首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Meloidogyne sp. from five pecan (Carya illinoensis) orchards in Texas were distinctive in host range and iszoyme profiles from common species of Meloidogyne but were morphologically congruent with Meloidogyne partityla Kleynhans, a species previously known only in South Africa. In addition to pecan, species of walnut (Juglans hindsii and J. regia) and hickory (C. ovata) also were hosts. No reproduction was observed on 15 other plant species from nine families, including several common hosts of other Meloidogyne spp. Three esterase phenotypes and two malate dehydrogenase phenotypes of M. partityla were identified by polyacrylamide gel electrophoresis. Each of these isozyme phenotypes was distinct from those of the more common species M. arenaria, M. hapla, M. incognita, and M. javanica.  相似文献   

2.
Ninety-six isolates of Meloidogyne species collected from banana fields from Martinique, Guadeloupe, and French Guiana, were examined using esterase (Est) and malate dehydrogenase (Mdh) phenotypes. Adult females identified as M. arenaria, M. incognita, M. javanica, M. cruciani, M. hispanica, and Meloidogyne sp. showed species-specific phenotypes only for the esterase enzymes. Intraspecific variability among isolates of M. arenaria, M. incognita, and M. javanica was detected using Est and Mdh. Perineal patterns were used as a complementary tool together with enzyme characterization and were essential for checking the morphological consistency of the identification. The major species of M. arenaria and M. incognita were detected at 61.9% and 34.3% of the total number of isolates, respectively, and the other minor species at 3.8%. The mixed Meloidogyne species were detected in 45.1% of the samples. Genetic analysis was conducted using RAPD markers, which alone or in combination provided reliable polymorphisms both between and within species. RAPD analysis of the data resulted in clustering of species and isolates congruent with esterase phenotype characterization. The intraspecific variability in M. incognita and in M. arenaria represented 14.9% and 61.6% of the amplified polymorphic fragments, respectively. This high level of variation in M. arenaria isolates may indicate multiple origins for populations classified as M. arenaria or more than one species inside the same group, but more detailed morphological and DNA studies will be necessary to test this hypothesis.  相似文献   

3.
Nonspecific esterases and malate dehydrogenases of 1-5 females from 40 root-knot nematode populations from Portugal were analyzed by electrophoresis in 0.4-mm-thick polyacrylamide gels. Fourteen major bands of esterase activity were detected, corresponding to 10 distinct phenotypes, Meloidogyne javanica and M. hapla had distinct species-specific phenotypes. Two phenotypes occurred in M. arenaria. The most variability was found among M. incognita populations. Of the remaining two phenotypes, one was associated with M. hispanica and the other belonged to a new species. Three malate dehydrogenase phenotypes were discerned on the basis of particular combinations of the eight main bands of activity found. As previously found, esterases were more useful than malate dehydrogenases in identification of the major Meloidogyne species. The host plant had no effect on the nematode esterase or malate dehydrogenase phenotypes.  相似文献   

4.
The host-parasite relationships of asparagus and Meloidogyne spp. were examined under greenhouse and microplot conditions. Meloidogyne species and races differed greatly in their ability to reproduce on asparagus seedlings. Meloidogyne hapla generally failed to reproduce, and M. javanica, M. arenaria race 1, and M. incognita race 3 reproduced poorly, with a reproduction factor (Rf = final population/initial population) usually < 1.0. Only M. arenaria race 2 and M. incognita races 1 and 4 reproduced consistently on all asparagus cultivars tested (Rf typically 1-11). No effect of M. incognita race 4 on host growth was detected. Meloidogyne arenaria race 2 and M. incognita race 1 had slight negative effects (5-10%) on plant and root growth.  相似文献   

5.
Various taxonomically useful profiles of four dehydrogenases (lactate, malate, glucose-6-phosphate, and a-glycerophosphate) and three hydrolases (acid and alkaline phosphatase and esterase) were detected in whole nematode homogenates of Meloidogyne javanica, M. hapla, M. incognita, M. arenaria, Ditylenchus dipsaci, D. triformis, Heterodera glycines, and Aphelenchus avenae. The enzyme profiles were stable in populations cultured on several different hosts. A tentative enzymically-determined phylogeny of Meloidogyne is given.  相似文献   

6.
Head shape and stylet morphology of males of 90 populations of M. arenaria, M. hapla, M. incognita, and M. javanica from geographic regions of the world were compared by light microscopy (LM). In addition, stylets of one population each of M. arenaria, M. incognita, and M. javanica and three different chromosomal forms of M. hapla race A and two of race B were excised and examined with a scanning electron microscope (SEM). Differences among species occurred in both head and stylet morphology. Head morphology differed in size and shape of the head cap, annulation of the head region, and width of the head region relative to the first body annule. Differences in stylets occurred in size and shape of the cone, shaft, and knobs. All populations of M. hapla, except one, had similar head morphology, but stylet morphology was different between cytological races A and B. Populations of M. javanica varied with respect to the presence of head annulations. Head shape and stylet morphology of males are recommended as additional characters useful in the identification of root-knot nematodes.  相似文献   

7.
Males of five populations of Meloidogyne hapla were compared by scanning electron microscopy (SEM). Three populations of race A had haploid chromosome numbers of 15, 16, and 17 and reproduced by facultative parthenogenesis. Race B consisted of two mitotically parthenogenetic populations with somatic chromosome numbers of 45 and 48. Males of one population each of M. arenaria, M. incognita, and M. javanica were also examined to delineate species differences. The populations of M. arenaria, M. incognita, and M. javanica had 54, 41-43, and 44 chromosomes, respectively, and reproduction was by mitotic parthenogenesis. Observations were made on head structures, lateral field, excretory pore, and tail. The expression of labial and cephalic sensilla, shape and proportion of labial disc and lips, and markings on the head region were distinctly different for each species. The head morphology of the two cytological races of M. hapla was dissimilar. Populations of race A were different from each other and showed intrapopulation variation. Populations of race B were morphologically similar and stable in head morphology. The structure of the lateral field, excretory pore, and tail was of little value in distinguishing species or populations because of inter- and intrapopulation variation. The results are discussed in relation to earlier SEM observations of second-stage juveniles of the same populations.  相似文献   

8.
Evolutionary relationships based on nucleotide variation within the D3 26S rDNA region were examined among acollection of seven Meloidogyne hapla isolates and seven isolates of M. arenaria, M. incognita, and M. javanica. Using D3A and D3B primers, a 350-bp region was PCR amplified from genomic DNA and double-stranded nucleotide sequence obtained. Phylogenetic analyses using three independent clustering methods all provided support for a division between the automictic M. hapla and the apomictic M. arenaria, M. incognita, and M. javanica. A nucleotide sequence character distinguishing M. hapla from the three apomictic species was a 3-bp insertion within the interior of the D3 region. The three apomictic species shared a common D3 haplotype, suggesting a recent branching. Single M. hapla individuals contained two different haplotypes, differentiated by a Sau3AI restriction site polymorphism. Isolates of M. javanica appeared to have only one haplotype, while M. incognita and M. arenaria maintained more than one haplotype in an isolate.  相似文献   

9.
External morphology of second-stage juveniles of six populations of Meloidogyne hapla, hclonging to two cytological races (A and B), and one population each of M. arenaria, M. incognita, and M. javanica was compared by scanning electron microscopy (SEM). Race A of M. hapla included three facultatively parthenogenetic populations with haploid chromosome numbers of 15. 16, and 17; race B consisted of three mitotically parthenogenetic populations with somalic chromosome numhers of 45, 45, and 48. The mitotically parthenogenetic populations of M. arenaria, M. incognita, and M. javanica had 54, 41-43, and 44 chromosomes, respectively. Observations were made on head structures, lateral field, excretory pore, anal opening, and tail. Head morphology, including shape and proportion of labial disc and lips, expression of labial and cephalic sensilla, and markings on head region, was distinctly different for each species. M. hapla populations of race A were distinct from each other but showed much intrapopulatiou variation in head morphology. Populations of race B were different from those of race A and were very stable and quite similar in head morphology. Considerable inter- and intrapopulatiou variation made the structure of the lateral field, excretory pore, anal opening, and tail of little value in distinguishing species or populations. The results are discussed in relation to earlier SEM observations on the genus Helerodera.  相似文献   

10.
Head shape and stylet morphology of second-stage juveniles of one population each of M. incognita, M. javanica, M. arenaria, and M. hapla were compared by light microscopy. Excised stylets of each species were also compared by scanning electron microscopy (SEM). Differences in head morphology were observed only between M. hapla and the other three species. In SEM, differences in stylet size, shape, and relative distance of the dorsal esophageal gland orifice to the base of the stylet were evident. Differences in stylet morphology between M. incognita and M. javanica could not he detected by light microscopy, but M. arenaria and M. hapla could be distinguished from each other and from the other two species. Head shape and styler morphology of second-stage juveniles are considered useful taxonomic characters.  相似文献   

11.
Root-knot nematodes (Meloidogyne spp.) are a significant problem in potato (Solanum tuberosum) production. There is no potato cultivar with Meloidogyne resistance, even though resistance genes have been identified in wild potato species and were introgressed into breeding lines. The objectives of this study were to generate stable transgenic potato lines in a cv. Russet Burbank background that carry an RNA interference (RNAi) transgene capable of silencing the 16D10 Meloidogyne effector gene, and test for resistance against some of the most important root-knot nematode species affecting potato, i.e., M. arenaria, M. chitwoodi, M. hapla, M. incognita, and M. javanica. At 35 days after inoculation (DAI), the number of egg masses per plant was significantly reduced by 65% to 97% (P < 0.05) in the RNAi line compared to wild type and empty vector controls. The largest reduction was observed in M. hapla, whereas the smallest reduction occurred in M. javanica. Likewise, the number of eggs per plant was significantly reduced by 66% to 87% in M. arenaria and M. hapla, respectively, compared to wild type and empty vector controls (P < 0.05). Plant-mediated RNAi silencing of the 16D10 effector gene resulted in significant resistance against all of the root-knot nematode species tested, whereas RMc1(blb), the only known Meloidogyne resistance gene in potato, did not have a broad resistance effect. Silencing of 16D10 did not interfere with the attraction of M. incognita second-stage juveniles to roots, nor did it reduce root invasion.  相似文献   

12.
The rates of soybean root penetration by freshly hatched second-stage juveniles (J2) of Meloidogyne arenaria, M. hapla, M. incognita, M. javanica, and Heterodera glycines races 1 and 5 were examined over a period of 1 to 240 hours. Heterodera glycines entered roots more quickly than Meloidogyne spp. Penetration by most nematodes was accomplished within 48 hours. The increases in penetration after 48 hours were insufficient to warrant further assessments. Penetration of J2 into roots of soybean seedfings in a styrofoam container was as good or better than in a clay pot. Thus, rapid and accurate root-penetration assessments can be made at 48 hours after inoculation.  相似文献   

13.
Root invasion, root galling, and fecundity of Meloidogyne javanica, M. arenaria, and M. incognita on tobacco was compared in greenhouse and controlled environment experiments. Significantly more M. javanica than M. arenaria or M. incognita larvae were found in tobacco roots at 2, 4, and 6 d after inoculation. Eight days after inoculation there were significantly more M. arenaria and M. javanica than M. incognita larvae. Ten days after inoculation no significant differences were found among the three Meloidogyne species inside the roots. Galls induced by a single larva or several larvae of M. javanica were significantly larger than galls induced by M. incognita: M. arenaria galls were intermediate in size. Only slight differences in numbers of egg masses or numbers of eggs produced by the three Meloidogyne species were observed up to 35 d after inoculation.  相似文献   

14.
A polymerase chain reaction (PCR) method for discriminating Meloidogyne incognita, M. arenaria, M. javanica, M. hapla, and M. chitwoodi was developed. Single juveniles were ruptured in a drop of water and added directly to a PCR reaction mixture in a microcentrifuge tube. Primer annealing sites were located in the 3'' portion of the mitochondrial gene coding for cytochrome oxidase subunit II and in the 16S rRNA gene. Following PCR amplification, fragments of three sizes were detected. The M. incognita and M. javanica reactions produced a 1.7-kb fragment; the M. arenaria reaction, a 1.1-kb fragment; and the M. hapla and M. chitwoodi reactions resulted in a 0.52-kb fragment. Digestion of the amplified product with restriction endonucleases allowed discrimination among species with identically sized amplification products. Dra I digestions of the 0.52-kb amplification product produced a characteristic three-banded pattern in M. chitwoodi, versus a two-banded pattern in M. hapla. Hinf I digestion of the 1.7-kb fragment produced a two-banded pattern in M. javanica, versus a three-banded pattern in M. incognita. Amplification and digestion of DNA from juveniles from single isolates of M. marylandi, M. naasi, and M. nataliei indicated that the diagnostic application of this primer set may extend to less frequently encountered Meloidogyne species.  相似文献   

15.
Detection of EcoRI restriction fragment length differences in repetitive DNA sequences permitted the rapid diagnosis, by genotype, of randomly selected populations of Meloidogyne incognita, Races 1, 2, 3, and 4; M. javanica; M. arenaria, Races 1 and 2; and M. hapla, Races A and B.  相似文献   

16.
Three described species of root-knot nematode parasitize peanut (Arachis hypogaea): Meloidogyne arenaria race 1 (Ma), M. hapla (Mh), and M. javanica (Mj). Peanut cultivars with broad resistance to Meloidogyne spp. will be useful regardless of the species present in the field. The objective of this study was to determine whether peanut genotypes with resistance to M. arenaria originating from three different breeding programs were also resistant to M. hapla and M. javanica. The experiment used a factorial arrangement (completely randomized) with peanut genotype and nematode population as the factors. The five peanut genotypes were ''COAN'' and AT 0812 (highly resistant to Ma), C209-6-13 (moderately resistant to Ma), and ''Southern Runner'' and ''Georgia Green'' (susceptible to Ma). The four nematode populations were two isolates of Ma (Gibbs and Gop) and one isolate each of Mh and Mj. On COAN or AT 0812, both Ma and Mj produced <10% of the eggs produced on Georgia Green. On the peanut genotype C209-6-13, Ma and Mj produced about 50% of the eggs produced on Georgia Green. None of the resistant genotypes exhibited a high level of resistance to Mh. The lack of resistance to Mh in any cultivars or advanced germplasm is a concern because the identity of a Meloidogyne sp. in a particular peanut field is generally not known. Breeding efforts should focus on moving genes for resistance to M. hapla into advanced peanut germplasm, and combining genes for resistance to the major Meloidogyne spp. in a single cultivar.  相似文献   

17.
Isolates of Pasteuria penetrans were evaluated for ecological characteristics that are important in determining their potential as biological control agents. Isolate P-20 survived without loss of its ability to attach to its host nematode in dry, moist, and wet soil and in soil wetted and dried repeatedly for 6 weeks. Some spores moved 6.4 cm (the maximum distance tested) downward in soil within 3 days with percolating water. The isolates varied greatly in their attachment to different nematode species and genera. Of five isolates tested in spore-infested soil, three (P-104, P-122, B-3) attached to two or more nematode species, whereas B-8 attached only to Meloidogyne hapla and B-I did not attach to any of the nematodes tested. In water suspensions, spores of isolate P-20 attached readily to M. arenaria but only a few spores attached to other Meloidogyne spp. Isolate P-104 attached to all Meloidogyne spp. tested but not to Pratylenchus scribneri. Isolate B-4 attached to all species of Meloidogyne and Pratylenchus tested, but the rate of attachment was relatively low. Isolate P-Z00 attached in high numbers to M. arenaria when spores were extracted from females of this nematode; when extracted from M. javanica females, fewer spores attached to M. arenaria than to M. javanica or M. incognita.  相似文献   

18.
Rates of nematode penetration and the histopathology of root infections in fluecured tobacco cultivars ''McNair-944,'' ''Speight G-28,'' and ''NC-89'' with either Meloidogyne arenaria, M. incognita, M. hapla, or M. javanica were investigated. Penetration of root tips by juveniles of all species into the M. incognita-resistant NC-89 and G-28 was much less than that on the susceptible McNair-944. Few juveniles of M. incognita were detected in resistant cultivars 7 and 14 days after inoculation. Infection sites exhibited some cavities and extensive necrotic tissue at 14 days; less necrotic tissue and no intact nematodes were observed 35 days after inoculation. Although some females of M. arenaria reached maturity and produced eggs, considerable necrosis was induced in the resistant cultivars. Meloidogyne hapla and M. javanica developed on all cultivars, but there was necrotic tissue at some infection sites in the resistant cultivars. The occurrence of single multistructured nuclei in the syncytia of most M. hapla infections differed from the numerous small nuclei found in syncytia caused by the other three species.  相似文献   

19.
The external morphology of female heads of three populations of each of two cytological races of Meloidogyne hapla (race A-meiotic, race B-mitotic) and single populations of M. arenaria, M. incognita, and M. javanica was compared by light (LM) and scanning electron microscopy (SEM). Perineal patterns of all nine populations were observed with a LM and then examined with a SEM. In addition, female stylets of each population were excised, viewed with a SEM, and compared with observations made with a LM. Head morphology of the females, including shape of medial and lateral lips, expression of sensilla, and head annulation, was distinct for each species, each race of M. hapla, and each population of M. hapla race A. The morphology of a given perineal pattern appeared similar with the SEM and the LM. The SEM emphasized surface details, whereas the LM revealed subcuticular structure as well. Stylet morphology was unique for each species but similar in all populations of M. hapla. There were differences between species in the shape of the cone, shaft, and knobs and in the distance of the dorsal esophageal gland orifice from the stylet knob base. Several of the morphological characters first detected in the SEM were seen subsequently with the LM and are helpful in species identification.  相似文献   

20.
Rates of reproduction of root-knot nematodes on corn varied with Meloidogyne species, with different populations of certain species, and with corn cultivars. M. arenaria, M. incognita and M. javanica reproduced at varying rates on all corn cultivars tested. None of the three selections of M. hapla reproduced on corn. Most of the Meloidogyne populations increased more rapidly on ''Coker'' and ''Pioneer'' hybrids than on ''McNair'' hybrids or on open-pollinated varieties or inbreds. Nematodes often reduced root growth, but the differences within given nematode-cultivar treatments were not usually significant. Root growth of ''Coker 911,'' which supported a high rate of reproduction, was affected less than ''Pioneer 309B'' which supported a low rate of nematode reproduction.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号