首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The development of cartilage canals is the first event of the ossification of the epiphyses in mammals. Canal formation differs from vascular invasion during primary ossification, since the former involves resorption of resting cartilage and is uncoupled from bone deposition. To learn more about the fate of resorbed chondrocytes during this process, we have carried out structural, cell proliferation, and in situ hybridization studies during the first stages of ossification of the rat tibial proximal epiphysis. Results concerning the formation of the cartilage canals implied the release of resting chondrocytes from the cartilage matrix to the canal cavity. Released chondrocytes had a well-preserved structure, expressed type-II collagen, and maintained the capacity to divide. All these data suggested that chondrocytes released into the canals remained viable for a specific time. Analysis of the proliferative activity at different regions of the cartilage canals showed that the percentage of proliferative chondrocytes at areas of active cartilage resorption was significantly higher than that in zones of low resorption. These results are consistent with the hypothesis that resting chondrocytes surrounding canals have a role in supplying cells for the development of the secondary ossification center. Since released chondrocytes are at an early stage of differentiation greatly preceding their entry into the apoptotic pathway and are exposed to a specific matrix, cellular, and humoral microenvironment, they might differentiate to other cell types and contribute to the ossification of the epiphysis.This research was supported by the Ministerio de Ciencia y Tecnología (Spain), grant no. MCT-00-BMC-0446. The Instituto Universitario de Oncología is financed by Obra Social Cajastur-Asturias, Spain. J. Alvarez receives financial support from the Ministerio de Ciencia y Tecnología (CAJAL-03-06) and L. Costales from the Ministerio de Ciencia y Tecnología (MCYT, FP2000-5486).  相似文献   

2.
CCN2/connective tissue growth factor (CCN2/CTGF) is a critical signaling modulator of mesenchymal tissue development. This study investigated the localization and expression of CCN2/CTGF as a factor supporting angiogenesis and chondrogenesis during development of secondary ossification centers in the mouse tibial epiphysis. Formation of the secondary ossification center was initiated by cartilage canal formation and blood vessel invasion at 7 days of age, and onset of ossification was observed at 14 days. In situ hybridization showed that CCN2/CTGF mRNA was distinctively expressed in the region of the cartilage canal and capsule-attached marginal tissues at 7 days of age, and distinct expression was also observed in proliferating chondrocytes around the marrow space at 14 days of age. Immunostaining showed that CCN2/CTGF was distributed broadly around the expressed cells located in the central region of the epiphysis, where the chondrocytes become hypertrophic and the cartilage canal enters into the hypertrophic mass. Furthermore, an overlapping distribution of metalloproteinase (MMP)9 and CCN2/CTGF was found in the secondary ossification center. These findings suggest that the CCN2/CTGF is involved in establishing epiphyseal vascularization and remodeling, which eventually determines the secondary ossification center in the developing epiphysial cartilage.  相似文献   

3.
Retinol-binding protein 4 (Rbp4) is the major carrier of retinol in the bloodstream, a retinoid whose metabolites influence osteogenesis, chondrogenesis and adipogenesis. Rbp4 is mainly produced in the liver where it mobilizes hepatic retinol stores to supply other tissues. However, Rbp4 is also expressed in several extrahepatic tissues, including limbs, where its role is largely unknown. This study aimed to identify the cellular localization of Rbp4 to gain insight into its involvement in limb development and bone growth. Using immunohistochemistry, we discovered that Rbp4 was present in a variety of locations in developing embryonic and postnatal mouse hindlimbs. Rbp4 was present in a restricted population of epiphyseal chondrocytes and perichondral cells correlating to the future region of secondary ossification. With the onset of secondary ossification, Rbp4 was detected in chondrocytes of the resting zone and in chondrocytes that bordered invading cartilage canals and the expanding front of ossification. Rbp4 was less abundant in proliferating chondrocytes involved in primary ossification. Our data implicate the involvement of chondrocytic Rbp4 in bone growth, particularly in the formation of the secondary ossification center of the limb.  相似文献   

4.
The role of cartilage canals is to transport nutrients and biological factors that cause the appearance of the secondary ossification centre (SOC). The SOC appears in the centre of the epiphysis of long bones. The canal development is a complex interaction between mechanical and biological factors that guide its expansion into the centre of the epiphysis. This article introduces the ‘Hypothesis on the growth of cartilage canals’. Here, we have considered that the development of these canals is an essential event for the appearance of SOC. Moreover, it is also considered to be important for the transport of molecular factors (RUNX2 and MMP9) at the ends of such canals. Once the canals are merged in the centre of the epiphysis, these factors are released causing hypertrophy of adjacent cells. This RUNX2 and MMP9 release occurs due to the action of mechanical loads that supports the epiphysis. In order to test this hypothesis, we use a hybrid approach using the finite element method to simulate the mechanical stresses present in the epiphysis and the cellular automata to simulate the expansion of the canals and the hypertrophy factors pathway. By using this hybrid approach, we have obtained as a result the spatial–temporal patterns for the growth of cartilage canals and hypertrophy factors within the epiphysis. The model is in qualitative agreement with experimental results previously reported by other authors. Thus, we conclude that this model may be used as a methodological basis to present a complete mathematical model of the processes involved in epiphyseal development.  相似文献   

5.
S Fukuda  F Cho  S Honjo 《Jikken dobutsu》1978,27(4):387-397
The development of so-called long bones in the extremity has been studied roentgenographically in forty-seven males and fifty-one females cynomolgus monkeys bred and reared at the National Institute of Health. The age of the females ranged from five months to eight years and nine months, and that of the males was from four months to seven years. In addition, the fetuses of six to twenty weeks of gestation age were examined for the time of appearance of ossification centers. As the biological parameters concerning body growth, the body weight and the bone length were measured and the secondary ossification centers were scrutinized and assessed the maturity process on the basis of the criteria that divided the state into eleven stages. Also the allometric analyses of body weight against bone length was conducted. Most of the secondary ossification centers except the proximal fibulal epiphysis appeared during the period from the prenatal stage (15-20 weeks of gestationage) to the postnatal one (several months of age). From four to five months of age, many ossification centers had developed to some extent. But, the appearance of proximal fibulal epiphysis was delayed and often lacking until 10 months of age in female and one year and three months of age in male. The earliest epiphyseal fusion was observed at the distal humeral epiphysis in both sexes. The latest epiphyseal fusion was observed at the distal ulnal epiphysis in both sexes and at the distal ulnal and radial epiphyses in female. From this study, the time of fusion was at five and three guarters years of age in females and at six and a half years of age in males. As a result, it is suggested that the estimation of animal's age might be put to practical use by introducing the assessing method that the score was given from the observation of the secondary ossification center.  相似文献   

6.
46 sternums originating from 1-day- to 17-year-old children were injected with India ink and transparified. The intraosteal and medullary vasculature is described at different stages, as well as cartilage canals, vessels of the isolated ossification center, vessels of the ossification center connected with peripheral vascular structures or neighboring cartilage canals, and finally the transition to the adult pattern. With age, the centrifugal vascular distribution develops to a centripetal pattern.  相似文献   

7.
The epidermal growth factor receptor (EGFR) is an essential player in the development of multiple organs during embryonic and postnatal stages. To understand its role in epiphyseal cartilage development, we generated transgenic mice with conditionally inactivated EGFR in chondrocytes. Postnatally, these mice exhibited a normal initiation of cartilage canals at the perichondrium, but the excavation of these canals into the cartilage was strongly suppressed, resulting in a delay in the formation of the secondary ossification center (SOC). This delay was accompanied by normal chondrocyte hypertrophy but decreased mineralization and apoptosis of hypertrophic chondrocytes and reduced osteoclast number at the border of marrow space. Immunohistochemical analyses demonstrated that inactivation of chondrocyte-specific EGFR signaling reduced the amounts of matrix metalloproteinases (MMP9, -13, and -14) and RANKL (receptor activator of NF-κB ligand) in the hypertrophic chondrocytes close to the marrow space and decreased the cartilage matrix degradation in the SOC. Analyses of EGFR downstream signaling pathways in primary epiphyseal chondrocytes revealed that up-regulation of MMP9 and RANKL by EGFR signaling was partially mediated by the canonical Wnt/β-catenin pathway, whereas EGFR-enhanced MMP13 expression was not. Further biochemical studies suggested that EGFR signaling stimulates the phosphorylation of LRP6, increases active β-catenin level, and induces its nuclear translocation. In line with these in vitro studies, deficiency in chondrocyte-specific EGFR activity reduced β-catenin amount in hypertrophic chondrocytes in vivo. In conclusion, our work demonstrates that chondrocyte-specific EGFR signaling is an important regulator of cartilage matrix degradation during SOC formation and epiphyseal cartilage development and that its actions are partially mediated by activating the β-catenin pathway.  相似文献   

8.
During the initiation of endochondral ossification three events occur that are inextricably linked in time and space: chondrocytes undergo terminal differentiation and cell death, the skeletal vascular endothelium invades the hypertrophic cartilage matrix, and osteoblasts differentiate and begin to deposit a bony matrix. These developmental programs implicate three tissues, the cartilage, the perichondrium, and the vascular endothelium. Due to their intimate associations, the interactions among these three tissues are exceedingly difficult to distinguish and elucidate. We developed an ex vivo system to unlink the processes initiating endochondral ossification and establish more precisely the cellular and molecular contributions of the three tissues involved. In this ex vivo system, the renal capsule of adult mice was used as a host environment to grow skeletal elements. We first used a genetic strategy to follow the fate of cells derived from the perichondrium and from the vasculature. We found that the perichondrium, but not the host vasculature, is the source of both trabecular and cortical osteoblasts. Endothelial cells residing within the perichondrium are the first cells to participate in the invasion of the hypertrophic cartilage matrix, followed by endothelial cells derived from the host environment. We then combined these lineage analyses with a series of tissue manipulations to address how the absence of the perichondrium or the vascular endothelium affected skeletal development. We show that although the perichondrium influences the rate of chondrocytes maturation and hypertrophy, it is not essential for chondrocytes to undergo late hypertrophy. The perichondrium is crucial for the proper invasion of blood vessels into the hypertrophic cartilage and both the perichondrium and the vasculature are essential for endochondral ossification. Collectively, these studies clarify further the contributions of the cartilage, perichondrium, and vascular endothelium to long bone development.  相似文献   

9.
This paper introduces a 'hypothesis about the growth pattern of the secondary ossification centre (SOC)', whereby two phases are assumed. First, the formation of cartilage canals as an event essential for the development of the SOC. Second, once the canals are merged in the central zone of the epiphysis, molecular factors are released (primarily Runx2 and MMP9) spreading and causing hypertrophy of adjacent cells. In addition, there are two important molecular factors in the epiphysis: PTHrP and Ihh. The first one inhibits chondrocyte hypertrophy and the second helps the cell proliferation. Between these factors, there is negative feedback, which generates a highly localised and stable pattern over time. From a mathematical point of view, this pattern is similar to the patterns of Turing. The spread of Runx2 hypertrophies the cells from the centre to the periphery of the epiphysis until found with high levels of PTHrP to inhibit hypertrophy. This mechanism produces the epiphyseal bone-plate. Moreover, the hypertrophy is inhibited when the cells sense low shear stress and high pressure levels that maintain the articular cartilage structure. To test this hypothesis, we solve a system of coupled partial differential equations using the finite element method and we have obtained spatio-temporal patterns of the growth process of the SOC. The model is in qualitative agreement with experimental results previously reported by other authors. Thus, we conclude that this model can be used as a methodological basis to present a complete mathematical model of the whole epiphyseal development.  相似文献   

10.
Tartrate resistant acid phosphatase (TRAP) was shown to be critical for skeleton development, and TRAP deficiency leads to a reduced resorptive activity during endochondral ossification resulting in an osteopetrotic phenotype and shortened long bones in adult mice. A proper longitudinal growth depends on a timely, well-coordinated vascularization and formation of the secondary ossification center (SOC) of the long bones epiphysis. Our results demonstrate that TRAP is not essential for the formation of the epiphyseal vascular network. Therefore, in wild type (Wt) controls as well as TRAP deficient (TRAP(-/-)) mutants vascularised cartilage canals are present from postnatal day (P) five. However, in the epiphysis of the TRAP(-/-) mice cartilage mineralization, formation of the marrow cavity and the SOC occur prematurely compared with the controls. In the mutant mice the entire growth plate is widened due to an expansion of the hypertrophic zone. This is not seen in younger animals but first detected at week (W) three and during further development. Moreover, an enhanced number of thickened trabeculae, indicative of the osteopetrotic phenotype, are observed in the metaphysis beginning with W three. Epiphyseal excavation was proposed as an important function of TRAP, and we examined whether TRAP deficiency affects this process. We therefore evaluated the marrow cavity volume (MCV) and the epiphyseal volume (EV) and computed the MCV to EV ratio (MCV/EV). We investigated developmental stages until W 12. Our results indicate that both epiphyseal excavation and establishment of the SOC are hardly impaired in the knockouts. Furthermore, no differences in the morphology of the epiphyseal bone trabeculae and remodeling of the articular cartilage layers are noted between Wt and TRAP(-/-) mice. We conclude that in long bones, TRAP is critical for the development of the growth plate and the metaphysis but apparently not for the epiphyseal vascularization, excavation, and establishment of the SOC.  相似文献   

11.
Endochondral ossification in growth plates proceeds through several consecutive steps of late cartilage differentiation leading to chondrocyte hypertrophy, vascular invasion, and, eventually, to replacement of the tissue by bone. It is well established that the subchondral vascular system is pivotal in the regulation of this process. Cells of subchondral blood vessels act as a source of vascular invasion and, in addition, release factors influencing growth and differentiation of chondrocytes in the avascular growth plate. To elucidate the paracrine contribution of endothelial cells we studied the hypertrophic development of resting chondrocytes from the caudal third of chick embryo sterna in co-culture with endothelial cells. The design of the experiments prevented cell-to-cell contact but allowed paracrine communication between endothelial cells and chondrocytes. Under these conditions, chondrocytes rapidly became hypertrophiedin vitroand expressed the stage-specific markers collagen X and alkaline phosphatase. This development also required signaling by thyroid hormone in synergy. Conditioned media could replace the endothelial cells, indicating that diffusible factors mediated this process. By contrast, smooth muscle cells, fibroblasts, or hypertrophic chondrocytes did not secrete this activity, suggesting that the factors were specific for endothelial cells. We conclude that endochondral ossification is under the control of a mutual communication between chondrocytes and endothelial cells. A finely tuned balance between chondrocyte-derived signals repressing cartilage maturation and endothelial signals promoting late differentiation of chondrocytes is essential for normal endochondral ossification during development, growth, and repair of bone. A dysregulation of this balance in permanent joint cartilage also may be responsible for the initiation of pathological cartilage degeneration in joint diseases.  相似文献   

12.
13.
Type VI collagen appears central to the maintenance of tissue integrity. In adult articular cartilage, type VI collagen is preferentially localised in the chondron where it may be involved in cell attachment. In actively remodelling developing cartilage, the distribution is less certain. We have used confocal immunohistochemistry and in situ hybridisation to investigate type VI collagen distribution in third trimester bovine proximal femoral epiphyses. In general, type VI collagen immunofluorescence was concentrated in the chondrocyte pericellular matrix, with staining intensity strongest in regions which persist to maturity and weakest in regions that remodel during development. Type VI collagen was also present in cartilage canals. In the growth plate and around the secondary centre of ossification, the intensity of type VI collagen stain rapidly decreased with chondrocyte maturation and was absent at hypertrophy, except where canal branches penetrated the growth plate and stain was retained around the adjacent chondrocytes. In situ hybridisation confirmed the presence of type VI collagen mRNA in cartilage canal mesenchymal cells but the signal was low in chondrocytes, suggesting minimal levels of synthesis and turnover. The results are consistent with a role for type VI collagen in stabilising the extracellular matrix during development.  相似文献   

14.
This paper introduces a ‘hypothesis about the growth pattern of the secondary ossification centre (SOC)’, whereby two phases are assumed. First, the formation of cartilage canals as an event essential for the development of the SOC. Second, once the canals are merged in the central zone of the epiphysis, molecular factors are released (primarily Runx2 and MMP9) spreading and causing hypertrophy of adjacent cells. In addition, there are two important molecular factors in the epiphysis: PTHrP and Ihh. The first one inhibits chondrocyte hypertrophy and the second helps the cell proliferation. Between these factors, there is negative feedback, which generates a highly localised and stable pattern over time. From a mathematical point of view, this pattern is similar to the patterns of Turing. The spread of Runx2 hypertrophies the cells from the centre to the periphery of the epiphysis until found with high levels of PTHrP to inhibit hypertrophy. This mechanism produces the epiphyseal bone-plate. Moreover, the hypertrophy is inhibited when the cells sense low shear stress and high pressure levels that maintain the articular cartilage structure. To test this hypothesis, we solve a system of coupled partial differential equations using the finite element method and we have obtained spatio-temporal patterns of the growth process of the SOC. The model is in qualitative agreement with experimental results previously reported by other authors. Thus, we conclude that this model can be used as a methodological basis to present a complete mathematical model of the whole epiphyseal development.  相似文献   

15.
Although cartilage is considered to be devoid of innervation, axons occur in the perichondrium and during development in cartilage canals, thereby having a relatively close spatial relationship to chondroblasts and chondrocytes. The present study locates the source of the sensory innervation of the femoral cartilaginous epiphyses of young rats and investigates whether the neuropeptide calcitonin gene-related peptide (CGRP) can influence chondrocytes. Retrograde tracing from the distal femoral epiphysis of young rats with Fast Blue (FB) showed labelled neuronal profiles in the L2-L5 dorsal root ganglia. Sample countings indicated that 50% of the FB-labelled neuronal profiles were located at the L3 level and 25% at the L4 level. The labelled neurones had diameters of 15-40 microm, with a peak at 25-30 microm. Immunohistochemistry showed that about 50% of the FB-labelled profiles contained CGRP. Together with the finding that CGRP influences bone cells to generate the second messenger cAMP, this result suggested the hypothesis that chondrocytes might be similarly influenced by CGRP. However, stimulation of cartilage slices with CGRP in vitro followed by an assay of the cAMP content did not provide support for this hypothesis. We conclude that primary sensory neurones containing CGRP project to the perichondrium and to cartilage canals of growing cartilage, and that exogenous CGRP does not elevate the cAMP content of cartilage slices in vitro.  相似文献   

16.
This study reports a method whereby glycogen is identified in the chondrocytes of the secondary center of ossification prior to mineralization. The use of new fuchsin rather than basic fuchsin on one micron Spurr sections of femoral head cartilage fixed with potassium ferrocyanide-reduced osmium produced excellent identification of glycogen and when followed by p phenylenediamine, intensified cellular detail.  相似文献   

17.
18.
The microstructure and tissue composition of the dentary bone in Atlantic salmon salmo salar parr were examined using a variety of histological and whole‐mount techniques. Proximally, the dentary is composed of typical cellular lamellar bone with Sharpey's fibres extending dorsally, proximally and ventrally. Meckel's cartilage is located medially through the entire length of the dentary, and degrades distally resulting in a short transitional zone between hyaline cartilage and connective tissue. At the distal tip of the dentary, isogenic clusters of chondrocytes of periosteal origin were observed secreting small amounts of pericellular cartilage matrix within the bone matrix. These characteristics are highly indicative of secondary chondrogenesis, and suggest that the apical part of the dentary bone in Atlantic salmon does not grow via 'pure' intramembranous ossification, but rather via a modified mode of periosteal ossification involving secondary cartilage and chondroid bone. Furthermore, the unusual mode of gender‐related dentary growth (kype formation) in adult male Atlantic salmon could be the continuation of a general mode of salmonid apical dentary growth.  相似文献   

19.
Summary This study reports a method whereby glycogen is identified in the chondrocytes of the secondary center of ossification prior to mineralization. The use of new fuchsin rather than basic fuchsin on one micron Spurr sections of femoral head cartilage fixed with potassium ferrocyanide-reduced osmium produced excellent identification of glycogen and when followed by p phenylenediamine, intensified cellular detail.  相似文献   

20.
Articular cartilage is a permanent tissue whose cells do not normally take part in the endochondral ossification process. To determine whether articular chondrocytes possess the potential to express traits associated with this process such as cell hypertrophy and type X collagen, chondrocytes were isolated from adult chicken tibial articular cartilage and maintained in long-term suspension cultures. As a positive control in these experiments, we used parallel cultures of chondrocytes from the caudal portion of chick embryo sternum. Both articular and sternal chondrocytes readily proliferated and progressively increased in size with time in culture. Many had undergone hypertrophy by 4-5 weeks. Analysis of medium-released collagenous proteins revealed that both articular and sternal chondrocytes initiated type X collagen synthesis between 3 and 4 weeks of culture; synthesis of this macromolecule increased with further growth. Immunofluorescence analysis of 5-week-old cultures showed that about 15% of articular chondrocytes and 30% of sternal chondrocytes produced type X collagen; strikingly, there appeared to be no obvious relationship between type X collagen production and cell size. The results of this study show that articular chondrocytes from adult chicken tibia possess the ability to express traits associated with endochondral ossification when exposed to a permissive environment. They suggest also that the process of cell hypertrophy and initiation of type X collagen synthesis are independently regulated both in articular and sternal chondrocytes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号