首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Greenhouse and growth chamber studies were established to determine if there are pathological and physiological differences among Meloidogyne hapla populations from California (CA), Nevada (NV), Utah (UT), and Wyoming (WY) on alfalfa cultivars classified as resistant or susceptible to root-knot nematodes. In the greenhouse, plant survival was not consistent with resistance classifications. While all highly resistant Nevada Synthetic germplasm (Nev Syn XX) plants survived inoculation with all nematode populations, two cultivars classified as moderately resistant (''Chief'' and ''Kingstar'') survived (P ≤ 0.05) inoculation with M. hapla populations better than did ''Lobo'' cultivar, which is classified as resistant. Plant growth of Nev Syn XX was suppressed by only the CA population, whereas growth of the other alfalfa cultivars classified as M. hapla resistant or moderately resistant was suppressed by all nematode populations. Excluding Nev Syn XX, all alfalfa cultivars were severely galled and susceptible to all nematode populations. Except for Nev Syn XX, reproduction did not differ among the nematode populations on alfalfa cultivars. Nev Syn XX was not as favorable a host to CA as were the other cultivars; but, it was a good host (reproductive factor [Rf] = 37). Temperature affected plant resistance; the UT and WY populations were more pathogenic at 15-25 C, and CA was more pathogenic at 30 C. Nev Syn XX was susceptible to all nematode populations, except for CA, at only 30 C, and all other alfalfa cultivars were susceptible to all nematode populations at all temperatures.  相似文献   

2.
Cool humid weather enhanced development and reproduction of Ditylenchus dipsaci in alfalfa in laboratory and field studies in Utah. Relative humidity and nematode reproduction were positively correlated (P < 0.05), whereas air temperature and nematode reproduction were negatively correlated (P < 0.05). The greatest number of nematodes per gram of alfalfa tissue was found in nondormant Moapa alfalfa tissue at St. George during April, whereas the greatest numbers of nematodes were found in dormant Ranger alfalfa in June at West Jordan and Smithfield. There was 100% invasion of both resistant Lahontan and susceptible Ranger alfalfa plants at soil moisture levels of 61-94% field capacity. Fall burning of alfalfa to control weeds reduced, and spring burning increased, the incidence of invaded plants, nematodes per gram of plant tissue, and the mortality of susceptible Ranger (P < 0.01) and Moapa (P < 0.01) alfalfa plants over that of plants in nonburned control plots. Fall burning also reduced and spring burning increased the incidence of invaded plants (P < 0.05), but had no influence on nematodes per gram of plant tissue or the mortality of resistant Lahontan and Nevada Synthetic XX alfalfa over those of plants in control plots.  相似文献   

3.
Meloidogyne chitwoodi developed and reproduced more rapidly than M. hapla in potato roots at 15, 20, or 25 C when both species of nematodes were inoculated simultaneously at 250 or 1,000 juveniles of each. At 30 C significantly more M. hapla than M. chitwoodi females were found at the lower inoculum level after 41 days. More M. chitwoodi than M. hapla juveniles were extracted from soil at 15, 20, and 25 C, but only at the lower inoculum level at 30 C. Potato was considered a more suitable host for M. chitwoodi than M. hapla because of M. chitwoodi''s greater reproduction at 15, 20, and 25 C. Corn and wheat cultivars tested supported M. chitwoodi reproduction at temperatures of 10, 15, 20, and 25 C, but fewest eggs were produced on these plants at 20 C. Temperatures of 10 to 25 C had little influence on the low reproduction of M. chitwoodi on four alfalfa cultivars. M. chitwoodi reproduced on the alfalfa entry Mn PL9HF.  相似文献   

4.
Meloidogyne chitwoodi races 1 and 2 and M. hapla reproduced on 12 cultivars of Brassica napus and two cultivars of B. campestris. The mean reproductive factors (Rf), Rf = Pf at 55 days ÷ 5,000, for the three nematodes were 8.3, 2.2, and 14.3, respectively. All three nematodes reproduced more efficiently (P < 0.05) on B. campestris than on B. napus. Amending M. chitwoodi-infested soil in plastic bags with chopped shoots of Jupiter rapeseed reduced the nematode population more (P < 0.05) than amendment with wheat shoots. Incorporating Jupiter shoots to soil heavily infested with M. chitwoodi in microplots reduced the nematode population more (P < 0.05) than fallow or corn shoot treatments. The greatest reduction in nematode population density was attained by cropping rapeseed for 2 months and incorporating it into the soil as a green manure.  相似文献   

5.
The reproductive factor (R = final egg density at 55 days ÷ 5,000, initial egg density) of Meloidogyne chitwoodi race 2 (alfalfa race) on 46 crop cultivars ranged from 0 to 130. The reproductive efficiency of M. chitwoodi race 1 (non-alfalfa race) and M. chitwoodi race 2 was compared on selected crop cultivars. The basic difference between the two races lay in their differential reproduction on Thor alfalfa and Red Cored Chantenay carrot. M. chitwoodi race 2 reproduced on alfalfa but not on carrot. Conversely, alfalfa was a poor host and carrots were suitable for M. chitwoodi race 1. Based on host responses to M. chitwoodi races and M. hapla, a new differential host test was proposed to distinguish the common root-knot nematode species of the Pacific Northwest.  相似文献   

6.
Legumes of the genera Astragalus (milkvetch), Coronilla (crownvetch), Lathyrus (pea vine), Lotus (birdsfoot trefoil), Medicago (alfalfa), Melilotus (clover), Trifolium (clover), and Vicia (common vetch) were inoculated with a population of Melaidogyne chitwoodi from Utah or with one of three M. hapla populations from California, Utah, and Wyoming.Thirty-nine percent to 86% of alfalfa (M. scutellata) and 10% to 55% of red clover (T. pratense) plants survived inoculation with the nematode populations at a greenhouse temperature of 24 ± 3°C. All plants of the other legume species survived all nematode populations, except 4% of the white clover (T. repens) plants inoculated with the California M. hapla population. Entries were usually more susceptible to the M. hapla populations than to M. chitwoodi. Galling of host roots differed between nematode populations and species. Root-galling indices (1 = none, 6 = severely galled) ranged from 1 on pea vine inoculated with the California population of M. hapla to 6 on yellow sweet clover inoculated with the Wyoming population of M. hapla. The nematode reproductive factor (Rf = final nematode population/initial nematode population) ranged from 0 for all nematode populations on pea vine to 35 for the Wyoming population of M. hapla on alfalfa (M. sativa).  相似文献   

7.
Second-stage juveniles (J2) of races 1 and 2 of Meloidogyne chiiwoodi and M. hapla readily penetrated roots of Thor alfalfa and Columbian tomato seedlings; however, few individuals of M. chitwoodi race 1 were able to establish feeding sites and mature on alfalfa. Histopathological studies indicate that J2 of race 1 either failed to initiate feeding sites or they caused cell enlargement without typical cell wall thickening. The protoplasm of these cells coagulated, and juveniles of race 1 did not develop beyond the swollen J2 stage. A few females of race 1 fed on small giant cells and deposited a few eggs at least 20 and 30 days later than M. chitwoodi race 2 and M. hapla, respectively. Failure of race 1 to establish feeding sites was related to egression of J2 from the roots. The M. chitwoodi race 1 J2 egression from alfalfa roots was higher than egression of race 2 and M. hapla. Egression of J2 of M. chitwoodi races 1 and 2 from tomato roots was similar and higher than that of M. hapla. Thus egression plays an important role in the host-parasite relationship of M. chitwoodi and alfalfa.  相似文献   

8.
Meloidogyne chitwoodi race 1 reproduced on Piper sudangrass (Sorghum bicolor (L.) Moench), 332 (sudangrass hybrid), and P855F and P877F (sorghum-sudangrass hybrids), but failed to reproduce efficiently on Trudan 8, Trudex 9 (sudangrass hybrids), and Sordan 79, SS-222, and Bravo II (sorghum-sudangrass hybrids). Meloidogyne chitwoodi race 2 behaved similarly and reproduced more efficiently on Piper, P855F, and P877F than on Trudan 8, Trudex 9, or Sordan 79. The mean reproductive factor for M. chitwoodi races on the poorer hosts ranged from <0.1 to 0.9 under greenhouse and field conditions. Meloidogyne hapla failed to reproduce on any of the cultivars tested. In the laboratory, leaves of each cultivar chopped and incorporated as green manure reduced the M. chitwoodi population in infested soil more than unamended or wheat green manure treatments. Trudan 8, although limited to the zone of incorporation, protected this zone from colonization of upward migrating second stage juveniles (J2) for up to 6 weeks. Leaves of Trudan 8 but not roots were effective against M. chitwoodi, and J2 appeared to be more sensitive than egg masses. Trudan 8 and Sordan 79 as green manure reduced M. chitwoodi in bucket microplots under field conditions.  相似文献   

9.
Effects of temperatures on the host-parasite relationships were studied for three legume species and four populations of root-knot nematodes from the western United States. The nematode populations were Meloidogyne hapla from California (MHCA), Utah (MHUT), and Wyoming (MHWY), and a population of M. chitwoodi from Utah (MCUT). The legumes were milkvetch (Astragalus cicer), alfalfa (Medicago sativa), and yellow sweet clover (Melilotus officinalis). All milkvetch plants survived inoculation with all nematode populations, while alfalfa and yellow sweet clover were more susceptible. On yellow sweet clover, MHCA was most pathogenic at 30 °C based on suppression of shoot growth while MHUT, MHWY, and MCUT were most pathogenic at 25 °C. All nematode populations suppressed growth of yellow sweet clover more than growth of milkvetch and alfalfa. The reproductive factor (Rf = final nematode population/initial nematode population) of MHCA was positively correlated (r = 0.83) with temperature between 15 °C and 30 °C. The greatest Rf occurred on alfalfa inoculated with MHCA at 30 °C. The Rf of MHUT, MHWY, and MCUT were positively correlated (r= 0.76, r= 0.78, and r= 0.73, respectively) with temperature between 15 °C and 25 °C. The Rf values of MHUT and MHWY were similar on all species and exceeded the Rf of MCUT at all temperatures (P < 0.05).  相似文献   

10.
From September 1980 to June 1981, a survey was conducted in the major potato growing regions of northern California, Idaho, Nevada, Oregon. and Washington to determine the distribution of Meloidogyne chitwoodi and other Meloidogyne spp. Meloidogyne chitwoodi and M. hapla were the only root-knot nematode species detected parasitizing potato in all the states surveyed. Meloidogyne chitwoodi occurred alone in 83% of the samples and M. hapla in 11%, with 6% of all samples containing both species. The greater incidence of M. chitwoodi, as compared to M. hapla, may be due to the cool growing season encountered in 1980 (which favored M. chitwoodi but not M. hapla) and to the increased acreage of small grains (which are good hosts for M. chitwoodi but not M. hapla) planted in rotation with potato. Differentiation between these two species can be determined by a differential host test, perineal patterns of mature females, and shape of the tail tip amt of the tail hypodermal terminus of L₂ juveniles.  相似文献   

11.
Meloidogyne chitwoodi populations from Tulelake, California; Ft. Hall, Idaho; Beryl, Utah; and Prosser, Washington, significantly (P < 0.05) reduced dry shoot weights of crested wheatgrass (Agropyron cristatum L., Gaertn. and A. desertorum, Fisch. ex Link, Schult.) cultivars Hycrest, Fairway, and Nordan in experiments conducted in a greenhouse and growth chamber. Shoot growth depression, root galling, and nematode reproduction indices were greatest (P < 0.05) on plants inoculated with 5,000 eggs/plant. Nematode populations from Tulelake, Ft. Hall, and Beryl significantly (P < 0.05) reduced the growth of the three grass cultivars at 15, 20, 25, and 30 C; the greatest reductions occurred at 20 and 25 C. There were significant differences in the virulence of the nematode populations at high (30 C) and low (15 C) soil temperatures. At 15 C, plant growth was reduced more by the Beryl and Tulelake than by the Ft. Hall population; whereas at 30 C, the Ft. Hall population was more virulent than the Beryl and Tulelake populations. Root galling and nematode reproduction were greater on plants inoculated with Beryl and Tulelake populations at 15 C than on plants inoculated with the Ft. Hall population, while the Ft. Hall population had the most pronounced effects at 30 C.  相似文献   

12.
Numbers ofDitylenchus dipsaci or Meloidogyne hapla invading Ranger alfalfa, Tender crop bean, Stone Improved tomato, AH-14 sugarbeet, Yellow sweet clover, and Wasatch wheat from single inoculations were not significantly different from numbers by invasion of combined inoculations. D. dipsaci was recovered only from shoot and M. hapla only from root tissue. Combined inoculations did not affect reproduction of either D. dipsaci or M. hapla. D. dipsaci suppressed shoot growth of all species at 15-30 C, and M. hapla suppressed shoot growth of tomato, sugarbeet, and sweet clover at 20, 25, and 30 C. There was a positive correlation (P < 0.05) between shoot and root growth suppression by D. dipsaci on all cultivars except wheat at 20 C and tomato at 30 C. M. hapla suppressed (P < 0.05) root growth of sugarbeet at 20-50 C and wheat at 30 C. Growth suppression was synergistic in combined inoculations of sweet clover shoot growth at 15 C and root growth at 20-30 C, wheat root growth at 15 and 20 C, and tomato root growth at 15-30 C (P < 0.05) D. dipsaci invasions caused mortality of alfalfa and sweet clover at 15-30 C and sugarbeet at 20-30 C. Mortality rates of alfalfa and sweet clover increased synergistically (P < 0.05) from combined inoculations.  相似文献   

13.
The early events of Meloidogyne incognita behavior and associated host responses following root penetration were studied in resistant (cv. Moapa 69) and susceptible (cv. Lahontan) alfalfa. Ten-day-old seedlings of alfalfa cultivars were inoculated with second-stage juveniles (J2) and harvested 12, 24, 48, and 72 hours and 7, 14, and 21 days later. Both cultivars supported similar root penetration and initial J2 migration. By 72 hours after inoculation the majority of J2 were amassed inside the vascular cylinder in roots of susceptible Lahontan, while J2 had not entered the vascular cylinder of resistant Moapa 69 and remained clumped at the root apex. Nematode development progressed normally in Lahontan, but J2 were not observed in Moapa 69 after day 7. The greatest differences between RNA translation products isolated from inoculated and uninoculated roots of Lahanton occurred 72 hours after inoculation. Only minor differences in gene expression were observed between inoculated and uninoculated Moapa 69 roots at 72 hours. Comparison of translation products from inoculated versus mechanically wounded Lahontan roots revealed products that were specific to or enhanced in nematode-infected plants. Moapa 69 appears to possess a type of resistance to M. incognita that does not depend on a conventional hypersensitive response.  相似文献   

14.
Pratylenchus neglectus reduced the growth of alfalfa cultivars in greenhouse and growth chamber studies. Inocula (1,000, 5,000 and 10,000 nematodes per plant) reduced shoot dry weights of Ranger by 16, 27, and 40%, of Lahontan by 16, 32, and 40%, and of Nevada Synthetic XX (Nev Syn XX) by 18, 26, and 37%, respectively, at 26 ñ 2 C. Pratylenchus neglectus at 1,000 nematodes per plant reduced Ranger shoot dry weights by 5, 12, 18, and 27%, at 15, 20, 25, and 30 C, respectively, whereas 5,000 nematodes per plant reduced shoot dry weights by 12, 17, 26, and 38%, respectively, at similar temperatures. Reductions in dry root weights were directly related to reductions in shoot growth. At 1,000 nematodes per plant, Ranger root dry weights were reduced by 3, 14, 40, and 40%, whereas 5,000 nematodes per plant reduced root dry weight by 25, 31, 59, and 63%, respectively, at similar temperatures. Similar results were observed on Lahontan and Nev Syn XX at the same inoculum levels and soil temperatures. Nematode reproductive indices (final nematode population per plant divided by initial nematode inoculum per plant) were higher at 1,000 nematodes per plant than at 5,000 nematodes per plant, were positively correlated with temperature, and were unaffected by cultivar.  相似文献   

15.
The effect of the Mi gene on the reproductive factor of Meloidogyne chitwoodi and M. hapla, major nematode pests of potato, was measured on nearly isogenic tomato lines differing in presence or absence of the Mi gene. The Mi allele controlled resistance to reproduction of race 1 of M. chitwoodi and to one of two isolates of race 2. No resistance to race 3 of M. chitwoodi or to M. hapla was found. Variability in response to isolates of race 2 may reflect diversity of virulence genotypes heretofore undetected. Resistance to race 1 of M. chitwoodi could be useful in potato if the Mi gene were functional following transferral by gene insertion technology into potato. Since the Mi gene is not superior to RMc₁ derived from Solarium bulbocastanum, the transferral by protoplast fusion appears to offer no advantage.  相似文献   

16.
Most of the 15 carrot cultivars tested were moderate to good hosts to Meloidogyne chitwoodi race 1, whereas all except Orlando Gold were nonhosts or poor hosts for M. chitwoodi race 2. All carrot cultivars were good hosts for M. hapla. The plant weights of the carrot cultivars Red Cored Chantenay and Orlando Gold infected with either race of M. chitwoodi were significantly less than uninoculated checks in pots. Under field microplot conditions, however, detrimental effects on quality were rarely observed. M. hapla was pathogenic to both cultivars in the greenhouse and the field. The tolerance level of Orlando Gold to M. hapla was lower than Red Cored Chantenay.  相似文献   

17.
Responses of egg masses, free eggs, and second-stage juveniles (J2) ofMeloidogyne hapla and M. chitwoodi to ethoprop were evaluated. The results indicated that J2 were the most sensitive, followed by free eggs and egg masses. In general, M. chitwoodi was more susceptible to ethoprop than M. hapla. Ethoprop at 7.2 μg a.i./g soil protected tomato roots from upward migrating M. chitwoodi for 5 weeks. The zone of protection was extended to 10 and 20 cm below the root zone when 3.6 and 7.2 cm water were applied over 8 days. Ethoprop at 1.8, 3.6, and 7.2 μg a.i./g soil degraded faster and killed fewer M. chitwoodi J2 in potato field soil previously exposed to ethoprop than in unexposed soil or sterilized exposed soil. The enhanced biodegradation property of the exposed soil lasted 17 months after the last application of ethoprop. The limited downward movement of ethoprop in the soil, migration of M. chitwoodi J2 into the treated zone, presence of resistant life stage(s) at the time of application, and loss of efficacy due to enhanced biodegradation may have a significant effect on the performance of ethoprop.  相似文献   

18.
At 20 C the duration of the embryogenic development of Meloiclogyne chitwoodi and M. hapla was about 20 days. At 10 C the embryogenic development was 82-84 days for M. chitwoodi and 95-97 days for M. hapla. The effect of distilled water and root leachates of potato cv. Russet Burbank, tomato cv. Columbian, and wheat cv. Hyslop on the hatching of eggs of the two root-knot nematode species was investigated at 4, 7, 10, 15, 20, and 25 C (± 1 C). Cumulative egg taatch was no greater in root leachates titan in distilled water, but temperature did significantly affect egg hatch (P = 0.05). Less than 1% of the eggs of both nematode species hatched at 4 C. The percent cumulative hatch at 10 C was significantly less (P = 0.05) than at higher temperatures for both nematodes and significantly more (P = 0.05) M. chitwoodi eggs hatched than did M. hapla eggs. At 15 G the percent cumulative hatch of both species was significantly lower (P = 0.05) than that at 20 and 25 C. The percent cumulative egg hatch of two species did not differ at 25 C, but was higher (P = 0.05) at 25 C than at 20 C. At 7 C the emergence of M. chitwoodi juveniles was about seven times (P = 0.01) greater than that of M. hapla in distilled water.  相似文献   

19.
Meloidogyne chitwoodi reduced the growth of winter wheat ''Nugaines'' directly in relation to nematode density in the greenhouse, The relationship between top dry weight and initial nematode density suggests a tolerance limit of Nugaines wheat to M. chitwoodi of between 0.03 and 0.18 eggs/cm³ of soil; the value for relative minimum plant top weight was 0.45 g and 0.75 g, respectively. Growth of wheat in field microplots containing four population densities (0.003, 0.05, 0.75 and 9 eggs/cm³ soil) was not affected significantly at any inoculum level compared to controls during September to July, However, suppression of head weights of ''Fielder'' spring wheat grown May-July occurred in microplots initially infested with 0.75 and 9 eggs/cm³ soil. Reproduction (Pf/Pi) was poorer at these two inoculum levels as compared to the lower densities. In another greenhouse experiment, roots of wheat cultivars Fielder, ''Fieldwin,'' ''Gaines,'' ''Hyslop,'' and Nugaines became infected by M. chitwoodi, but not by M. hapla. Reproduction of M. chitwoodi was less on Gaines and Nugaines than on Fielder, Fieldwin, or Hyslop.  相似文献   

20.
Migratory ability of second-stage juveniles (J2) of two Meloidogyne chitwoodi races and a M. hapla population were compared in soil-filled columns at 12, 18, and 24 C. J2 of all populations migrated farthest at 18 C and least at 12 C. Nematode survival was significantly reduced (P = 0.05) at 24 C.M. chitwoodi J2 migrated further and in greater numbers than M. hapla J2 at all temperatures. A comparison with and without a host plant demonstrated no preferential migration toward the plant. Water percolation through the migration columns stimulated upward migration.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号