P2′-P3′ region of the active site. In contrast, the inhibitor CGS27023A, which is t hought to bind in the P1-P1′ region, does not induce any change in tryptophan fluorescence polarization. The use of the fluorescent probe bisANS revealed the existence of an auxiliary binding site extrinsic to the catalytic cleft. BisANS acts as a competitive inhibitor of stromelysin with a dissociation constant ofK i=22 μM. In addition to this binding to the active site, it also binds to the auxiliary site with a dissociation constant of 3.40±0.17 μM. The auxiliary site is open, hydrophobic, and near the fluorescing tryptophans. The binding of bisANS to the auxiliary site is greatly enhanced by Batimastat, but not by the other competitive inhibitors tested.  相似文献   

11.
Tumor metastasis is responsible for ~ 90% of all cancer deaths. One of the key steps of tumor metastasis is tumor cell migration and invasion. Filopodia are cell surface extensions that are critical for tumor cell migration. Fascin protein is the main actin-bundling protein in filopodia. Small-molecule fascin inhibitors block tumor cell migration, invasion, and metastasis. Here we present the structural basis for the mechanism of action of these small-molecule fascin inhibitors. X-ray crystal structural analysis of a complex of fascin and a fascin inhibitor shows that binding of the fascin inhibitor to the hydrophobic cleft between the domains 1 and 2 of fascin induces a ~ 35o rotation of domain 1, leading to the distortion of both the actin-binding sites 1 and 2 on fascin. Furthermore, the crystal structures of an inhibitor alone indicate that the conformations of the small-molecule inhibitors are dynamic. Mutations of the inhibitor-interacting residues decrease the sensitivity of fascin to the inhibitors. Our studies provide structural insights into the molecular mechanism of fascin protein function as well as the action of small-molecule fascin inhibitors.  相似文献   

12.
The structure of a triclinic complex between liver alcohol dehydrogenase, reduced coenzyme NADH, and the inhibitor dimethylsulfoxide has been determined to 2.9 Å resolution using isomorphous replacement methods. The heavy-atom positions were derived by molecular replacement methods using phase angles derived from a model of the orthorhombic apoenzyme structure previously determined to 2.4 Å resolution. A model of the present holoenzyme molecule was built on a Vector General 3400 display system using the RING system of programs. This model gave a crystallographic R-value of 37.9%.There are extensive conformational differences between the protein molecules in the two forms. The conformational change involves a rotation of 7.5 ° of the catalytic domains relative to the coenzyme binding domains. A hinge region for this rotation is defined within a hydrophobic core between two helices. The internal structures of the domains are preserved with the exception of a movement of a small loop in the coenzyme binding domain. A cleft between the domains is closed by this coenzyme-induced conformational change, making the active site less accessible from solution and thus more hydrophobic.The two crystallographically independent subunits are very similar and bind both coenzyme and inhibitor in an identical way within the present limits of error. The coenzyme molecule is bound in an extended conformation with the two ends in hydrophobic crevices on opposite sides of the central pleated sheet of the coenzyme binding domain. There are hydrogen bonds to oxygen atoms of the ribose moities from Asp223, Lys228 and His51. The pyrophosphate group is in contact with the side-chains of Arg47 and Arg369.No new residues are brought into the active site compared to the apoenzyme structure. The active site zinc atom is close to the hinge region, where the smallest structural changes occur. Small differences in the co-ordination geometry of the ligands Cys46, His67 and Cysl74 are not excluded and may account for the ordered mechanism. The oxygen atom of the inhibitor dimethylsulfoxide is bound directly to zinc confirming the structural basis for the suggested mechanism of action based on studies of the apoenzyme structure.  相似文献   

13.
In the course of a fragment screening campaign by in silico docking followed by X-ray crystallography, a novel binding site for migration inhibitory factor (MIF) inhibitors was demonstrated. The site is formed by rotation of the side-chain of Tyr-36 to reveal a surface binding site in MIF that is hydrophobic and surrounded by aromatic side-chain residues. The crystal structures of two small inhibitors that bind to this site and of a quinolinone inhibitor, that spans the canonical deep pocket near Pro-1 and the new surface binding site, have been solved. These results suggest new opportunities for structure-based design of MIF inhibitors.  相似文献   

14.
Piericidin, rotenone and pyridaben are specific inhibitors of the NADH-ubiquinone oxidoreductase (Complex I) that bind to its ubiquinone binding site(s). Using site directed mutagenesis, we demonstrate that residues G409, D412, R413 and V407 of the C-terminus of Complex I NUOD subunit are directly involved in the binding of these inhibitors. We propose that the corresponding inhibitor/quinone binding site would be located close to NUOD-NUOB interface.  相似文献   

15.
Three crystal structures, representing two distinct conformational states, of the mammalian catalytic subunit of cAMP-dependent protein kinase were solved using molecular replacement methods starting from the refined structure of the recombinant catalytic subunit ternary complex (Zheng, J., et al., 1993a, Biochemistry 32, 2154-2161). These structures correspond to the free apoenzyme, a binary complex with an iodinated inhibitor peptide, and a ternary complex with both ATP and the unmodified inhibitor peptide. The apoenzyme and the binary complex crystallized in an open conformation, whereas the ternary complex crystallized in a closed conformation similar to the ternary complex of the recombinant enzyme. The model of the binary complex, refined at 2.9 A resolution, shows the conformational changes associated with the open conformation. These can be described by a rotation of the small lobe and a displacement of the C-terminal 30 residues. This rotation of the small lobe alters the cleft interface in the active-site region surrounding the glycine-rich loop and Thr 197, a critical phosphorylation site. In addition to the conformational changes, the myristylation site, absent in the recombinant enzyme, was clearly defined in the binary complex. The myristic acid binds in a deep hydrophobic pocket formed by four segments of the protein that are widely dispersed in the linear sequence. The N-terminal 40 residues that lie outside the conserved catalytic core are anchored by the N-terminal myristylate plus an amphipathic helix that spans both lobes and is capped by Trp 30. Both posttranslational modifications, phosphorylation and myristylation, contribute directly to the stable structure of this enzyme.  相似文献   

16.
《BBA》2013,1827(10):1156-1164
The impact of complex II (succinate:ubiquinone oxidoreductase) on the mitochondrial production of reactive oxygen species (ROS) has been underestimated for a long time. However, recent studies with intact mitochondria revealed that complex II can be a significant source of ROS. Using submitochondrial particles from bovine heart mitochondria as a system that allows the precise setting of substrate concentrations we could show that mammalian complex II produces ROS at subsaturating succinate concentrations in the presence of Q-site inhibitors like atpenin A5 or when a further downstream block of the respiratory chain occurred. Upon inhibition of the ubiquinone reductase activity, complex II produced about 75% hydrogen peroxide and 25% superoxide. ROS generation was attenuated by all dicarboxylates that are known to bind competitively to the substrate binding site of complex II, suggesting that the oxygen radicals are mainly generated by the unoccupied flavin site. Importantly, the ROS production induced by the Q-site inhibitor atpenin A5 was largely unaffected by the redox state of the Q pool and the activity of other respiratory chain complexes. Hence, complex II has to be considered as an independent source of mitochondrial ROS in physiology and pathophysiology.  相似文献   

17.
J Chai  Q Wu  E Shiozaki  S M Srinivasula  E S Alnemri  Y Shi 《Cell》2001,107(3):399-407
Apoptosis is primarily executed by active caspases, which are derived from the inactive procaspase zymogens through proteolytic cleavage. Here we report the crystal structures of a caspase zymogen, procaspase-7, and an active caspase-7 without any bound inhibitors. Compared to the inhibitor-bound caspase-7, procaspase-7 zymogen exhibits significant structural differences surrounding the catalytic cleft, which precludes the formation of a productive conformation. Proteolytic cleavage between the large and small subunits allows rearrangement of essential loops in the active site, priming active caspase-7 for inhibitor/substrate binding. Strikingly, binding by inhibitors causes a 180 degrees flipping of the N terminus in the small subunit, which interacts with and stabilizes the catalytic cleft. These analyses reveal the structural mechanisms of caspase activation and demonstrate that the inhibitor/substrate binding is a process of induced fit.  相似文献   

18.
The structure of a complex between the catalytic subunit of Zea mays CK2 and the nucleotide binding site-directed inhibitor emodin (3-methyl-1,6,8-trihydroxyanthraquinone) was solved at 2.6-A resolution. Emodin enters the nucleotide binding site of the enzyme, filling a hydrophobic pocket between the N-terminal and the C-terminal lobes, in the proximity of the site occupied by the base rings of the natural co-substrates. The interactions between the inhibitor and CK2 alpha are mainly hydrophobic. Although the C-terminal domain of the enzyme is essentially identical to the ATP-bound form, the beta-sheet in the N-terminal domain is altered by the presence of emodin. The structural data presented here highlight the flexibility of the kinase domain structure and provide information for the design of selective ATP competitive inhibitors of protein kinase CK2.  相似文献   

19.
The X-ray crystal structure for the adduct of human carbonic anhydrase II (hCA II) with 4-(4-sulfamoylphenylcarboxamidoethyl)benzenesulfonamide, a topically acting antiglaucoma sulfonamide has been resolved at a resolution of 1.8 A. Its binding to the enzyme is similar with that of other sulfonamides, considering the interactions of the sulfonamide zinc anchoring group, but differs considerably when the organic part of the inhibitor is analyzed. This part of the inhibitor interacts only within the hydrophobic half of the CA active site, leaving the hydrophilic half able to accomodate several water molecules not present in the uncomplexed enzyme. Furthermore, the second head (sulfonamide moiety) participates in two strong hydrogen bonds with amino acid residues (Gly 132 and Gln 136) situated on the rim of the entrance to the active site cleft. Thus, the answer to the question in the title of this paper is that two heads are better than one, since the two sulfamoyl moieties of the inhibitor allow its proper orientation within the active site, with only one head binding in ionized form to the zinc ion, the organic part lying within the hydrophobic half of the active site, and the terminal, carboxamido containing phenylsulfamoyl head participating in strong hydrogen bonds with amino acid residues located at the entrance of it. All these findings are important for the design of better carboxamido CA inhibitors with applications in clinical medicine.  相似文献   

20.
Cheng VW  Johnson A  Rothery RA  Weiner JH 《Biochemistry》2008,47(35):9107-9116
Escherichia coli succinate dehydrogenase (Sdh) belongs to the highly conserved complex II family of enzymes that reduce ubiquinone. These enzymes do not generate a protonmotive force during catalysis and are electroneutral. Because of its electroneutrality, the quinone reduction reaction must consume cytoplasmic protons which are released stoichiometrically during succinate oxidation. The X-ray crystal structure of E. coli Sdh shows that residues SdhB (G227), SdhC (D95), and SdhC (E101) are located at or near the entrance of a water channel that has been proposed to function as a proton wire connecting the cytoplasm to the quinone binding site. However, the pig and chicken Sdh enzymes show an alternative entrance to the water channel via the conserved SdhD (Q78) residue. In this study, site-directed mutants of these four residues were created and characterized by in vivo growth assays, in vitro activity assays, and electron paramagnetic resonance spectroscopy. We show that the observed water channel in the E. coli Sdh structure is the functional proton wire in vivo, while in vitro results indicate an alternative entrance for protons. In silico examination of the E. coli Sdh reveals a possible H-bonding network leading from the cytoplasm to the quinone binding site that involves SdhD (D15). On the basis of these results we propose an alternative proton pathway in E. coli Sdh that might be functional only in vitro.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号