首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Human apolipoprotein A-I (apoA-I), with an additional N-terminal extension (Met-Arg-Gly-Ser-(His)6-Met) (His-apoA-I), has been produced in Escherichia coli with a final yield after purification of 10 mg protein/l of culture medium. We have characterized the conformation and structural properties of His-apoA-I in lipid-free form, and in reconstituted lipoproteins containing two apoA-I per particle (Lp2A-I) by both immunochemical and physicochemical techniques. The lipid-free forms of the two proteins present very similar secondary structure and stability, and have also very similar kinetics of association with dimyristoyl phosphatidylcholine. His-apoA-I and native apoA-I can be complexed with 1-palmitoyl-2-oleoyl phosphatidylcholine (POPC) to form similar, stable, either discoidal or spherical (sonicated) Lp2A-I particles. Lipid-bound native apoA-I and His-apoA-I showed very similar α-helical content (69% and 66%, respectively in discoidal Lp2A-I and 54% and 51%, respectively in spherical Lp2A-I). The conformation of His-apoA-I in lipid-free form and in discoidal or spherical Lp2A-I has also been shown to be similar to native apoA-I by immunochemical measurements using 13 monoclonal antibodies recognizing distinct apoA-I epitopes. In the free protein and in reconstituted Lp2A-I, the N-terminal has no effect on the affinity of any of the monoclonal antibodies and minimal effect on immunoreactivity values. Small differences in the exposure of some apoA-I epitopes are evident on discoidal particles, while no difference is apparent in the expression of any epitope of apoA-I on spherical Lp2A-I. The presence of the N-terminal extension also has no effect on the reaction of LCAT with the discoidal Lp2A-I or on the ability of complexes to promote cholesterol efflux from fibroblasts in culture. In conclusion, we show that His-apoA-I expressed in E. coli exhibits similar physicochemical properties to native apoA-I and is also identical to the native protein in its ability to interact with phospholipids and to promote cholesterol esterification and cellular cholesterol efflux.  相似文献   

2.
Interactions of apolipoprotein A-I (apoA-I) with cell membranes appear to be important in the initial steps of reverse cholesterol transport. The objective of this work was to examine the effect of three distinct conformations of apoA-I (lipid-free and in 78 A or 96 A reconstituted high density lipoproteins, rHDL) on its ability to bind to, and abstract lipids from, palmitoyl oleoyl phosphatidylcholine membrane vesicles (small unilamellar vesicles, SUV, and giant unilamellar vesicles, GUV). The molecular interactions were observed by two-photon fluorescence microscopy, and the binding parameters were quantified by gel-permeation chromatography or isothermal titration microcalorimetry. Rearrangement of apoA-I-containing particles after exposure to SUVs was examined by native gel electrophoresis. The results indicate that lipid-free apoA-I binds reversibly, with high affinity, to the vesicles but does not abstract a significant amount of lipid nor perturb the vesicle structure. The 96 A rHDL, where all the amphipathic helices of apoA-I are saturated with lipid within the particles, do not bind to vesicles or perturb their structure. In contrast, the 78 A rHDL have a region of apoA-I, corresponding to a few amphipathic helical segments, which is available for external or internal phospholipid binding. These particles bind to vesicles with measurable affinity (lower than lipid-free apoA-I), abstract lipids from the membranes, and form particles of larger diameters, including 96 A rHDL. We conclude that the conformation of apoA-I regulates its binding affinity for phospholipid membranes and its ability to abstract lipids from the membranes.  相似文献   

3.
Recent models of lipid-free apolipoprotein A-I, including a cross-link/homology model and an X-ray crystal structure have identified two potential functionally relevant “patches” on the protein surface. The first is a hydrophobic surface patch composed of leucine residues 42, 44, 46, and 47 and the second a negatively charged patch composed of glutamic acid residues 179, 191, and 198. To determine if these domains play a functional role, these surface patches were disrupted by site-directed mutagenesis and the bacterially expressed mutants were compared with respect to their ability to bind lipid and stimulate ABCA1-mediated cholesterol efflux. It was found that neither patch plays a significant functional role in the ability of apoA-I to accept cholesterol in an ABCA1-dependent manner, but that the hydrophobic patch did affect the ability of apoA-I to clear DMPC liposomes. Interestingly, contrary to previous predictions, disruption of the hydrophobic surface patch enhanced the lipid binding ability of apoA-I. The hydrophobic surface patch may be important to the structural stability of lipid-free apoA-I or may be a necessary permissive structural element for lipid binding.  相似文献   

4.
Apolipoprotein A-I (apoA-I) is a prominent member of the exchangeable apolipoprotein class of proteins, capable of transitioning between lipid-bound and lipid-free states. It is the primary structural and functional protein of high density lipoprotein (HDL). Lipid-free apoA-I is critical to de novo HDL formation as it is the preferred substrate of the lipid transporter, ATP Binding Cassette Transporter A1 (ABCA1) Remaley et al. (2001) [1]. Lipid-free apoA-I is an important element in reverse cholesterol transport and comprehension of its structure is a core issue in our understanding of cholesterol metabolism. However, lipid-free apoA-I is highly conformationally dynamic making it a challenging subject for structural analysis. Over the past 20 years there have been significant advances in overcoming the dynamic nature of lipid-free apoA-I, which have resulted in a multitude of proposed conformational models.  相似文献   

5.
Oxidized forms of cholesterol (oxysterols) are present in atherosclerotic lesions and may play an active role in lesion development. For example, 7-ketocholesterol (7KC) inhibits cholesterol efflux from macrophage foam cells induced by apolipoprotein A-I (apoA-I). Such oxysterols may promote foam cell formation in atherosclerotic lesions by preventing effective clearance of excess cholesterol. ApoA-I also induces phospholipid (PL) export from foam cells and it has been suggested that cholesterol efflux is dependent upon PL association with the apolipoprotein. In the current study, the effect of oxysterol enrichment of foam cells on phospholipid efflux was measured. Export of cellular PL to apoA-I from 7KC-enriched foam cells was inhibited to the same extent as cholesterol, indicating that the reduced cholesterol export may be a consequence of a decline in the capacity of the foam cells to generate PL/apoA-I particles capable of accepting cellular cholesterol. Incubation of foam cells with pre-formed PL/apoA-I discs increased cholesterol export from 7KC-enriched cells to levels seen in 7KC-free cells. Foam cells produced by uptake of oxidized LDL, which contain similar amounts of 7KC plus other oxidation products, expressed a more profound inhibition of PL export to apoA-I. Cholesterol efflux from these cells improved only partially by provision of PL-containing acceptors. Efflux of 7KC from both foam cell types occurred to PL/apoA-I discs but was only minimal to lipid-free apoA-I, indicating that export of this oxysterol is more dependent than cholesterol upon the presence of extracellular phospholipid.  相似文献   

6.
Twenty-nine from 52 missense mutations in apoA-I gene are predicted to be deleterious by both SIFT and PolyPhen-2 algorithms. Among those, eight mutations with a prominent change in structure stability as modeled by the SDM tool for both lipid-free (Mei and Atkinson (2011) PDB ID: 3R2P) and HDL-bound (Wu et al. (2009) PDB ID: 3K2S) apoA-I, are referred as structural. The remaining mutations with a preferential location in a long intrinsically disordered region, predicted by the SPINE-D and DNdisorder tools, may influence the functional sites. Among structural mutations, five amyloidosis-only-related mutations, significant in a lipid-free structure, are located in 1–90 region. Six amyloidosis- and hypoalphalipoproteinemia-associated mutations, differently significant in two chains of lipid-bound apoA-I, are distributed among the N-domain. Six cholesterol recognition putative motifs (5 CRAC/1 CCM) in apoA-I structure are suggested to interact with cholesterol. Among those, the K40-W50 partially conserved CCM sequence with a putative recognition feature, predicted by the MoRF tool, may underlie cholesterol binding to lipid-free apoA-I, the binding triggering the disorder-to-order transition within MoRF. Thus, the impairment of helix formation and accelerated protein aggregation may underlie the amyloidogenic effect of W50R substitution. Also, D102H substitution in conserved CRAC2 V97-K106 sequence may be harmful in reverse cholesterol transport. With PDBe Motifs and Sites algorithm, cholesterol is a ligand for L101, F104 and W108 residues in HDL-bound apoA-I. The influence of specific mutation on apoA-I structure and mutated apolipoprotein switch between different pathologies is suggested to depend on the surrounding phase properties.  相似文献   

7.
The contribution of ABCA1-mediated efflux of cellular phospholipid (PL) and cholesterol to human apolipoprotein A-I (apoA-I) to the formation of pre beta 1-HDL (or lipid-poor apoA-I) is not well defined. To explore this issue, we characterized the nascent HDL particles formed when lipid-free apoA-I was incubated with fibroblasts in which expression of the ABCA1 was upregulated. After a 2 h incubation, the extracellular medium contained small apoA-I/PL particles (pre beta 1-HDL; diameter = 7.5 +/- 0.4 nm). The pre beta 1-HDL (or lipid-poor apoA-I) particles contained a single apoA-I molecule and three to four PL molecules and one to two cholesterol molecules. An apoA-I variant lacking the C-terminal alpha-helix did not form such particles when incubated with the cell, indicating that this helix is critical for the formation of lipid-poor apoA-I particles. These pre beta 1-HDL particles were as effective as lipid-free apoA-I molecules in mediating both the efflux of cellular lipids via ABCA1 and the formation of larger, discoidal HDL particles. In conclusion, pre beta 1-HDL is both a product and a substrate in the ABCA1-mediated reaction to efflux cellular PL and cholesterol to apoA-I. A monomeric apoA-I molecule associated with three to four PL molecules (i.e., lipid-poor apoA-I) has similar properties to the lipid-free apoA-I molecule.  相似文献   

8.
This study elucidates the factors underlying the enhancement in efflux of human fibroblast unesterified cholesterol and phospholipid (PL) by lipid-free apolipoprotein (apo) A-I that is induced by cholesterol enrichment of the cells. Doubling the unesterified cholesterol content of the plasma membrane by incubation for 24 h with low density lipoprotein and lipid/cholesterol dispersions increases the pools of PL and cholesterol available for removal by apoA-I from about 0.8-5%; the initial rates of mass release of cholesterol and PL are both increased about 6-fold. Expression of the ATP binding cassette transporter A1 (ABCA1) is critical for this increased efflux of lipids, and cholesterol loading of the fibroblasts over 24 h increases ABCA1 mRNA about 12-fold. The presence of more ABCA1 and cholesterol in the plasma membrane results in a 2-fold increase in the level of specific binding of apoA-I to the cells with no change in binding affinity. Characterization of the species released from either control or cholesterol-enriched cells indicates that the plasma membrane domains from which lipids are removed are cholesterol-enriched with respect to the average plasma membrane composition. Cholesterol enrichment of fibroblasts also affects PL synthesis, and this leads to enhanced release of phosphatidylcholine (PC) relative to sphingomyelin (SM); the ratios of PC to SM solubilized from control and cholesterol-enriched fibroblasts are approximately 2/1 and 5/1, respectively. Biosynthesis of PC is critical for this preferential release of PC and the enhanced cholesterol efflux because inhibition of PC synthesis by choline depletion reduces cholesterol efflux from cholesterol-enriched cells. Overall, it is clear that enrichment of fibroblasts with unesterified cholesterol enhances efflux of cholesterol and PL to apoA-I because of three effects, 1) increased PC biosynthesis, 2) increased PC transport via ABCA1, and 3) increased cholesterol in the plasma membrane.  相似文献   

9.
ABCA1 plays a major role in HDL metabolism. Cholesterol secretion by ABCA1 is dependent on the presence of extracellular acceptors, such as lipid-free apolipoprotein A-I (apoA-I). However, the importance of the direct interaction between apoA-I and ABCA1 in HDL formation remains unclear. In contrast, ABCB4 mediates the secretion of phospholipids and cholesterol in the presence of sodium taurocholate (NaTC) but not in the presence of apoA-I. In this study, we analyzed apoA-I binding and NaTC-dependent lipid efflux by ABCA1. ABCA1 mediated the efflux of cholesterol and phospholipids in the presence of NaTC as well as in the presence of apoA-I in an ATP-dependent manner. The Tangier disease mutation W590S, which resides in the extracellular domain and impairs apoA-I-dependent lipid efflux, greatly decreased NaTC-dependent cholesterol and phospholipid efflux. However, the W590S mutation did not impair apoA-I binding and, conversely, retarded the dissociation of apoA-I from ABCA1. These results suggest that the W590S mutation impairs ATP-dependent lipid translocation and that lipid translocation or possibly lipid loading, facilitates apoA-I dissociation from ABCA1. NaTC is a good tool for analyzing ABCA1-mediated lipid efflux and allows dissection of the steps of HDL formation by ABCA1.  相似文献   

10.
The ATP binding cassette transporter A-1 (ABCA1) is critical for apolipoprotein-mediated cholesterol efflux, an important mechanism employed by macrophages to avoid becoming lipid-laden foam cells, the hallmark of early atherosclerotic lesions. It has been proposed that lipid-free apolipoprotein A-I (apoA-I) enters the cell and is resecreted as a lipidated particle via a retroendocytosis pathway during ABCA1-mediated cholesterol efflux from macrophages. To determine the functional importance of such a pathway, confocal microscopy was used to characterize the internalization of a fully functional apoA-I cysteine mutant containing a thiol-reactive fluorescent probe in cultured macrophages. ApoA-I was also endogenously labeled with (35)S-methionine to quantify cellular uptake and to determine the metabolic fate of the internalized protein. It was found that apoA-I was specifically taken inside macrophages and that a small amount of intact apoA-I was resecreted from the cells. However, a majority of the label that reappeared in the media was degraded. We estimate that the mass of apoA-I retroendocytosed is not sufficient to account for the HDL produced by the cholesterol efflux reaction. Furthermore, we have demonstrated that lipid-free apoA-I-mediated cholesterol efflux from macrophages can be pharmacologically uncoupled from apoA-I internalization into cells. On the basis these findings, we present a model in which the ABCA1-mediated lipid transfer process occurs primarily at the membrane surface in macrophages, but still accounts for the observed specific internalization of apoA-I.  相似文献   

11.
A unique class of lipid-poor high-density lipoprotein, pre-beta1 HDL, has been identified and shown to have distinct functional characteristics associated with intravascular cholesterol transport. In this study we have characterized the structure/function properties of poorly lipidated HDL particles and the factors that mediate their conversion into multimolecular lipoprotein particles. Studies were undertaken with homogeneous recombinant HDL particles (LpA-I) containing apolipoprotein (apo) A-I and various amounts of palmitoyloleoylphosphatidylcholine (PC) and cholesterol. Complexation of apoA-I with small amounts of PC and cholesterol results in the formation of discrete lipoprotein structures that have a hydrated diameter of about 6 nm but contain only one molecule of apoA-I (Lp1A-I). While the molecular charge and alpha-helix content of apoA-I are unaffected by lipidation, the thermodynamic stability of the protein is reduced significantly (from 2.4 to 0.9 kcal/mol of apoA-I). Evaluation of apoA-I conformation by competitive radioimmunoassay with monoclonal antibodies shows that addition of small amounts of PC and cholesterol to apoA-I significantly increases the immunoreactivity of a number of domains over the entire molecule. Increasing the ratio of PC:apoA-I to 10:1 in the Lp1A-I complex is associated with increases in the alpha-helix content and stability of apoA-I. However, incorporation of 10-15 mol of PC destabilizes the Lp1A-I complex and promotes the formation of more thermodynamically stable (1.8 kcal/mol of apoA-I) bimolecular structures (Lp2A-I) that are approximately 8 nm in diameter. The formation of an Lp2A-I particle is associated with an increased immunoreactivity of most of the epitopes studied, with the exception of one central domain (residues 98-121), which becomes significantly less exposed. This structural change parallels a significant increase in the net negative charge on the complex. Characterization of the ability of these lipoproteins to act as substrates for lecithin:cholesterol acyltransferase (LCAT) shows that unstable Lp1A-I complexes stimulate a higher rate of cholesterol esterification by LCAT than the small but more stable Lp2A-I particles (Vmax values are 5.8 and 0.3 nmol of free cholesterol esterified/h, respectively). The ability of LCAT to interact with lipid-poor apoA-I suggests that LCAT does not need to bind to the lipid interface on an HDL particle but that LCAT may directly interact with apoA-I. The data suggests that lipid-poor HDL particles may be metabolically reactive particles because they are thermodynamically unstable.  相似文献   

12.
Apolipoprotein A-I (apoA-I) is the major protein component of high density lipoproteins (HDL) and plays a central role in cholesterol metabolism. The lipid-free/lipid-poor form of apoA-I is the preferred substrate for the ATP-binding cassette transporter A1 (ABCA1). The interaction of apoA-I with ABCA1 leads to the formation of cholesterol laden high density lipoprotein (HDL) particles, a key step in reverse cholesterol transport and the maintenance of cholesterol homeostasis. Knowledge of the structure of lipid-free apoA-I is essential to understanding its critical interaction with ABCA1 and the molecular mechanisms underlying HDL biogenesis. We therefore examined the structure of lipid-free apoA-I by electron paramagnetic resonance spectroscopy (EPR). Through site directed spin label EPR, we mapped the secondary structure of apoA-I and identified sites of spin coupling as residues 26, 44, 64, 167, 217 and 226. We capitalize on the fact that lipid-free apoA-I self-associates in an anti-parallel manner in solution. We employed these sites of spin coupling to define the central plane in the dimeric apoA-I complex. Applying both the constraints of dipolar coupling with the EPR-derived pattern of solvent accessibility, we assembled the secondary structure into a tertiary context, providing a solution structure for lipid-free apoA-I. This article is part of a Special Issue entitled Advances in High Density Lipoprotein Formation and Metabolism: A Tribute to John F. Oram (1945-2010).  相似文献   

13.
Gao X  Yuan S  Jayaraman S  Gursky O 《Biochemistry》2012,51(23):4633-4641
High-density lipoproteins (HDL, or "good cholesterol") are heterogeneous nanoparticles that remove excess cell cholesterol and protect against atherosclerosis. The cardioprotective action of HDL and its major protein, apolipoprotein A-I (apoA-I), is well-established, yet the function of the second major protein, apolipoprotein A-II (apoA-II), is less clear. In this review, we postulate an ensemble of apolipoprotein conformations on various HDL. This ensemble is based on the crystal structure of Δ(185-243)apoA-I determined by Mei and Atkinson combined with the "double-hairpin" conformation of apoA-II(dimer) proposed in the cross-linking studies by Silva's team, and is supported by the wide array of low-resolution structural, biophysical, and biochemical data obtained by many teams over decades. The proposed conformational ensemble helps integrate and improve several existing HDL models, including the "buckle-belt" conformation of apoA-I on the midsize disks and the "trefoil/tetrafoil" arrangement on spherical HDL. This ensemble prompts us to hypothesize that endogenous apoA-II (i) helps confer lipid surface curvature during conversion of nascent discoidal HDL(A-I) and HDL(A-II) containing either apoA-I or apoA-II to mature spherical HDL(A-I/A-II) containing both proteins, and (ii) hinders remodeling of HDL(A-I/A-II) by hindering the expansion of the apoA-I conformation. Also, we report that, although endogenous apoA-II circulates mainly on the midsize spherical HDL(A-I/A-II), exogenous apoA-II can bind to HDL of any size, thereby slightly increasing this size and stabilizing the HDL assembly. This suggests distinctly different effects of the endogenous and exogenous apoA-II on HDL. Taken together, the existing results and models prompt us to postulate a new structural and functional role of apoA-II on human HDL.  相似文献   

14.
Helical apolipoproteins of high density lipoprotein (HDL) remove phospholipid and cholesterol from cells and generate HDL particles being mediated by ATP binding cassette transporter A1 (ABCA1). In murine macrophage cell line RAW264 cells, cAMP induced expression of ABCA1, release of cellular phospholipid and cholesterol by apolipoprotein A-I (apoA-I), and reversible binding of apoA-I to the cell. The apoA-I-dependent lipid release was directly proportional to the cAMP-induced binding of apoA-I, and was inhibited 70% by a monoclonal antibody selective to lipid-free apoA-I, 725-1E2. In contrast, apparent cellular cholesterol release to HDL was substantial even without ABCA1 induction, and it was increased only by 27% after the cAMP treatment. The antibody inhibited this increment by 70%. Lipid-free apoA-II liberated apoA-I from HDL by displacement and thereby markedly expanded the cAMP-induced part of the cholesterol release to the HDL-containing medium, and the antibody inhibited this part also by 70%. Binding experiments of the double-labeled reconstituted HDL showed that cAMP induced reversible binding of apoA-I but not the association of cholesteryl ester with the cells. The effect of the antibody on the cellular cholesterol release to the reconstituted HDL was similar to that of the HDL-mediated release. The data implicated that the ABCA1-dependent cholesterol release to HDL is mediated by apoA-I dissociated from HDL.  相似文献   

15.
The ATP-binding cassette transporters ABCA1 and ABCG1 as well as scavenger receptor BI (SR-BI) mediate the efflux of lipids from macrophages to apolipoprotein A-I (apoA-I) and high density lipoproteins (HDL). We used RNA interference in RAW264.7 macrophages to study the interactions of ABCA1, ABCG1, and SR-BI with lipid-free apoA-I, native and reconstituted HDL with apoA-I:phosphatidylcholine ratios of either 1:40 (rHDL(1:40)) or 1:100 (rHDL(1:100)). Knock-down of ABCA1 inhibits the cellular binding at 4 degrees C of lipid-free apoA-I but not of HDL whereas suppression of ABCG1 or SR-BI reduces the binding of HDL but not lipid-free apoA-I. The degree of lipidation influences the interactions of rHDL with ABCG1 and SR-BI. Knock-down of ABCG1 inhibits more effectively the binding and cholesterol efflux capacities of lipid-poorer rHDL(1:40) whereas knock-down of SR-BI has a more profound effect on the binding and cholesterol efflux capacities of lipid-richer rHDL(1:100). Moreover, knock-down of ABCG1 but not SR-BI interferes with the association of lipid-free apoA-I during prolonged incubation at 37 degrees C. Finally, knock-down of ABCG1 inhibits the binding of initially lipid-free apoA-I which has been preconditioned by cells with high ABCA1 activity. The gained ability of initially lipid-free apoA-I to interact with ABCG1 is accompanied by its shift from electrophoretic pre-beta- to alpha-mobility. Taken together, these data suggest that the interaction of lipid-free apoA-I with ABCA1 generates a particle that immediately interacts with ABCG1 but not with SR-BI. Furthermore, the degree of lipidation influences the interaction of HDL with ABCG1 or SR-BI.  相似文献   

16.
Five mutants of apolipoprotein A-I (apoA-I), apoA-I(Delta63-73), apoA-I(Delta140-150), apoA-I(63-73@140-150), apoA-I(R149V), and apoA-I(P143A) were compared with human plasma apoA-I for their ability to promote cholesterol and phospholipid efflux from HepG2 cells. A significantly lower capacity to promote cholesterol and phospholipid efflux was observed with lipid-free apoA-I(Delta63-73), while mutations apoA-I(Delta140-150) and apoA-I(P143A) affected phospholipid efflux only. When added as apoA-I/palmitoyloleoyl phosphatidylcholine (POPC) complex, mutations apoA-I(63-73@140-150) and apoA-I(Delta140-150) affected cholesterol efflux. None of the mutations affected alpha-helicity of the lipid-free mutants or their self-association. Five natural mutations of apoA-I, apoA-I(A95D), apoA-I (Y100H), apoA-I(E110K), apoA-I(V156E), and apoA-I (H162Q) were studied for their ability to bind lipids and promote cholesterol efflux. None of the mutations affected lipid-binding properties, cholesterol efflux, or alpha-helicity of lipid-free mutants. Two mutations affected self-association of apoA-I: apoA-I(A95D) was more prone to self-association, while apoA-I(E100H) did not self-associate. The following conclusions could be made from the combined data: i) regions 210-243 and 63-100 are the lipid-binding sites of apoA-I and are also required for the efflux of lipids to lipid-free apoA-I, suggesting that initial lipidation of apoA-I is rate limiting in efflux; ii) in addition to the lipid-binding regions, the central region is important for cholesterol efflux to lipidated apoA-I, suggesting its possible involvement in interaction with cells.  相似文献   

17.
Apolipoprotein A-I (apoA-I) is the major protein component of high density lipoproteins (HDL) and plays a central role in cholesterol metabolism. The lipid-free/lipid-poor form of apoA-I is the preferred substrate for the ATP-binding cassette transporter A1 (ABCA1). The interaction of apoA-I with ABCA1 leads to the formation of cholesterol laden high density lipoprotein (HDL) particles, a key step in reverse cholesterol transport and the maintenance of cholesterol homeostasis. Knowledge of the structure of lipid-free apoA-I is essential to understanding its critical interaction with ABCA1 and the molecular mechanisms underlying HDL biogenesis. We therefore examined the structure of lipid-free apoA-I by electron paramagnetic resonance spectroscopy (EPR). Through site directed spin label EPR, we mapped the secondary structure of apoA-I and identified sites of spin coupling as residues 26, 44, 64, 167, 217 and 226. We capitalize on the fact that lipid-free apoA-I self-associates in an anti-parallel manner in solution. We employed these sites of spin coupling to define the central plane in the dimeric apoA-I complex. Applying both the constraints of dipolar coupling with the EPR-derived pattern of solvent accessibility, we assembled the secondary structure into a tertiary context, providing a solution structure for lipid-free apoA-I. This article is part of a Special Issue entitled Advances in High Density Lipoprotein Formation and Metabolism: A Tribute to John F. Oram (1945-2010).  相似文献   

18.
HDL and its major component, apolipoprotein A-I (apoA-I), play a central role in reverse cholesterol transport. We recently reported the involvement of a glycosylphosphatidylinositol anchor (GPI anchor) in the binding of HDL and apoA-I on human macrophages, and purified an 80 kDa HDL/apoA-I binding protein. In the present study, we characterized the GPI-anchored HDL/apoA-I binding protein from macrophages. The HDL/apoA-I binding protein was purified from macrophages and digested with endopeptidase, and the resultant fragments were sequenced. Cholesterol efflux, flow cytometry, immunoblotting, and immunohistochemical analyses were performed to characterize the HDL/apoA-I binding protein. Two parts of seven amino acid sequences completely matched those of moesin. Flow cytometry, immunoblotting, and immunohistochemistry using anti-moesin antibody showed that the HDL/apoA-I binding protein was N-glycosylated and expressed on the cell surface. It was termed moesin-like protein. Treatment of macrophages with anti-moesin antibody blocked the binding of HDL/apoA-I and suppressed cholesterol efflux. The moesin-like protein was exclusively expressed on macrophages and was upregulated by cholesterol loading and cell differentiation. Our results indicate that the moesin-like HDL/apoA-I binding protein is specifically expressed on the surface of human macrophages and promotes cholesterol efflux from macrophages.-Matsuyama, A, N. Sakai, H. Hiraoka, K-i. Hirano, and S. Yamashita. Cell surface-expressed moesin-like HDL/apoA-I binding protein promotes cholesterol efflux from human macrophages.  相似文献   

19.
Apolipoprotein (apo) A-I, a 243-residue, 28.1-kDa protein is a major mediator of the reverse cholesterol transport (RCT) pathway, a process that may reduce the risk of cardiovascular disease in humans. In plasma, a small fraction of lipid-free or lipid-poor apoA-I is likely a key player in the first step of RCT. Therefore, a basic understanding of the structural details of lipid-free apoA-I will be useful for elucidating the molecular details of the pathway. To address this issue, we applied the combined approach of cross-linking chemistry and high-resolution mass spectrometry (MS) to obtain distance constraints within the protein structure. The 21 lysine residues within apoA-I were treated with homo bifunctional chemical cross-linkers capable of covalently bridging two lysine residues residing within a defined spacer arm length. After trypsin digestion of the sample, individual peptide masses were identified by MS just after liquid chromatographic separation. With respect to the linear amino acid sequence, we identified 5 short-range and 12 long-range cross-links within the monomeric form of lipid-free apoA-I. Using the cross-linker spacer arm length as a constraint for identified Lys pairs, a molecular model was built for the lipid-free apoA-I monomer based on homology with proteins of similar sequence and known three-dimensional structures. The result is the first detailed model of lipid-free apoA-I. It depicts a helical bundle structure in which the N- and C-termini are in close proximity. Furthermore, our data suggest that the self-association of lipid-free apoA-I occurs via C- and N-termini of the protein based on the locations of six cross-links that are unique to the cross-linked dimeric form of apoA-I.  相似文献   

20.
Exchangeable apolipoproteins can convert between lipid-free and lipid-associated states. The C-terminal domain of human apolipoprotein A-I (apoA-I) plays a role in both lipid binding and self-association. Site-directed spin-label electron paramagnetic resonance spectroscopy was used to examine the structure of the apoA-I C terminus in lipid-free and lipid-associated states. Nitroxide spin-labels positioned at defined locations throughout the C terminus were used to define discrete secondary structural elements. Magnetic interactions between probes localized at positions 163, 217 and 226 in singly and doubly labeled apoA-I gave inter- and intramolecular distance information, providing a basis for mapping apoA-I tertiary and quaternary structure. Spectra of apoA-I in reconstituted HDL revealed a lipid-induced transition of defined random coils and beta-strands into alpha-helices. This conformational switch is analogous to triggered events in viral fusion proteins and may serve as a means to overcome the energy barriers of lipid sequestration, a critical step in cholesterol efflux and HDL assembly.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号