首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Across mammalian species, human galectin-10 and ovine galectin-14 are unique in their expression in eosinophils and their release into lung and gastrointestinal tissues following allergen or parasite challenge. Recombinant galectin-14 is active in carbohydrate binding assays and has been used in this study to unravel the function of this major eosinophil constituent. In vitro cultures revealed that galectin-14 is spontaneously released by eosinophils isolated from allergen-stimulated mammary gland lavage, but not by resting peripheral blood eosinophils. Galectin-14 secretion from peripheral blood eosinophils can be induced by the same stimuli that induce eosinophil degranulation. Flow cytometric analysis showed that recombinant galectin-14 can bind in vitro to eosinophils, neutrophils and activated lymphocytes. Glycan array screening indicated that galectin-14 recognizes terminal N-acetyllactosamine residues which can be modified with α1-2-fucosylation and, uniquely for a galectin, prefers α2- over α2-sialylation. Galectin-14 showed the greatest affinity for lacto-N-neotetraose, an immunomodulatory oligosaccharide expressed by helminths. Galectin-14 binds specifically to laminin in vitro, and to mucus and mucus producing cells on lung and intestinal tissue sections. In vivo, galectin-14 is abundantly present in mucus scrapings collected from either lungs or gastrointestinal tract following allergen or parasite challenge, respectively. These results suggest that in vivo secretion of eosinophil galectins may be specifically induced at epithelial surfaces after recruitment of eosinophils by allergic stimuli, and that eosinophil galectins may be involved in promoting adhesion and changing mucus properties during parasite infection and allergies.  相似文献   

2.
The ancestral galectin from the sponge Geodia cydonium (GCG) is classified on a structural basis to the prototype subfamily, whereas its carbohydrate-binding specificity is related to that of the mammalian chimera-type galectin-3. This dual coordination reveals GCG as a potential precursor of the later evolved galectin subfamilies, which is reflected in the primary structure of the protein. This study provides evidence that GCG is the LECT1 gene product, while neither a previously described LECT2 gene nor a functional LECT2 gene product was found in the specimen under investigation. The electrophoretically separated protein isomers with apparent molecular masses of 13, 15, and 16 kDa correspond to variants of the LECT1 protein-exhibiting peptide sequence polymorphisms that concern critical positions of the carbohydrate recognition domain (13 kDa: Leu51, Asn55, His130, Gly137; 15 kDa: Ser51, Asn55, Asn130, Gly137; 16 kDa: Ser51, Tyr55, Asn130, Glu137). Four residues, highly conserved in the galectin family, are substituted. None of the residues claimed to be involved in interactions with GalNAcalpha1-3 moieties at an extended binding subsite of galectin-3 was identified in the corresponding positions of GCG. Apparently, the substitutions do not confer distinct binding characteristics to the GCG variants as evidenced by binding studies with a recombinantly expressed 15-kDa isoform. The natural isoforms as well as the recombinant 15-kDa isoform oligomerize by the formation of non-covalent heteromeric or homomeric complexes. A phosphorylation of the galectin was confirmed neither by mass spectrometry nor by alkaline phosphatase treatment combined with isoelectric focusing.  相似文献   

3.
Ficolins are oligomeric innate immune recognition proteins consisting of a collagen-like region and a fibrinogen-like recognition domain that bind to pathogen- and apoptotic cell-associated molecular patterns. To investigate their carbohydrate binding specificities, serum-derived L-ficolin and recombinant H- and M-ficolins were fluorescently labeled, and their carbohydrate binding ability was analyzed by glycan array screening. L-ficolin preferentially recognized disulfated N-acetyllactosamine and tri- and tetrasaccharides containing terminal galactose or N-acetylglucosamine. Binding was sensitive to the position and orientation of the bond between N-acetyllactosamine and the adjacent carbohydrate. No significant binding of H-ficolin to any of the 377 glycans probed could be detected, providing further evidence for its poor lectin activity. M-ficolin bound preferentially to 9-O-acetylated 2-6-linked sialic acid derivatives and to various glycans containing sialic acid engaged in a 2-3 linkage. To further investigate the structural basis of sialic acid recognition by M-ficolin, point mutants were produced in which three residues of the fibrinogen domain were replaced by their counterparts in L-ficolin. Mutations G221F and A256V inhibited binding to the 9-O-acetylated sialic acid derivatives, whereas Y271F abolished interaction with all sialic acid-containing glycans. The crystal structure of the Y271F mutant fibrinogen domain was solved, showing that the mutation does not alter the structure of the ligand binding pocket. These analyses reveal novel ficolin ligands such as sulfated N-acetyllactosamine (L-ficolin) and gangliosides (M-ficolin) and provide precise insights into the sialic acid binding specificity of M-ficolin, emphasizing the essential role of Tyr271 in this respect.  相似文献   

4.
Galectin-9, a tandem-repeat-type β-galactoside-specific animal lectin with two carbohydrate recognition domains (CRDs) at the N- and C-terminal ends, is involved in chemoattraction, apoptosis, and the regulation of cell differentiation and has anti-allergic effects. Its ability to recognize carbohydrates is essential for its biological functions. Human galectin-9 (hG9) has high affinity for branched N-glycan-type oligosaccharides (dissociation constants of 0.16–0.70 μm) and linear β1–3-linked poly-N-acetyllactosamines (0.09–8.3 μm) and significant affinity for the α2–3-sialylated oligosaccharides (17–34 μm). Further, its N-terminal CRD (hG9N) and C-terminal CRD (hG9C) differ in specificity. To elucidate this unique feature of hG9, x-ray structures of hG9C in the free form and in complexes with N-acetyllactosamine, the biantennary pyridylaminated oligosaccharide, and α2–3-sialyllactose were determined. They are the first x-ray structural analysis of C-terminal CRD of the tandem-repeat-type galectin. The results clearly revealed the mechanism by which branched and α2–3-sialylated oligosaccharides are recognized and explained the difference in specificity between hG9N and hG9C. Based on structural comparisons with other galectins, we propose that the wide entrance for ligand binding and the shallow binding site of hG9C are favorable for branched oligosaccharides and that Arg221 is responsible for recognizing sialylated oligosaccharides.  相似文献   

5.
The carbohydrate binding specificities of the galectin family of animal lectins has been the source of intense recent investigations. Isothermal titration microcalorimetry (ITC) provides direct determination of the thermodynamics of binding of carbohydrates to lectins, and has provided important insights into the fine carbohydrate binding specificities of a wide number of plant and animal lectins. Recent ITC studies have been performed with galectin-1, galectin-3 and galectin-7 and their interactions with sialylated and non-sialylated carbohydrates. The results show important differences in the specificities of these three galectins toward poly-N-acetyllactosamine epitopes found on the surface of cells. Published in 2004.  相似文献   

6.
A model of the carbohydrate recognition domain CRD, residues 111-245, of hamster galectin-3 has been made using homology modeling and dynamics minimization methods. The model is based on the known x-ray structures of bovine galectin-1 and human galectin-2. The oligosaccharides NeuNAc-alpha2,3-Gal-beta1,4-Glc and GalNAc-alpha1, 3- [Fuc-alpha1,2]-Gal-beta1,4-Glc, known to be specific high-affinity ligands for galectin-3, as well as lactose recognized by all galectins were docked in the galectin-3 CRD model structure and a minimized binding conformation found in each case. These studies indicate a putative extended carbohydrate-binding subsite in the hamster galectin- 3 involving Arg139, Glu230, and Ser232 for NeuNAc-alpha2,3-; Arg139 and Glu160 for fucose-alpha1,2-; and Arg139 and Ile141 for GalNAc-alpha1,3- substituents on the primary galactose. Each of these positions is variable within the whole galectin family. Two of these residues, Arg139 and Ser232, were selected for mutagenesis to probe their importance in this newly identified putative subsite. Residue 139 adopts main-chain dihedral angles characteristic of an isolated bridge structural feature, while residue 232 is the C-terminal residue of beta- strand-11, and is followed immediately by an inverse gamma-turn. A systematic series of mutant proteins have been prepared to represent the residue variation present in the aligned sequences of galectins-1, - 2, and -3. Minimized docked models were generated for each mutant in complex with NeuNAc-alpha2,3-Gal-beta1,4-Glc, GalNAc-alpha1, 3-[Fuc- alpha1,2]-Gal-beta1,4- Glc, and Gal-beta1,4-Glc. Correlation of the computed protein-carbohydrate interaction energies for each lectin- oligosaccharide pair with the experimentally determined binding affinities for fetuin and asialofetuin or the relative potencies of lactose and sialyllactose in inhibiting binding to asiolofetuin is consistent with the postulated key importance of Arg139 in recognition of the extended sialylated ligand.   相似文献   

7.
Galectin-8 has much higher affinity for 3'-O-sulfated or 3'-O-sialylated glycoconjugates and a Lewis X-containing glycan than for oligosaccharides terminating in Galβ1→3/4GlcNAc, and this specificity is mainly attributed to the N-terminal carbohydrate recognition domain (N-domain, CRD) (Ideo, H., Seko, A., Ishizuka, I., and Yamashita, K. (2003) Glycobiology 13, 713-723). In this study, we elucidated the crystal structures of the human galectin-8-N-domain (-8N) in the absence or presence of 4 ligands. The apo molecule forms a dimer, which is different from the canonical 2-fold symmetric dimer observed for galectin-1 and -2. In a galectin-8N-lactose complex, the lactose-recognizing amino acids are highly conserved among the galectins. However, Arg(45), Gln(47), Arg(59), and the long loop region between the S3 and S4 β-strands are unique to galectin-8N. These amino acids directly or indirectly interact with the sulfate or sialic acid moieties of 3'-sialyl- and 3'-sulfolactose complexed with galectin-8N. Furthermore, in the LNF-III-galectin-8N complex, van der Waals interactions occur between the α1-3-branched fucose and galactose and between galactose and Tyr(141), and these interactions increase the affinity toward galectin-8N. Based on the findings of these x-ray crystallographic analyses, a mutagenesis study using surface plasmon resonance showed that Arg(45), Gln(47), and Arg(59) of galectin-8N are indispensable and coordinately contribute to the strong binding of galectins-8N to sialylated and sulfated oligosaccharides. Arg(59) is the most critical amino acid for binding in the S3-S4 loop region.  相似文献   

8.
We previously showed that galectin-9 suppresses degranulation of mast cells through protein-glycan interaction with IgE. To elucidate the mechanism of the interaction in detail, we focused on identification and structural analysis of IgE glycans responsible for the galectin-9-induced suppression using mouse monoclonal IgE (TIB-141). TIB-141 in combination with the antigen induced degranulation of RBL-2H3 cells, which was almost completely inhibited by human and mouse galectin-9. Sequential digestion of TIB-141 with lysyl endopeptidase and trypsin resulted in the identification of a glycopeptide (H-Lys13-Try3; 48 amino acid residues) with a single N-linked oligosaccharide near the N terminus capable of neutralizing the effect of galectin-9 and another glycopeptide with two N-linked oligosaccharides (H-Lys13-Try1; 16 amino acid residues) having lower activity. Enzymatic elimination of the oligosaccharide chain from H-Lys13-Try3 and H-Lys13-Try1 completely abolished the activity. Removal of the C-terminal 38 amino acid residues of H-Lys13-Try3 with glutamyl endopeptidase, however, also resulted in loss of the activity. We determined the structures of N-linked oligosaccharides of H-Lys13-Try1. The galectin-9-binding fraction of pyridylaminated oligosaccharides contained asialo- and monosialylated bi/tri-antennary complex type oligosaccharides with a core fucose residue. The structures of the oligosaccharides were consistent with the sugar-binding specificity of galectin-9, whereas the nonbinding fraction contained monosialylated and disialylated biantennary complex type oligosaccharides with a core fucose residue. Although the oligosaccharides linked to H-Lys13-Try3 could not be fully characterized, these results indicate the possibility that cooperative binding of oligosaccharide and neighboring polypeptide structures of TIB-141 to galectin-9 affects the overall affinity and specificity of the IgE-lectin interaction.  相似文献   

9.
In the present study we show in the Xenopus laevis expression system that the proton-coupled amino acid transporter 1 (PAT1, SLC36A1) is glycosylated at asparagine residues N174, N183 and N470. To determine the functional role of N-glycosylation, glycosylation-deficient mutants were analyzed by two-electrode voltage-clamp measurements after expression in X. laevis oocytes. Single replacements of asparagine residues had no effect on transport activity. However, multiple substitutions resulted in a decreased transport rate, leaving Kt unchanged. Immunofluorescence localisation revealed a diminished plasma membrane expression of glycosylation-defective mutants. This indicates that N-glycans are not required for transport function, but are important for membrane targeting.  相似文献   

10.
Galectins are a growing family of animal lectins with common consensus sequences that bind beta-Gal and LacNAc residues. There are at present 14 members of the galectin family; however, certain galectins possess different structures as well as biological properties. Galectin-1 is a dimer of two homologous carbohydrate recognition domains (CRDs) and possesses apoptotic and proinvasive activities. Galectin-3 consists of a C-terminal CRD and an N-terminal nonlectin domain implicated in the oligomerization of the protein and is often associated with antiapoptotic activity. Because many cellular oligosaccharide receptors are multivalent, it is important to characterize the interactions of multivalent carbohydrates with galectins-1 and -3. In the present study, binding of bovine heart galectin-1 and recombinant murine galectin-3 to a series of synthetic analogs containing two LacNAc residues separated by a varying number of methylene groups, as well as biantennary analogs possessing two LacNAc residues, were examined using isothermal titration microcalorimetry (ITC) and hemagglutination inhibition measurements. The thermodynamics of binding of the multivalent carbohydrates to the C-terminal CRD domain of galectin-3 was also investigated. ITC results showed that each bivalent analog bound by both LacNAc residues to the two galectins. However, galectin-1 shows a lack of enhanced affinity for the bivalent straight chain and branched chain analogs, whereas galectin-3 shows enhanced affinity for only lacto-N-hexaose, a naturally occurring branched chain carbohydrate. The CRD domain of galectin-3 was shown to possess similar thermodynamic binding properties as the intact molecule. The results of this study have important implications for the design of carbohydrate inhibitors of the two galectins.  相似文献   

11.
12.
Recent advances in genome sequencing efforts have revealed an abundance of novel putative lectins. Among these, many galectin-related proteins, characterized by many conserved residues but intriguingly lacking critical amino acids, have been found in all corners of the eukaryotic superkingdom. Here we present a structural and biochemical analysis of one representative, the galectin-related lectin CGL3 found in the inky cap mushroom Coprinopsis cinerea. This protein contains all but one conserved residues known to be involved in β-galactoside binding in galectins. A Trp residue strictly conserved among galectins is changed to an Arg in CGL3 (R81). Accordingly, the galectin-related protein is not able to bind lactose. Screening of a glycan array revealed that CGL3 displays preference for oligomers of β1-4-linked N-acetyl-glucosamines (chitooligosaccharides) and GalNAcβ1-4GlcNAc (LacdiNAc). Carbohydrate-binding affinity of this novel lectin was quantified using isothermal titration calorimetry, and its mode of chitooligosaccharide coordination not involving any aromatic amino acid residues was studied by X-ray crystallography. Structural information was used to alter the carbohydrate-binding specificity and substrate affinity of CGL3. The importance of residue R81 in determining the carbohydrate-binding specificity was demonstrated by replacing this Arg with a Trp residue (R81W). This single-amino-acid change led to a lectin that failed to bind chitooligosaccharides but gained lactose binding. Our results demonstrate that, similar to the legume lectin fold, the galectin fold represents a conserved structural framework upon which dramatically altered specificities can be grafted by few alterations in the binding site and that, in consequence, many metazoan galectin-related proteins may represent lectins with novel carbohydrate-binding specificities.  相似文献   

13.
Galectins are a family of beta-galactose binding lectins associated with functions such as immunological and malignant events. To study the binding affinity of galectins for natural and artificial saccharides and glycoconjugates we have developed an assay using fluorescence polarization. A collection of fluorescein-conjugated saccharides was synthesized and used as probes with galectins-1 and -3 and the two carbohydrate recognition domains of galectin-4. Direct binding of a fixed probe amount with different amounts of each galectin defined specificity and selectivity and permitted selection of the optimal probe for inhibition studies. Then fixed amounts of galectin and selected probe were used to screen the inhibitory potency of a library of nonfluorescent compounds. As the assay is in solution and does not require separation of free and bound probe, it is simple and rapid and can easily be applied to different unlabeled galectins. As all interaction components are known, K(d) values for galectin-inhibitor interaction can be directly calculated without approximation other than the assumption of a simple one-site competition.  相似文献   

14.
Galectins form a large family of β-galactoside-binding proteins in metazoa and fungi. This report presents a comparative study of the functions of potential galectin genes found in the genome database of Caenorhabditis elegans. We isolated full-length cDNAs of eight potential galectin genes (lec-25 and 811) from a λZAP cDNA library. Among them, lec-2–5 were found to encode 31–35-kDa polypeptides containing two carbohydrate-recognition domains similar to the previously characterized lec-1, whereas lec-8–11 were found to encode 16–27-kDa polypeptides containing a single carbohydrate-recognition domain and a C-terminal tail of unknown function. Recombinant proteins corresponding to lec-1–4, -6, and 810 were expressed in Escherichia coli, and their sugar-binding properties were assessed. Analysis using affinity adsorbents with various β-galactosides, i.e., N-acetyllactosamine (Galβ1-4GlcNAc), lacto-N-neotetraose (Galβ1-4GlcNAcβ1-3Galβ1-4Glc), and asialofetuin, demonstrated that LEC-1–4, -6, and -10 have a significant affinity for β-galactosides, while the others have a relatively lower affinity. These results indicate that the integrity of key amino acid residues responsible for recognition of lactose (Galβ1-4Glc) or N-acetyllactosamine in vertebrate galectins is also required in C. elegans galectins. However, analysis of their fine oligosaccharide-binding properties by frontal affinity chromatography suggests their divergence towards more specialized functions.  相似文献   

15.
Cholera toxin (CT) and Escherichia coli heat-labile enterotoxin (LT) are structurally and functionally related and share the same primary receptor, the GM1 ganglioside. Despite their extensive similarities, these two toxins exhibit distinct ligand specificities, with LT being more promiscuous than CT. Here, we have attempted to rationalize the broader binding specificity of LT and the subtle differences between the binding characteristics of LTs from human and porcine origins (mediated by their B subunit pentamers, hLTB and pLTB, respectively). The analysis is based on two crystal structures of pLTB in complexes with the pentasaccharide of its primary ligand, GM1, and with neolactotetraose, the carbohydrate determinant of a typical secondary ligand of LTs, respectively. Important molecular determinants underlying the different binding specificities of LTB and CTB are found to be contributed by Ser95, Tyr18 and Thr4 (or Ser4 of hLTB), which together prestabilize the binding site by positioning Lys91, Glu51 and the adjacent loop region (50-61) containing Ile58 for ligand binding. Glu7 and Ala1 may also play an important role. Many of these residues are closely connected with a recently identified second binding site, and there appears to be cross-talk between the two sites. Binding to N-acetyllactosamine-terminated receptors is further augmented by Arg13 (present in pLT and some hLT variants), as previously predicted.  相似文献   

16.
  • 1.1. A variety of colloidal gold-labelled lectins with different sugar specificities to determine whether different nerve and glial cells of the snail Helix pomatia cultured in vitro, can be distinguished by the carbohydrates that they express was screened. The analysis of lectin binding has shown substantial differences in the carbohydrate pattern between nerve and glial cells and between the soma of monoaminergic and peptidergic neurons.
  • 2.2. The surface of monoaminergic and peptidergic neurons contains N-acetylglucosamine and N-acetyllactosamine determinants, and does not exhibit neuraminic acid and complex branched N-glycosyl chains. Moreover, N-acetylgalactosamine can be detected on peptidergic neuron membranes only.
  • 3.3. N-Acetylglucosamine residues are not present on the surface of the glial cells, and the density of the N-acetyllactosamine and/or terminal β-galactose residues is much higher here than on the surface of the nerve cells.
  • 4.4. These results suggest that nerve cells in the snail brain can be distinguished from glial cells by the presence of a cell-surface glycoconjugate containing terminal N-acetyl-d-glucosamine residues, whereas peptidergic neurons can be distinguished from monoaminergic neurons by the presence of a surface glycoconjugate containing terminal α-linked N-acetyl-d-galactosamine residues.
  相似文献   

17.
A beta-galactoside-specific soluble 14-kD lectin from sheep brain was isolated, sequenced, and compared with similar galectins from other species. Percent identities of amino acid sequence and the carbohydrate recognition domain (CRD) revealed that the isolated galectin shares all the absolutely preserved and critical residues of the mammalian galectin-1 subfamily. The isolated sheep brain galectin (SBG) showed more than 90% amino acid sequence (92%) and carbohydrate recognition domain identity (96%) with human brain galectin-1. Conformational changes were found induced by interaction of the protein with its specific disaccharide and oxidizing agent (hydrogen peroxide). Upon oxidation a drastic change in the environment of aromatic residues and conformation of the galectin was observed with the loss of hemagglutination activity, while no significant change was observed upon addition of D-lactose (Gal(beta1-4)Glc) in the far-UV and near-UV spectra, suggesting no significant modification in the secondary as well as tertiary structures of sheep brain galectin. But the functional integrity of the CRD is found to be affected in the presence of oxidizing agent, indicating intramolecular disulfide bonds and requirement of complete polypeptide chain for functional integrity of the carbohydrate recognition domain.  相似文献   

18.
An increasing number of galectins have been found in various animal species, the most abundant of which is galectin-1. The purpose of the present study was to purify and characterize galectin-1 from buffalo brain. We purified the galectin using a combination of ammonium sulphate fractionation and affinity chromatography and the homogeneity was determined by both native polyacrylamide gel electrophoresis (PAGE) and denaturing SDS-PAGE. The molecular weight of the galectin as determined by SDS-PAGE under reducing conditions and by gel filtration column under native conditions was 13.8 and 24.5 kDa, respectively, suggesting a dimeric form of galectin. The most potent inhibitor of the galectin activity was lactose, giving complete inhibition of hemagglutination at 0.8 mM. Galectin showed higher specificity towards human blood group A. Free thiol groups were estimated at a molar ratio of 2.9. The effects of alkylating reagents (iodoacetate and iodoacetamide) on saccharide binding of the galectin were studied. Both alkylating reagents significantly inactivated the activity of the galectin within 20 min. The temperature and pH stability of the galectin were determined. Our findings based on physico-chemical properties, carbohydrate and blood group specificities of the galectin may have future implications in biological and clinical applications.  相似文献   

19.
To study the structure and function of reptile lysozymes, we have reported their purification, and in this study we have established the amino acid sequence of three egg white lysozymes in soft-shelled turtle eggs (SSTL A and SSTL B from Trionyx sinensis, ASTL from Amyda cartilaginea) by using the rapid peptide mapping method. The established amino acid sequence of SSTL A, SSTL B, and ASTL showed substitutions of 43, 42, and 44 residues respectively when compared with the HEWL (hen egg white lysozyme) sequence. In these reptile lysozymes, SSTL A had one substitution compared with SSTL B (Gly126Asp) and had an N-terminal extra Gly and 11 substitutions compared with ASTL. SSTL B had an N-terminal extra Gly and 10 residues different from ASTL. The sequence of SSTL B was identical to soft-shelled turtle lysozyme from STL (Trionyx sinensis japonicus). The Ile residue at position 93 of ASTL is the first report in all C-type lysozymes. Furthermore, amino acid substitutions (Phe34His, Arg45Tyr, Thr47Arg, and Arg114Tyr) were also found at subsites E and F when compared with HEWL. The time course using N-acetylglucosamine pentamer as a substrate exhibited a reduction of the rate constant of glycosidic cleavage and increase of binding free energy for subsites E and F, which proved the contribution for amino acids mentioned above for substrate binding at subsites E and F. Interestingly, the variable binding free energy values occurred on ASTL, may be contributed from substitutions at outside of subsites E and F.  相似文献   

20.
Galectin-3 binding to cell surface glycoproteins, including branched N-glycans generated by N-acetylglucosaminyltransferase V (Mgat5) activity, forms a multivalent, heterogeneous, and dynamic lattice. This lattice has been shown to regulate integrin and receptor tyrosine kinase signaling promoting tumor cell migration. N-cadherin is a homotypic cell-cell adhesion receptor commonly overexpressed in tumor cells that contributes to cell motility. Here we show that galectin-3 and N-cadherin interact and colocalize with the lipid raft marker GM1 ganglioside in cell-cell junctions of mammary epithelial cancer cells. Disruption of the lattice by deletion of Mgat5, siRNA depletion of galectin-3, or competitive inhibition with lactose stabilizes cell-cell junctions. It also reduces, in a p120-catenin-dependent manner, the dynamic pool of junctional N-cadherin. Proteomic analysis of detergent-resistant membranes (DRMs) revealed that the galectin lattice opposes entry of many proteins into DRM rafts. N-cadherin and catenins are present in DRMs; however, their DRM distribution is not significantly affected by lattice disruption. Galectin lattice integrity increases the mobile fraction of the raft marker, GM1 ganglioside binding cholera toxin B subunit Ctb, at cell-cell contacts in a p120-catenin-independent manner, but does not affect the mobility of either Ctb-labeled GM1 or GFP-coupled N-cadherin in nonjunctional regions. Our results suggest that the galectin lattice independently enhances lateral molecular diffusion by direct interaction with specific glycoconjugates within the adherens junction. By promoting exchange between raft and non-raft microdomains as well as molecular dynamics within junction-specific raft microdomains, the lattice may enhance turnover of N-cadherin and other glycoconjugates that determine junctional stability and rates of cell migration.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号