首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Four similar growth chamber experiments were conducted to test the hypothesis that the initial population density (Pi) of Pratylenchus penetrans influences the severity of interactive effects of P. penetrans and Verticillium dahliae on shoot growth, photosynthesis, and tuber yield of Russet Burbank potato. In each experiment, three population densities of P. penetrans with and without concomitant inoculation with V. dahliae were compared with nematode-free controls. The three specific Pi of JR penetrans tested varied from experiment to experiment but fell in the ranges 0.8-2.5, 1.8-3.9, 2.1-8.8, and 7.5-32.4 nematodes/cm³ soil. Inoculum of V. dahliaewas mixed into soil, and the assayed density was 5.4 propagules/gram dry soil. Plants were grown 60 to 80 days in a controlled environment. Plant growth parameters in two experiments indicated significant interactions between P. penetrans and V. dahliae. In the absence of V. dahliae, P. penetrans did not reduce plant growth and tuber yield below that of the nematode-free control or did so only at the highest one or two population densities tested. In the presence of K dahliae, the lowest population density significantly reduced shoot weight and photosynthesis in three and four experiments, respectively. Higher densities had no additional effect on shoot weight and caused additional reductions in photosynthesis in only one experiment. Population densities of 0.8 and 7.5 nematodes/cm³ soil reduced tuber yield by 51% and 45%, whereas higher densities had no effect or a 15% additional effect, respectively. These data indicate that interactive effects between P. penetrans and V. dahliae on Russet Burbank potato are manifested at P. penetrans population densities less than 1 nematode/cm³ soil and that the nematode population density must be substantially higher before additional effects are apparent.  相似文献   

2.
Field observations have suggested that infection of peanut by Meloidogyne arenaria increases the incidence of southern blight caused by Sclerotium rolfsii. Three factorial experiments in microplots were conducted to determine if interactions between M. arenaria and S. rolfsii influenced final nematode population densities, incidence of southern blight, or pod yield. Treatments included four or five initial population densities of M. arenaria and three inoculum rates of S. rolfsii. Final nematode population densities were affected by initial nematode densities in all experiments (P = 0.01) and by S. rolfsii in one of three experiments (P = 0.01). Incidence of southern blight increased with increasing inoculum rates of S. rolfsii in all experiments and by the presence of the nematodes in one experiment (P = 0.01). Pod yield decreased with inoculation with S. rolfsii in all experiments (P = 0.05) and by M. arenaria in two of three experiments (P = 0.05). In no experiment was the interaction among treatments significant with respect to final nematode population densities, incidence of southern blight, or pod yield (P = 0.05). The apparent disease complex between M. arenaria and S. rolfsii on peanut is due to additive effects of the two pathogens.  相似文献   

3.
Pines responded to inoculation with Bursaphelenchus xylophilus by changes in reducing and nonreducing carbohydrate concentrations dependent on the pine species and the pathotype of B. xylophilus with which the trees were inoculated. Carbohydrate concentrations, in compatible pine-nematode pathotype combinations, decreased initially after inoculation and then increased slightly before decreasing to approximately 10% of the control levels as the seedlings wilted. In compatible nematode pathotype-pine species combinations, carbohydrate concentrations decreased and then increased as the nematode population densities declined.  相似文献   

4.
Burkholderia xenovorans strain LB400, which possesses the biphenyl pathway, was engineered to contain the oxygenolytic ortho dehalogenation (ohb) operon, allowing it to grow on 2-chlorobenzoate and to completely mineralize 2-chlorobiphenyl. A two-stage anaerobic/aerobic biotreatment process for Aroclor 1242-contaminated sediment was simulated, and the degradation activities and genetic stabilities of LB400(ohb) and the previously constructed strain RHA1(fcb), capable of growth on 4-chlorobenzoate, were monitored during the aerobic phase. The population dynamics of both strains were also followed by selective plating and real-time PCR, with comparable results; populations of both recombinants increased in the contaminated sediment. Inoculation at different cell densities (104 or 106 cells g−1 sediment) did not affect the extent of polychlorinated biphenyl (PCB) biodegradation. After 30 days, PCB removal rates for high and low inoculation densities were 57% and 54%, respectively, during the aerobic phase.  相似文献   

5.
The establishment of Globodera rostochiensis Rol populations was examined under greenhouse conditions. The probability of G. rostochiensis population establishment was calculated from the number of plants that produced new cysts with viable eggs following inoculation with various numbers of eggs of different ages. Probability of population establishment was positively correlated with inoculum density but was not affected by the age of eggs used in these experiments. The probability of G. rostochiensis establishment ranged from 5% at densities of 2 eggs/pot to 100% at densities of 25 eggs/pot or greater. At densities of 3 eggs/pot and beyond, there was no correlation between inoculum density and the number of viable eggs/new cyst. Also, the number of plants that produced new cysts was a function of inoculum density and not age of eggs. Juveniles from eggs 1 year old or older were equally as infective as were those from eggs in newly developed cysts (4 months old).  相似文献   

6.
The joint action of a plant parasitic nematode, Pratylenchus penetrans (root-lesion nematode), and an insect defoliator, Leptinotarsa decemlineata (Colorado potato beetle), on growth, development, and yield of Solanum tuberosum cv. Superior was studied in the field. Three population densities of P. penetrans were superimposed on each of three population levels of L. decemlineata. The major impact of P. penetrans on final yield was through a reduction in the number of tubers formed during tuber initiation. Defoliation by L. decemlineata increased with time as larvae advanced through successive instars and densities increased. This resulted in a significant reduction in tuber weight and numbers. Total yield of S. tuberosum was decreased by 66% with increasing population densities of L. decemlineata and 27 % with increasing densities of P. penetrans. L. decemlineata feeding did not affect soil population densities of P. penetrans. Root population densities of P. penetrans, however, were significantly (P = 0.05) higher in plants maintained beetle free than in plants grown in the presence of the beetles.  相似文献   

7.
In greenhouse experiments, the effect of Arthrobotrys conoides on Meloidogyne incognita population densities as affected by soil temperature, inoculum density, and green alfalfa was determined. The effect on M. incognita population densities was greater at a soil temperature of 25 C than at 18 or 32 C. Nematode control by A. conoides was most effective when the fungus was introduced into the soil 2 wk prior to nematode inoculation and planting of corn. Inoculum density of A. conoides was positively correlated with plant shoot weight (r = 0.81) and negatively correlated with numbers of Meloidogyne juveniles (r = -0.96), eggs (-0.89) and galls per gram of root (-0.91). A. conoides was not isolated from green alfalfa, but was isolated from alfalfa-amended soil to which no fungus had been added.  相似文献   

8.
Reproduction of Pratylenchus penetrans on the potato cultivars Hudson, Katahdin, and Superior was determined in greenhouse and field microplot experiments. Although all three cultivars were good hosts for P. penetrans, differences in reproductive rate were found. In one greenhouse experiment, Katahdin plants inoculated with 1,500 or 15,000 P. penetrans per pot had larger population densities at harvest than did Superior; however differences between these cultivars were not significant in three other greenhouse experiments. In another experiment, population densities of P. penetrans on Hudson did not differ from those on Katahdin and Superior when inoculated with 270 and 5,080 nematodes per pot after 45 days in the greenhouse. However, population densities were usually higher on Hudson and Katahdin than on Superior in field microplots at four initial population densities during two seasons. Higher population densities on Hudson were detectable 304 days after planting in one of the two microplot studies. The juvenile:female and the male:female ratios were sometimes larger on Katahdin than on Superior, but differences were inconsistent. There was no evidence of resistance in the three cultivars evaluated, but reproduction was generally highest on Hudson and lowest on Superior.  相似文献   

9.
Strains of Streptomyces were tested for their ability to reduce population densities of the root-lesion nematode (RLN), Pratylenchus penetrans, in roots of alfalfa (Medicago sativa) in growth chamber assays. Previously, these strains were shown to suppress potato scab disease, caused by Streptomyces scabies, in field experiments and to inhibit in vitrogrowth of a wide range of plant-pathogenic fungi and bacteria. Inoculation with Streptomyces at planting significantly reduced RLN population densities in roots of both susceptible and resistant alfalfa varieties grown in either heat-treated or untreated soil. Reductions in RLN population densities were observed 6 weeks after nematode inoculation. Shoot dry matter was not affected by any treatment; root dry weight was reduced in Streptomycesplus nematode treatments compared to the nematode inoculation alone in some experiments but was not affected by Streptomyces when RLN was absent. Mutant strains not producing antibiotics in vitro also reduced RLN population densities in alfalfa roots and all strains maintained high population densities after inoculation into heat-treated soil and on alfalfa roots. These strains may be useful in multi-crop, multi-pathogen management programs to augment genetic resistance to plant diseases.  相似文献   

10.
The significance of double crop (intercrop and sequential crop), single crop (rainy season crop fallow from June to September), and rotations on densities of Heterodera cajani, Helicotylenchus retusus, and Rotylenchulus reniformis was studied on Vertisol (Typic Pellusterts) between 1987 and 1993. Cowpea (Vigna sinensis), mungbean (Phaseolus aureus), and pigeonpea (Cajanus cajan) greatly increased the population densities of H. cajani and suppressed the population densities of other plant-parasitic nematodes. Mean population densities of H. cajani were about 8 times lower in single crop systems than in double crop systems, with pigeonpea as a component intercrop. Plots planted to sorghum, safflower, and chickpea in the preceding year contained fewer H. cajani eggs and juveniles than did plots previously planted to pigeonpea, cowpea, or mungbean. Continuous cropping of sorghum in the rainy season and safflower in the post-rainy season markedly reduced the population density of H. cajani. Sorghum, safflower, and chickpea favored increased population densities of H. retusus. Adding cowpea to the system resulted in a significant increase in the densities of R. reniformis. Mean densities of total plant-parasitic nematodes were three times greater in double crop systems, with pigeonpea as a component intercrop than in single crop systems with rainy season fallow component. Cropping systems had a regulatory effect on the nematode populations and could be an effective nematode management tactic. Intercropping of sorghum with H. cajani tolerant pigeonpea could be effective in increasing the productivity of traditional production systems in H. cajani infested regions.  相似文献   

11.
A mutant strain of the fungus Verticillium lecanii and selected bioregulators of Heterodera glycines were evaluated for their potential to reduce population densities of the nematode on soybean under greenhouse conditions. The bioregulators tested were the H. glycines sex pheromone vanillic acid and the pheromone analogs syringic acid, isovanillic acid, ferulic acid, 4-hydroxy-3-methoxybenzonitrile, and methyl vanillate. A V. lecanii-vanillic acid combination and a V. lecanii-syringic acid combination were also applied as treatments. Syringic acid, 4-hydroxy-3-methoxybenzonitrile, V. lecanii, V. lecanii-vanillic acid, and V. lecanii-syringic acid significantly reduced nematode population densities in the greenhouse tests. Results with vanillic acid, isovanillic acid, and ferulic acid treatments were variable. Methyl vanillate did not significantly reduce cyst nematode population densities in the greenhouse tests.  相似文献   

12.
Criconemella onoensis (Luc) Luc and Raski increased to high (458-1,290/100 cm³) soil population densities in four fields planted to cover crops of sorghum-sudangrass (Sorghum bicolor (L.) Moench × S. arundinaceum (Desv.) Stapf var. sudanense (Stapf) Hitchc. ''Funk FP-4'') during the summer of 1984 in southeastern Florida. Three pathogenicity tests conducted in the greenhouse with C. onoensis on potato (Solanum tuberosum L. ''La Rouge'') using three different methods (inoculation, chemical treatment of infested soil, or pasteurization of infested soil) revealed no significant (P = 0.10) differences in plant growth, despite significant (P = 0.05) differences in population densities of C. onoensis between treated and control pots in each test. In these three tests, the maximum initial density of C. onoensis used was 720/100 cm³ soil and the maximum final density was 686/100 cm³ soil. Application of 933 liters/ha of Vapam to a field site with a pretreatment density of 1,120 C. onoensis/100 cm³ soil significantly (P = 0.05) reduced populations compared with untreated control plots, but yields remained higher in control plots. Apparently C. onoensis has no significant effect on potato growth at the population densities tested.  相似文献   

13.
Sting nematode (Belonolaimus longicaudatus) is recognized as a pathogen of cotton (Gossypium hirsutum), but the expected damage from a given population density of this nematode has not been determined. The objective of this study was to quantify the effects of increasing initial population densities (Pi) of B. longicaudatus on cotton yield and root mass. In a field plot study, nematicide application and cropping history were used to obtain a wide range of Pi values. Cotton yields were regressed on Pi density of B. longicaudatus to quantify yield losses in the field. In controlled environmental chambers, cotton was grown in soil infested with increasing Pi''s of B. longicaudatus. After 40 days, root systems were collected, scanned on a desktop scanner, and root lengths were measured. Root lengths were regressed on inoculation density of B. longicaudatus to quantify reductions in the root systems. In the field, high Pi''s (>100 nematodes/130 cm³ of soil) reduced yields to near zero. In controlled environmental chamber studies, as few as 10 B. longicaudatus/130 cm³ of soil caused a 39% reduction in fine cotton roots, and 60 B. longicaudatus/130 cm³ of soil caused a 70% reduction. These results suggest that B. longicaudatus can cause significant damage to cotton at low population densities, whereas at higher densities crop failure can result.  相似文献   

14.
The efficacy of the nematode parasite Paecilomyces lilacinus, alone and in combination with phenamiphos and ethoprop, for controlling the root-knot nematode Meloidogyne javanica on tobacco and the ability of this fungus to colonize in soil under field conditions were evaluated for 2 years in microplots. Combinations and individual treatments of the fungus grown on autoclaved wheat seed, M. javanica eggs (76,000 per plot), and nematicides were applied to specified microplots at the time of transplanting tobacco the first year. Vetch was planted as a winter cover crop, and the fungus and nematicides were applied again the second year to specified plots at transplanting time. The fungus did not control the nematode in either year of these experiments. The average root-gall index (0 = no visible galls and 5 = > 100 galls per root system) ranged from 2.7 to 3.9 the first year and from 4.3 to 5.0 the second in nematode-infested plots treated with nematicides. Plants with M. javanica alone or in combination with P. lilacinus had galling indices of 5.0 both years; the latter produced lower yields than all other treatments during both years of the study. Nevertheless, the average soil population densities of P. lilacinus remained high, ranging from 1.2 to 1.3 × 106 propagules/g soil 1 week after the initial inoculation and from 1.6 to 2.3 × 104 propagules/g soil at harvest the second year. At harvest the second year the density of fungal propagules was greatest at the depth of inoculation, 15 cm, and rapidly decreased below this level.  相似文献   

15.
Monoxenic cultures of burrowing nematode populations extracted from banana roots from Belize, Guatemala, Honduras, and Costa Rica were established on carrot discs. Cultures of Radopholus spp. were also obtained from Florida, Puerto Rico, Dominican Republic, and Ivory Coast. The aggressiveness (defined as reproductive fitness and root necrosis) of these populations was evaluated by inoculating banana plants (Musa AAA, cv. Grande Naine) with 200 nematodes/plant. Banana plants produced by tissue culture were grown in 0.4-liter styrofoam cups, containing a 1:1 mix of a coarse and a fine sand, at ca. 27 °C and 80% RH. Banana plants were acclimated and allowed to grow for 4 weeks prior to inoculation. Plant height, fresh shoot and root weights, root necrosis, and nematode population densities were determined 8 weeks after inoculation. Burrowing-nematode populations varied in aggressiveness, and their reproductive fitness was generally related to damage reported in the field. Plant height and fresh shoot and root weight did not reflect damage caused by nematodes under our experimental conditions. Necrosis of primary roots was closely related to the reproductive fitness of the nematode populations. Variation in aggressiveness among nematode populations followed a similar trend in the two susceptible hosts tested, Grande Naine and Pisang mas. All nematode populations had a low reproductive factor (Rf ≤2.5) in the resistant host except for the Ivory Coast population which had a moderate reproductive factor (Rf ≤ 5) on Pisang Jari Buaya. This is the first report of a burrowing nematode population parasitizing this important source of resistance to R. similis.  相似文献   

16.
A real-time quantitative PCR assay targeting a 16S-23S intergenic spacer region sequence was devised to measure the sizes of populations of Lactobacillus salivarius present in ileal digesta collected from broiler chickens. This species has been associated with deconjugation of bile salts in the small bowel and reduced broiler productivity. The assay was tested as a means of monitoring the sizes of L. salivarius populations from broilers fed diets with different compositions, maintained at different stocking densities, or given the antimicrobial drugs bacitracin and monensin in the feed. Stocking densities did not influence the numbers of L. salivarius cells in the ileum. A diet containing meat and bone meal reduced the size of the L. salivarius population relative to that of chickens given the control diet, as did administration of bacitracin and monensin in the feed. These changes in the target bacterial population were associated with improved broiler weight gain.  相似文献   

17.
The effect of salinity on population densities of Tylenchulus semipenetrans was measured on 3-month-old salt-tolerant Rangpur lime growing on either loamy sand, sand, or organic mix and on 4-month-old salt-sensitive Sweet lime in organic mix. Salinity treatments were initiated by watering daily with 25 mol/m³ NaCl + 3.3 mol/m³ CaCl₂ for 3 days and every other day with 50 mol/m³ NaC1 + 6.6 mol/m³ CaC1₂ for one week, with no salt (NS) treatments as controls. Salinity was discontinued in one treatment (DS) by leaching with tap water prior to inoculation with nematodes, whereas the continuous salinity (CS) treatment remained unchanged. Overall, in Rangpur lime organic soil supported the highest population densities of T. semipenetrans, followed by loamy sand and sand. The DS treatment resulted in the highest (P ≤ 0.05) mean population densities of T. semipenetrans in the three soil types. Similarly, the DS treatment in Sweet lime resulted in the highest (P ≤ 0.05) nematode populations. The DS treatment predisposed citrus to nematode infection through accumulated salt stress, whereas leaching soluble salt in soil solution offered nematodes a suitable nonosmotic habitat. Nematode females under the DS treatment also had the highest (P ≤ 0.05) fecundity.  相似文献   

18.
The survival of genetically engineered Erwinia carotovora L-864, with a kanamycin resistance gene inserted in its chromosome, was monitored in the water and sediment of aquatic microcosms. The density of genetically engineered and wild-type E. carotovora strains declined at the same rate, falling in 32 days below the level of detection by viable counts. We examined the impact of the addition of genetically engineered and wild-type strains on indigenous bacteria belonging to specific functional groups important in nutrient cycling. For up to 16 days, the densities of total and proteolytic bacteria were significantly higher (P < 0.05) in microcosms inoculated with genetically engineered or wild-type E. carotovora, but by 32 days after inoculation, they had decreased to densities similar to those in control microcosms. Inoculation of genetically engineered or wild-type E. carotovora had no apparent effect on the density of amylolytic and pectolytic bacteria in water and sediment. Genetically engineered and wild-type E. carotovora did not have significantly different effects on the densities of specific functional groups of indigenous bacteria (P > 0.05).  相似文献   

19.
A series of experiments were performed to examine the population dynamics of the sugarbeet cyst nematode, Heterodera schachtii, and the nematophagus fungus Dactylella oviparasitica. After two nematode generations, the population densities of H. schachtii were measured in relation to various initial infestation densities of both D. oviparasitica and H. schachtii. In general, higher initial population densities of D. oviparasitica were associated with lower final population densities of H. schachtii. Regression models showed that the initial densities of D. oviparasitica were only significant when predicting the final densities of H. schachtii J2 and eggs as well as fungal egg parasitism, while the initial densities of J2 were significant for all final H. schachtii population density measurements. We also showed that the densities of H. schachtii-associated D. oviparasitica fluctuate greatly, with rRNA gene numbers going from zero in most field-soil-collected cysts to an average of 4.24 x 108 in mature females isolated directly from root surfaces. Finally, phylogenetic analysis of rRNA genes suggested that D. oviparasitica belongs to a clade of nematophagous fungi that includes Arkansas Fungus strain L (ARF-L) and that these fungi are widely distributed. We anticipate that these findings will provide foundational data facilitating the development of more effective decision models for sugar beet planting.  相似文献   

20.
The effects of intercycle cover crops on Rotylenchulus reniformis population densities in pineapple were evaluated in one greenhouse and two field experiments. In the greenhouse, Crotalaria juncea, Brassica napus, and Tagetes erecta were planted for 3 months and then incorporated. These treatments were compared to weedy fallow with or without 1,3-dichloropropene (1,3-D) in three soils (Makawao fallow, Wahiawa fallow, and Wahiawa pineapple) naturally infested with R. reniformis. All cover crop incorporation suppressed R. reniformis numbers in cowpea more than did the weedy treatment in the Makawao (P < 0.05) but not in the Wahiawa soils. Crotalaria juncea treatment increased bacterivorous nematodes and nematode-trapping fungal population densities more than the other treatments in Makawao fallow and Wahiawa pineapple-planted soils. The field trials included the same plants as well as Sinapis alba. Treatments with Crotalaria juncea and 1,3-D maintained lower R. reniformis population densities on pineapple longer than other cover crops or weedy fallow treatments. Crotalaria juncea could have suppressed R. reniformis because it is a poor host and because it enhances nematode-trapping fungi when incorporated into soil. Treatment with 1,3-D reduced microbial activities but produced the greatest pineapple yield.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号