首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
The time and mode of entry, and development of Ditylenchus destructor in peanut were studied in field and greenhouse experiments. Few nematodes were present in the cortex of the roots. At 90-120 days after planting, D. destructor was observed in the exocarp at the base of the pod near the point of connection with the peg. The peg was invaded from this primary infection site. The endocarp of the hull was usually penetrated through openings at the base of the mesocarp and sometimes at the pod apex. Numerous D. destructor were present in the testa and the vascular bundles. Nematodes were found in the embryo but not in the cotyledons. The histopathology of D. destructor closely resembles that of the peanut testa nematode, Aphelenchoides arachidis Bos.  相似文献   

2.
White yam tissues naturally and artificially infected with root-knot nematodes were fixed, sectioned, and examined with a microscope. Infective second-stage juveniles of Meloidogyne incognita penetrated and moved intercellularly within the tuber. Feeding sites were always in the ground tissue layer where the vascular tissues are distributed in the tubers. Giant cells were always associated with xylem tissue. They were thin walled with dense cytoplasm and multinucleated. The nuclei of the giant cells were only half the size of those found in roots of infected tomato plants. Normal nematode growth and development followed giant cell formation. Females deposited eggs into a gelatinous egg mass within the tuber, and a necrotic ring formed around the female after eggs had been produced. Second-stage juveniles hatched, migrated, and re-infected other areas of the tuber. No males were observed from the tuber.  相似文献   

3.
Greenhouse and laboratory experiments were performed to determine if an interaction exists between Meloidogyne incognita and Hoplolaimus columbus on Davis soybean. Greenhouse tests were performed with three population levels of M. incognita and H. columbus (0, 1,500, 6,000/1.5-liter pot) separately and in all combinations. Dry root weight (DRT) declined nonlinearly and dry shoot weight (DST) declined linearly with respect to increasing initial populations of M. incognita and H. columbus. When the two nematode species were added to the soil together, the amount of DRT and DST suppression by one species was dependent on the initial level of the concomitant species. The final root population of M. incognita or H. columbus declined linearly with increasing initial population density of the concomitant species. H. columbus suppressed M. incognita populations in the soil nonlinearly, but M. incognita had no effect on H. columbus.  相似文献   

4.
The population development of Ditylenchus destructor in the roots, pegs, hulls, and seeds of eight peanut (Arachis hypogaea) genotypes was studied in the greenhouse. Although all genotypes tested were good hosts for D. destructor, differences in host suitability were observed. Invasion of the plant parts by Ditylenchus destructor proceeded more slowly in genotypes with long growth periods. During the second half of the growth period of these genotypes, D. destructor populations emigrated from the hulls and seeds into the soil but reinfected the pods after a few weeks. The genotypes with the longest growth periods supported the highest number of nematodes when each genotype was harvested at its usual harvest time. The long-season genotypes supported low numbers of nematodes when harvested before crop maturity.  相似文献   

5.
Florunner peanut and three soybean cultivars, Centennial, Gasoy 17, and Wright, were inoculated with 48-hour age cohorts of Meloidogyne arenari race 1 second-stage juveniles and placed in a growth chamber set to simulate early season (low temperature) and midseason (high temperature) conditions. Percentages of the initial inoculum penetrating roots 4 and 8 days after inoculation were 2-3 times higher in soybean cultivars than in peanut; 25% on susceptible soybean and 9% on peanut. Penetration and early development of M. arenaria were greater in the higher temperature environment. Penetration percentages were expressed as a function of cumulative degree-days by regression models. Development of M. arenaria 10, 20, and 30 days after inoculation was more rapid on peanut than on soybean. The resistant soybean cultivar Wright had slower development rates than did the other two soybean cultivars. Nematode growth and development were dependent on temperature. In greenhouse experiments, production of eggs by M. arenaria was more than 10 times greater on peanut than on susceptible soybean. The reproductive factor for Wright soybean was less than one, but plant growth parameters indicated that this cultivar was intolerant of M. arenavia.  相似文献   

6.
Selected morphometrics of Heterorhabditis bacteriophora and seven species of Steinernema from in vivo culture were compared in relation to time of harvest. In addition, five Steinernema species were reared in vitro and their morphometrics were compared with those from in vivo culture. With in vivo culture, there was generally a negative linear relationship between body length of infective juveniles (IJ) and time of harvest. The distance from the anterior end to the excretory pore (EP) and the tail length (T) of IJ also varied with time of harvest. The E percentage (= EP/T x 100) was the least variable. Body lengths of IJ reared in vitro were much less than those of IJ reared in vivo. The study suggests that IJ harvested from in vivo culture within 1 week of emergence from cadavers are best for species identification. Infective juveniles from in vitro culture should not be used for species identification.  相似文献   

7.
8.
Gliocladium virens was isolated from slash pine trees symptomatic and asymptomatic for pine wilt disease with frequencies of 24% and 10%, respectively. Populations of Bursaphelenchus xylophilus, the nematode incitant of this disease, reproduced on this fungus and inhibited its growth. Growth inhibition of the fungus was characterized by an absence of sporulation and by the formation of chains of dark, thick-walled, chlamydospore-like cells. Population increase during a 12-day period following infestation of cultures of the fungus with 10,000 nematodes averaged 3-fold at 16 C, 9-fold at 20 C, and 24-fold at 24 C. In greenhouse studies, nematode recovery from slash pine seedlings coinoculated with both organisms was significantly greater than that obtained from seedlings inoculated with the nematode alone.  相似文献   

9.
Meloidogyne konaensis n. sp. is described from coffee from Kona on the island of Hawaii. The perineal pattern of the female is variable in morphology, the medial lips of the female are divided into distinct lip pairs, and the excretory pore is 2-3 stylet lengths from the base of the stylet. Mean stylet length is 16.0 μm, and the knobs gradually merge with the shaft. The knobs are indented anteriorly and rounded posteriorly and the dorsal esophageal gland orifice (DEGO) is long, 3.5-7 μm. The morphology of the stylet of the male is the most useful diagnostic character, with 6-12 large projections protruding from the shaft. One medial lip may be divided into distinct lip pairs. A large intestinal caecum often extends nearly to the level of the DEGO. Mean juvenile length is 502 μm, mean stylet length is 13.4 μm, and mean tail length is 58 μm. The tail may be distinctly curved ventrally and the phasmids are located in the ventral incisure about one anal body width posterior to the anus.  相似文献   

10.
Reproduction of Pratylenchus penetrans on the potato cultivars Hudson, Katahdin, and Superior was determined in greenhouse and field microplot experiments. Although all three cultivars were good hosts for P. penetrans, differences in reproductive rate were found. In one greenhouse experiment, Katahdin plants inoculated with 1,500 or 15,000 P. penetrans per pot had larger population densities at harvest than did Superior; however differences between these cultivars were not significant in three other greenhouse experiments. In another experiment, population densities of P. penetrans on Hudson did not differ from those on Katahdin and Superior when inoculated with 270 and 5,080 nematodes per pot after 45 days in the greenhouse. However, population densities were usually higher on Hudson and Katahdin than on Superior in field microplots at four initial population densities during two seasons. Higher population densities on Hudson were detectable 304 days after planting in one of the two microplot studies. The juvenile:female and the male:female ratios were sometimes larger on Katahdin than on Superior, but differences were inconsistent. There was no evidence of resistance in the three cultivars evaluated, but reproduction was generally highest on Hudson and lowest on Superior.  相似文献   

11.
Head shape and stylet morphology of males of 90 populations of M. arenaria, M. hapla, M. incognita, and M. javanica from geographic regions of the world were compared by light microscopy (LM). In addition, stylets of one population each of M. arenaria, M. incognita, and M. javanica and three different chromosomal forms of M. hapla race A and two of race B were excised and examined with a scanning electron microscope (SEM). Differences among species occurred in both head and stylet morphology. Head morphology differed in size and shape of the head cap, annulation of the head region, and width of the head region relative to the first body annule. Differences in stylets occurred in size and shape of the cone, shaft, and knobs. All populations of M. hapla, except one, had similar head morphology, but stylet morphology was different between cytological races A and B. Populations of M. javanica varied with respect to the presence of head annulations. Head shape and stylet morphology of males are recommended as additional characters useful in the identification of root-knot nematodes.  相似文献   

12.
The yield response of Florunner peanut to different initial population (Pi) densities of Meloidogyne arenaria, M. javanica, and an undescribed Meloidogyne species (isolate 93-13a) was determined in microplots in 1995 and 1996. Seven Pi''s (0, 0.5, 1, 5, 10, 50, and 100 eggs and J2/500 cm³ soil) were used for each Meloidogyne species in both years. The three species reproduced abundantly on Florunner in both years. In 1995, mean reproduction differed among the three species; mean Rf values were 10,253 for isolate 93-13, 4,256 for M. arenaria, and 513 for M. javanica. In 1996, the reproduction of M. arenaria (mean Rf = 7,820) and isolate 93-13a (mean Rf = 7,506) were similar, and both had greater reproduction on peanut than did M. javanica (mean Rf = 2,325). All three nematode species caused root and pod galling, and a positive relationship was observed between Pi and the percentage of pods galled. Meloidogyne arenaria caused a higher percentage of pod galling than did M. javanica or isolate 93-13a. A negative linear relationship between log₁₀ (Pi + 1) and pod yield was observed for all three nematode species each year. The yield response slopes were similar except for that of M. javanica, which was less negative than that of isolate 93-13a in 1995, and less negative than that of M. arenaria and isolate 93-13a in 1996.  相似文献   

13.
14.
A digitizer-microcomputer combination was utilized to determine soybean seedling response to population densities of M. incognita (Mi) under varied environmental conditions. Plant age, temperature, soil texture, and initial Mi inoculum (Pi) influenced the pattern of shoot and root growth. Effects of Mi on plant top growth were evident on plants inoculated 2 days after seeding, but generally were not noticeable on those receiving Mi after 4, 6, or 8 days (observations limited to 6 days after inoculation). The greatest Pi of Mi (16,700 juveniles/plant) suppressed root growth on plants inoculated at 2 or 4 days after seeding. Mi had no impact on root growth at 22 C on plants inoculated 6 or 8 days after seeding at any temperature used (22, 26, 30 C). New root initiation was inhibited on soybeans inoculated 2 days after seeding at the highest Pi at all three temperatures, but only at 30 C for a Pi of 1,670 juveniles/plant. Growth of first order lateral roots and general root length were suppressed by Mi on the youngest (2-day) plants. However, a low Pi (167 juveniles/ plant) resulted in root proliferation on 4-day-old plants at 26 C. Mi was most damaging in a low clay-content soil mixture.  相似文献   

15.
16.
Advance inoculation of the tomato cv. Celebrity or the pyrethrum clone 223 with host-incompatible Meloidogyne incognita or M. javanica elicited induced resistance to host-compatible M. hapla in pot and field experiments. Induced resistance increased with the length of the time between inoculations and with the population density of the induction inoculum. Optimum interval before challenge inoculation, or population density of inoculum for inducing resistance, was 10 days, or 5,000 infective nematodes per 500-cm³ pot. The induced resistance suppressed population increase of M. hapla by 84% on potted tomato, 72% on potted pyrethrum, and 55% on field-grown pyrethrum seedlings, relative to unprotected treatments. Pyrethrum seedlings inoculated with M. javanica 10 days before infection with M. hapla were not stunted, whereas those that did not receive the advance inoculum were stunted 33% in pots and 36% in field plots. The results indicated that advance infection of plants with incompatible or mildly virulent nematode species induced resistance to normally compatible nematodes and that the induced resistance response may have potential as a biological control method for plant nematodes.  相似文献   

17.
A root-knot nematode parasitizing coffee in Paran  State, Brazil, is described as Meloidogyne paranaensis n. sp. The suggested common name is Paraná coffee root-knot nematode. The perineal pattern is similar to that of M. incognita; the labial disc and medial lips of the female are fused and asymmetric and rectangular; the lateral lips are small, triangular, and fused laterally with the head region. The female stylet is 15.0-17.5 μm long, with broad, distinctly set-off knobs; the distance from the dorsal esophageal gland orifice (DGO) to the stylet base is 4.2-5.5 μm. Males have a high, round head cap continuous with the body contour. The labial disc is fused with the medial lips to form an elongate lip structure. The head region is frequently marked by an incomplete annulation. The stylet is robust, 20-27 μm long, usually with round to transversely elongate knobs, sometimes with one or two projections protruding from the shaft. The stylet length of second-stage juveniles is 13-14 μm, the distance of the DGO to the stylet base is 4.0-4.5 μm, and the tail length is 48-51 μm. Biochemically, the esterase (F₁) and malate dehydrogenase (N₁) phenotypes are the most useful characters to differentiate M. paranaensis from other species. However, the esterase phenotype appears similar to that of M. konaensis. Reproduction is by mitotic parthenogenesis, 3n = 50-52. In differential host tests, tobacco, watermelon, and tomato were good hosts, whereas cotton, pepper, and peanut were nonhosts.  相似文献   

18.
Histological observations of okra Abelomoschus esculentus ''Clemson Spineless'' and ridgeseed spurge Euphorbia glyptosperma (a common weed) infected with Meloidodera charis Hopper, indicated that the juvenile nematode penetrated the roots intercellularly. Within 5 days after plant emergence the nematode positioned its body in the cortical tissue parallel to the vascular system. By 10 days after plant emergence the juvenile had extended its head into the vascular system and initiated giant cell formation, generally in protophloem tissue. Giant cells were one celled and usually multi-nucleate. Eggs were observed in the female body 30 days after plants emerged and juveniles were found within the female body by 40 days. Nematode development progressed equally in the root system of either host plant. Generally, throughout the nematode''s life cycle its entire body remained inside the cortical tissue of okra. In ridgeseed spurge, however, the posterior portion of the female erupted through the host epidermis as early as 15 days after plant emergence; only the head and neck remained embedded in the host. The nematode caused extensive tissue disruption in the cortical and vascular system of both plant species. Corn, Zea mays, was another host of the nematode.  相似文献   

19.
Meloidogyne carolinensis n. sp. is described from cultivated highbush blueberry (cultivars derived from hybrids of Vaccinium corymbosum L. and V. lamarckii Camp) in North Carolina. The perineal pattern of the female has a large cuticular ridge that surrounds the perivulval area, and the excretory pore is near the level of the base of the stylet. The stylet is 15.9 μm long and the knobs gradually merge with the shaft. The head shape and stylet morphology of the male are quite variable. The typical head and four variants, as well as the typical stylet and two variants, are described. The labial disc, medial lips, and lateral lips of second-stage juveniles are fused and in the same contour. The head region is not annulated. Mean juvenile length is 463.7 μm, stylet length is 11.9 μm, and tail length is 42.5 μm.  相似文献   

20.
The effects of environmental conditions on population trends of plant-parasitic nematodes were studied in experimental plots of five wheatgrasses in the western Utah desert. In a 3-year (1984-86) field study, soil water and temperature affected the population trends of the ectoparasites, Tylenchorhynchus acutoides and Xiphinema americanum, and the migratory endoparasite, Pratylenchus neglectus, on Fairway crested wheatgrass, Agropyron cristatum; ''Hycrest'' crested wheatgrass, A. cristatum X A. desertorura; ''Rosana'' western wheatgrass, Pascopyrum smithii; ''Oahe'' intermediate wheatgrass, Thinopyrum intermedium; and RS-1 hybrid (Elytrigia repens X Pseudoroegneria spicata). The largest soil populations of these nematode species were collected in 1984 under good plant-growth conditions. A reduction in nematode populations occurred in 1985 and 1986, possibly because of low soil-water conditions. There was a positive relationship between high soil water and maximum population densities of T. acutoides in the spring and fall of 1984, and between low soil water and minimum population densities of the nematode in 1985 and 1986. Pratylenchus neglectus populations were affected by soil water, although to a lesser degree than the ectoparasitic nematodes. Population densities of the three nematode species were significantly lower in the drier years of 1985 and 1986 than in 1984. Nematode populations were greater at the lower soil depths in the fall than in the spring or summer.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号