首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
3.
4.
The high iron abundance and the weak ferric iron spectral features of martian surface material are consistent with nanophase (nm-sized) iron oxide minerals as a major source of iron in the bright region soil on Mars. Nanophase iron oxide minerals, such as ferrihydrite and schwertmannite, and nanophase forms of hematite and goethite are formed by both biotic and abiotic processes on Earth. The presence of these minerals on Mars does not indicate biological activity on Mars, but it does raise the possibility. This work includes speculation regarding the possibility of biogenic soils on Mars based on previous observations and analyses. A remote sensing goal of upcoming missions should be to determine if nanophase iron oxide minerals, clay silicates and carbonates are present in the martian surface material. These minerals are important indicators for exobiology and their presence on Mars would invoke a need for further investigation and sample return from these sites.  相似文献   

5.
Flooding results in major changes in the soil environment. The slow diffusion rate of gases in water limits the oxygen supply, which affects aerobic root respiration as well as many (bio)geochemical processes in the soil. Plants from habitats subject to flooding have developed several ways to acclimate to these growth-inhibiting conditions, ranging from pathways that enable anaerobic metabolism to specific morphological and anatomical structures that prevent oxygen shortage. In order to acclimate in a timely manner, it is crucial that a flooding event is accurately sensed by the plant. Sensing may largely occur in two ways: by the decrease of oxygen concentration, and by an increase in ethylene. Although ethylene sensing is now well understood, progress in unraveling the sensing of oxygen has been made only recently. With respect to the signal-transduction pathways, two types of acclimation have received most attention. Aerenchyma formation, to promote gas diffusion through the roots, seems largely under control of ethylene, whereas adventitious root development appears to be induced by an interaction between ethylene and auxin. Parts of these pathways have been described for a range of species, but a complete overview is not yet available. The use of molecular-genetic approaches may fill the gaps in our knowledge, but a lack of suitable model species may hamper further progress.  相似文献   

6.
Robust models for predicting soil salinity that use visible and near-infrared (vis–NIR) reflectance spectroscopy are needed to better quantify soil salinity in agricultural fields. Currently available models are not sufficiently robust for variable soil moisture contents. Thus, we used external parameter orthogonalization (EPO), which effectively projects spectra onto the subspace orthogonal to unwanted variation, to remove the variations caused by an external factor, e.g., the influences of soil moisture on spectral reflectance. In this study, 570 spectra between 380 and 2400 nm were obtained from soils with various soil moisture contents and salt concentrations in the laboratory; 3 soil types × 10 salt concentrations × 19 soil moisture levels were used. To examine the effectiveness of EPO, we compared the partial least squares regression (PLSR) results established from spectra with and without EPO correction. The EPO method effectively removed the effects of moisture, and the accuracy and robustness of the soil salt contents (SSCs) prediction model, which was built using the EPO-corrected spectra under various soil moisture conditions, were significantly improved relative to the spectra without EPO correction. This study contributes to the removal of soil moisture effects from soil salinity estimations when using vis–NIR reflectance spectroscopy and can assist others in quantifying soil salinity in the future.  相似文献   

7.
Mispah form (FAO: Lithosol) soil contaminated with >380 000 mg kg?1 creosote was co-composted with cattle manure and mixed vegetable waste for 19 months. The soil was mixed with wood chips to improve aeration and then mixed with cattle manure or mixed vegetable waste in a ratio of 4:1. Moisture, temperature, pH, ash content, C:N ratios, and the concentrations of creosote in the compost systems were monitored monthly. The concentrations of selected hydrocarbons in the compost systems were determined at the end of composting. Temperature rose to about 45°C in the cattle manure compost within two months of incubation while temperature in the control and vegetable waste remained below 30°C until the fourth month. Creosote concentration was reduced by 17% in the control and by more than 99% in the cattle manure and vegetable waste compost after composting. The rate of reduction in concentration in the mixed vegetable waste compost was initially lower than in the cattle manure compost. The reduction rate became similar in later months with only small differences towards the end of the composting. The concentrations of selected creosote components were reduced by between 96% and 100% after composting. There was no significant difference in reduction in concentration in both compost systems at p 0.05. Microbial activity correlated with reduction in creosote concentration.  相似文献   

8.
Soil microorganisms mediate many critical ecosystem processes. Little is known, however, about the factors that determine soil microbial community composition, and whether microbial community composition influences process rates. Here, we investigated whether aboveground plant diversity affects soil microbial community composition, and whether differences in microbial communities in turn affect ecosystem process rates. Using an experimental system at La Selva Biological Station, Costa Rica, we found that plant diversity (plots contained 1, 3, 5, or > 25 plant species) had a significant effect on microbial community composition (as determined by phospholipid fatty acid analysis). The different microbial communities had significantly different respiration responses to 24 labile carbon compounds. We then tested whether these differences in microbial composition and catabolic capabilities were indicative of the ability of distinct microbial communities to decompose different types of litter in a fully factorial laboratory litter transplant experiment. Both microbial biomass and microbial community composition appeared to play a role in litter decomposition rates. Our work suggests, however, that the more important mechanism through which changes in plant diversity affect soil microbial communities and their carbon cycling activities may be through alterations in their abundance rather than their community composition.  相似文献   

9.
Soils contain the greatest reservoir of biodiversity on Earth, and the functionality of the soil ecosystem sustains the rest of the terrestrial biosphere. This functionality results from complex interactions between biological and physical processes that are strongly modulated by the soil physical structure. Using a novel combination of biochemical and biophysical indicators and synchrotron microtomography, we have discovered that soil microbes and plant roots microengineer their habitats by changing the porosity and clustering properties (i.e., spatial correlation) of the soil pores. Our results indicate that biota act to significantly alter their habitat toward a more porous, ordered, and aggregated structure that has important consequences for functional properties, including transport processes. These observations support the hypothesis that the soil–plant–microbe complex is self-organized.  相似文献   

10.
11.
Ecosystems - As the largest biogeochemically active terrestrial reserve of carbon (C), soils have the potential to either mitigate or amplify rates of climate change. Ecosystems with large C stocks...  相似文献   

12.
The evaluation of soil lipase activity as a tool to monitor the decontamination of a freshly oil-polluted soil was tested in a laboratory study. An arable soil was experimentally contaminated with diesel oil at 5 mg hydrocarbons g–1 soil dry weight and incubated with and without fertilization (N-P-K) for 116 days at 20°C. Lipase activity and counts of oil-degrading microorganisms were measured at regular time intervals, and the correlations with the levels of hydrocarbon concentrations in soil were investigated. The residual soil hydrocarbon concentration correlated significantly negatively with soil lipase activity and with the number of oil-degrading microorganisms, independent of fertilization. The induction of soil lipase activity is a valuable indicator of oil biodegradation in naturally attenuated (unfertilized) and bioremediated (fertilized) soils.  相似文献   

13.
Fire is an important ecological factor that structures savannas, such as the cerrado, by selecting plant species and altering soil nutrient content. In Emas National Park, central Brazil, we compared soils under three different fire regimes and their relationship to the cerrado species they support. We collected 25 soil and vegetation samples at each site. We found differences in soil characteristics (p?<?0.05), with fertility and fire frequency positively related: in the annually burned site we found higher values of organic matter, nitrogen, and clay, whereas in the protected site we detected lower values of pH and higher values of aluminum. We also observed differences in plant community structure, with distinct floristic compositions in each site. Floristic composition was more related to sand proportion (intra-set correlation?=?0.834). Different fire frequencies increase environmental heterogeneity and beta diversity in the Brazilian cerrado.  相似文献   

14.
Soil fungi of areas in the North-Eastern region of Saudi Arabia where truffles are native were surveyed. Forty-three species of fungi belonging to twenty genera were isolated. Most were recovered from soils underneath or around truffle ascocarps: thirty species from soil under the surface of Tirmania nivea ascocarps, twenty-four from Terfezia boudieri soil and twenty species each from Tirmania pinoyi and Terfezia claveryi soils. Rhizosphere soil of Helianthemum lippi, on the other hand, yielded twenty-four fungal species while only fourteen fungal species were found in soil without vegetation. The total counts of fungi/g soil were highest in soils from the under surface of truffles, followed by rhizosphere soil, with the lowest in soils without vegetation.  相似文献   

15.

Background

Variation in microbial metabolism poses one of the greatest current uncertainties in models of global carbon cycling, and is particularly poorly understood in soils. Biological Stoichiometry theory describes biochemical mechanisms linking metabolic rates with variation in the elemental composition of cells and organisms, and has been widely observed in animals, plants, and plankton. However, this theory has not been widely tested in microbes, which are considered to have fixed ratios of major elements in soils.

Methodology/Principal Findings

To determine whether Biological Stoichiometry underlies patterns of soil microbial metabolism, we compiled published data on microbial biomass carbon (C), nitrogen (N), and phosphorus (P) pools in soils spanning the global range of climate, vegetation, and land use types. We compared element ratios in microbial biomass pools to the metabolic quotient qCO2 (respiration per unit biomass), where soil C mineralization was simultaneously measured in controlled incubations. Although microbial C, N, and P stoichiometry appeared to follow somewhat constrained allometric relationships at the global scale, we found significant variation in the C∶N∶P ratios of soil microbes across land use and habitat types, and size-dependent scaling of microbial C∶N and C∶P (but not N∶P) ratios. Microbial stoichiometry and metabolic quotients were also weakly correlated as suggested by Biological Stoichiometry theory. Importantly, we found that while soil microbial biomass appeared constrained by soil N availability, microbial metabolic rates (qCO2) were most strongly associated with inorganic P availability.

Conclusions/Significance

Our findings appear consistent with the model of cellular metabolism described by Biological Stoichiometry theory, where biomass is limited by N needed to build proteins, but rates of protein synthesis are limited by the high P demands of ribosomes. Incorporation of these physiological processes may improve models of carbon cycling and understanding of the effects of nutrient availability on soil C turnover across terrestrial and wetland habitats.  相似文献   

16.
SoilGrids1km — Global Soil Information Based on Automated Mapping   总被引:2,自引:0,他引:2  
BackgroundSoils are widely recognized as a non-renewable natural resource and as biophysical carbon sinks. As such, there is a growing requirement for global soil information. Although several global soil information systems already exist, these tend to suffer from inconsistencies and limited spatial detail.Conclusions/SignificanceSoilGrids1km provide an initial set of examples of soil spatial data for input into global models at a resolution and consistency not previously available. Some of the main limitations of the current version of SoilGrids1km are: (1) weak relationships between soil properties/classes and explanatory variables due to scale mismatches, (2) difficulty to obtain covariates that capture soil forming factors, (3) low sampling density and spatial clustering of soil profile locations. However, as the SoilGrids system is highly automated and flexible, increasingly accurate predictions can be generated as new input data become available. SoilGrids1km are available for download via http://soilgrids.org under a Creative Commons Non Commercial license.  相似文献   

17.
Decomposition models typically under-predict decomposition relative to observed rates in drylands. This discrepancy indicates a significant gap in our mechanistic understanding of carbon and nutrient cycling in these systems. Recent research suggests that certain drivers of decomposition that are often not explicitly incorporated into models (for example, photodegradation and soil–litter mixing; SLM) may be important in drylands, and their exclusion may, in part, be responsible for model under-predictions. To assess the role of SLM, litterbags were deployed in the Chihuahuan Desert and interrelationships between vegetation structure, SLM, and rates of decomposition were quantified. Vegetation structure was manipulated to simulate losses of grass cover from livestock grazing and shrub encroachment. We hypothesized that reductions in grass cover would promote SLM and accelerate mass loss by improving conditions for microbial decomposition. Litter mass decreased exponentially, with the greatest losses occurring in concert with summer monsoons. There were no differences in decay constants among grass cover treatments. A significant, positive relationship between mass loss and SLM was observed, but contrary to expectations SLM was independent of grass cover. This suggests that processes operating at finer spatial scales than those in our grass removal treatments were influencing SLM. Shifts in litter lipid composition suggest increased bacterial contribution to decomposition through time. SLM, which is seldom included as a variable controlling decomposition in statistical or mechanistic models, was a strong driver of decomposition. Results are discussed in the context of other known drivers of decomposition in drylands (for example, UV radiation and climate) and more mesic systems.  相似文献   

18.
Soil ingestion estimates may play a prominent role in exposure estimation for risk assessments involving tightly bound soil contaminants such as dioxin, PCBs, and lead in soil. Since contamination is often localized to specific areas, the relative contribution of ingested soil due to outdoor soil and indoor dust may have a large impact on the risk assessment. This article examines data on 64 preschool children over 2 weeks to estimate the relative contribution of ingested soil from outdoor soil and indoor dust. Four principal methodological approaches are developed and presented to form the estimates, and their relative strengths and weaknesses are discussed.

The four approaches differ in their assumptions and their ability to detail differences in ingestion source. Two approaches (i.e., duration correlation method — approach 1 and group tracer ratio method — approach 2) were used that can only estimate the average ingestion source, where averages are calculated over subjects and weeks. Both of these approaches have sufficient limitations to preclude confidence in the resulting estimates.

The final two approaches (approach 3 — individual tracer ratio method and approach 4 — multiple statistical model method) were able to characterize ingestion source for individual subject‐weeks and offered more plausible estimates of soil ingestion. Greater emphasis is placed on approach 3 since it was biologically plausible and conceptually straightforward. Approach 3 indicated that 49.2% ± 29.2% of the residual fecal tracers were estimated to be of soil origin. These findings, which represent the first quantitative differentiation of soil vs. dust ingestion, have considerable application for a variety of environmental settings requiring exposure assessment.  相似文献   


19.
Soil drying and rewetting represents a common physiological stress for the microbial communities residing in surface soils. A drying–rewetting cycle may induce lysis in a significant proportion of the microbial biomass and, for a number of reasons, may directly or indirectly influence microbial community composition. Few studies have explicitly examined the role of drying–rewetting frequency in shaping soil microbial community structure. In this experiment, we manipulated soil water stress in the laboratory by exposing two different soil types to 0, 1, 2, 4, 6, 9, or 15 drying–rewetting cycles over a 2-month period. The two soils used for the experiment were both collected from the Sedgwick Ranch Natural Reserve in Santa Ynez, CA, one from an annual grassland, the other from underneath an oak canopy. The average soil moisture content over the course of the incubation was the same for all samples, compensating for the number of drying–rewetting cycles. At the end of the 2-month incubation we extracted DNA from soil samples and characterized the soil bacterial communities using the terminal restriction fragment length polymorphism (T-RFLP) method. We found that drying–rewetting regimes can influence bacterial community composition in oak but not in grass soils. The two soils have inherently different bacterial communities; only the bacteria residing in the oak soil, which are less frequently exposed to moisture stress in their natural environment, were significantly affected by drying–rewetting cycles. The community indices of taxonomic diversity and richness were relatively insensitive to drying–rewetting frequency. We hypothesize that drying–rewetting induced shifts in bacterial community composition may partly explain the changes in C mineralization rates that are commonly observed following exposure to numerous drying–rewetting cycles. Microbial community composition may influence soil processes, particularly in soils exposed to a significant level of environmental stress.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号