首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Inactivation of laboratory animal RNA-viruses by physicochemical treatment   总被引:1,自引:0,他引:1  
Eight commonly used chemical disinfectants and physical treatments (UV irradiation and heating) were applied to both enveloped RNA viruses (Sendai virus, canine distemper virus) and unenveloped RNA viruses (Theiler's murine encephalomyelitis virus, reo virus type 3) to inactivate infectious virus particles. According to the results, alcohols (70% ethanol, 50% isopropanol), formaldehyde (2% formalin), halogen compounds (52ppm iodophor, 100ppm sodium hypochlorite), quaternary ammonium chloride (0.05% benzalkonium chloride) and 1% saponated cresol showed virucidal effects giving more than 99.95% reduction in the infectivity of virus samples of Sendai virus and canine distemper after 10 minutes exposure. There was no significant difference in the effects on the two enveloped RNA viruses. The susceptibility of unenveloped RNA viruses to chemical disinfectants and physical treatments differed greatly from the enveloped viruses. The two unenveloped viruses showed distinct resistance to 50% isopropanol, 2% formalin, 1% saponated cresol and to physical treatments (heating at 45, 56, 60 degrees C, and UV irradiation). These results indicate that using physicochemical methods to inactivate RNA viruses in laboratory animal facilities should be considered in accordance with the characteristics of the target virus. For practical purposes in disinfecting enveloped RNA viruses, 70% ethanol, 0.05% quaternary ammonium chloride and 1% saponated cresol diluted in hot water (greater than 60 degrees C) are considered as effective as UV irradiation. For unenveloped RNA viruses, halogen compounds, more than 1,000 ppm sodium hypochlorite or 260 ppm iodophor are recommended over a period of 10 minutes for disinfecting particles, although these compounds result in an oxidation problem with many metals.  相似文献   

2.
Efficacy of chemical disinfectants against snakehead rhabdovirus   总被引:1,自引:0,他引:1  
The susceptibility of snakehead rhabdovirus to treatment at 20°C with 5 commercially available disinfectants was examined. No reduction in virus infectivity occurred following exposure to 5 ppm malachite green for 6 hours. Treatment of infective cell culture fluids with 2% formalin resulted in > 99.9% reduction in virus titre within 5 minutes and complete inactivation within 30 minutes, but a negligible loss in infectivity after exposure to 0.025% formalin for 1 hour. Suspensions of virus in distilled water were completely inactivated within 5 minutes by 12.5 ppm chlorine, 50 ppm iodine, or a 1:2000 dilution of a peroxygen disinfectant. In the presence of serum in infective cell culture fluids, however, > 50 ppm chlorine was required to inactivate the agent and no measurable reduction in infectivity was observed following treatment with 500 ppm iodine for 30 minutes.  相似文献   

3.
Five nonionic detergents (Tweens 20, 40, 60, and 80, and Triton WR-1339) were tested for their ability to inactivate four Mycoplasma species which are common contaminants of animal cell cultures. Tween 20 was found to be the most effective, in that a concentration of 2.5 mg/ml completely inactivated cultures of M. hominis, M. hyorhinis, and Acholeplasma laidlawii within 1 hr and a culture of M. orale within 3 hr. The other detergents exhibited various degree of activity against the different mycoplasmas, with Triton WR-1339 being the least effective. The virucidal activity of the detergents was determined for six viruses. All four Tween compounds were highly virucidal for herpes simplex virus. Tween 20 also exhibited virucidal effects against vesicular stomatitis virus, California encephalitis virus, and Newcastle disease virus, and Tween 80 was found to be active against California encephalitis and Newcastle disease viruses. Detergent treatment procedures were effective in two instances in eliminating mycoplasma contaminants from virus preparations while the preparations retained most of the viral infectivity. The limitations of this technique for routine use are discussed.  相似文献   

4.
Virucidal activity of the new disinfectant monopercitric acid   总被引:3,自引:0,他引:3  
AIMS: The virucidal efficacy of monopercitric acid (MPCA) was evaluated against the enveloped vaccinia virus as well as the nonenveloped adenovirus type 2 and poliovirus type 1. The results were compared with that obtained with peracetic acid (PAA). METHODS AND RESULTS: In the virucidal suspension test without and with protein burden, all viruses were inactivated by 0.5% MPCA within 0.5 min or by 0.1% MPCA within 5 min as measured by a >10(4)-fold reduction in virus titres. For MPCA, there was a better virucidal efficacy than for PAA which inactivated all viruses included in the test within 15-30 min at a concentration of 0.2%. SIGNIFICANCE AND IMPACT OF THE STUDY: The high virucidal activity, short exposure times, and nontoxic by-products seem to make MPCA suitable as disinfectant for medical use and should warrant further investigation.  相似文献   

5.
Mechanism of inactivation of enteric viruses in fresh water.   总被引:9,自引:8,他引:1       下载免费PDF全文
Fresh water obtained from nine sources was shown to cause inactivation of poliovirus. Further testing with four of these water samples showed that enteric viruses from different genera were consistently inactivated in these freshwater samples. Studies on the cause of inactivation were conducted with echovirus type 12 as the model virus. The results revealed that the virucidal agents in the waters tested could not be separated from microorganisms. Any treatment that removed or inactivated microorganisms caused loss of virucidal activity. Microbial growth in a sterilized creek water seeded with a small amount of stream water resulted in concomitant production of virucidal activity. When individual bacterial isolates obtained from a stream were grown in this sterilized creek water, most (22 of 27) produced a large amount of virucidal activity, although the amount varied from one isolate to the next. Active and inactive isolates were represented by both gram-positive and gram-negative organisms. Examination of echoviruses inactivated in stream water revealed that loss of infectivity first correlated with a slight decrease in the sedimentation coefficient of virus particles. The cause appeared to be cleavage of viral proteins, most notably, VP-4 and, to a lesser extent, VP-1. Viral RNA associated with particles was also cleaved but the rate was slower than loss of infectivity. These results suggest that proteolytic bacterial enzymes inactivate echovirus particles in fresh water by cleavage of viral proteins, thus exposing the viral RNA to nuclease digestion.  相似文献   

6.
Fresh water obtained from nine sources was shown to cause inactivation of poliovirus. Further testing with four of these water samples showed that enteric viruses from different genera were consistently inactivated in these freshwater samples. Studies on the cause of inactivation were conducted with echovirus type 12 as the model virus. The results revealed that the virucidal agents in the waters tested could not be separated from microorganisms. Any treatment that removed or inactivated microorganisms caused loss of virucidal activity. Microbial growth in a sterilized creek water seeded with a small amount of stream water resulted in concomitant production of virucidal activity. When individual bacterial isolates obtained from a stream were grown in this sterilized creek water, most (22 of 27) produced a large amount of virucidal activity, although the amount varied from one isolate to the next. Active and inactive isolates were represented by both gram-positive and gram-negative organisms. Examination of echoviruses inactivated in stream water revealed that loss of infectivity first correlated with a slight decrease in the sedimentation coefficient of virus particles. The cause appeared to be cleavage of viral proteins, most notably, VP-4 and, to a lesser extent, VP-1. Viral RNA associated with particles was also cleaved but the rate was slower than loss of infectivity. These results suggest that proteolytic bacterial enzymes inactivate echovirus particles in fresh water by cleavage of viral proteins, thus exposing the viral RNA to nuclease digestion.  相似文献   

7.
The inactivation of single-particle stocks of human (type 2, Wa) and simian (SA-11) rotaviruses by chlorine dioxide was investigated. Experiments were conducted at 4 degrees C in a standard phosphate-carbonate buffer. Both virus types were rapidly inactivated, within 20 s under alkaline conditions, when chlorine dioxide concentrations ranging from 0.05 to 0.2 mg/liter were used. Similar reductions of 10(5)-fold in infectivity required additional exposure time of 120 s at 0.2 mg/liter for Wa and at 0.5 mg/liter for SA-11, respectively, at pH 6.0. The inactivation of both virus types was moderate at neutral pH, and the sensitivities to chlorine dioxide were similar. The observed enhancement of virucidal efficiency with increasing pH was contrary to earlier findings with chlorine- and ozone-treated rotavirus particles, where efficiencies decreased with increasing alkalinity. Comparison of 99.9% virus inactivation times revealed ozone to be the most effective virucidal agent among these three disinfectants.  相似文献   

8.
The inactivation of single-particle stocks of human (type 2, Wa) and simian (SA-11) rotaviruses by chlorine dioxide was investigated. Experiments were conducted at 4 degrees C in a standard phosphate-carbonate buffer. Both virus types were rapidly inactivated, within 20 s under alkaline conditions, when chlorine dioxide concentrations ranging from 0.05 to 0.2 mg/liter were used. Similar reductions of 10(5)-fold in infectivity required additional exposure time of 120 s at 0.2 mg/liter for Wa and at 0.5 mg/liter for SA-11, respectively, at pH 6.0. The inactivation of both virus types was moderate at neutral pH, and the sensitivities to chlorine dioxide were similar. The observed enhancement of virucidal efficiency with increasing pH was contrary to earlier findings with chlorine- and ozone-treated rotavirus particles, where efficiencies decreased with increasing alkalinity. Comparison of 99.9% virus inactivation times revealed ozone to be the most effective virucidal agent among these three disinfectants.  相似文献   

9.
Virus inactivation by a number of protein denaturants commonly used in gel affinity chromatography for protein elution and gel recycling has been investigated. The enveloped viruses Sindbis, herpes simplex-1 and vaccinia, and the non-enveloped virus polio-1 were effectively inactivated by 0.5 M sodium hydroxide, 6 M guanidinium thiocyanate, 8 M urea and 70% ethanol. However, pH 2.6, 3 M sodium thiocyanate, 6 M guanidinium chloride and 20% ethanol, while effectively inactivating the enveloped viruses, did not inactivate polio-1. These studies demonstrate that protein denaturants are generally effective for virus inactivation but with the limitation that only some may inactivate non-enveloped viruses. The use of protein denaturants, together with virus reduction steps in the manufacturing process should ensure that viral cross contamination between manufacturing batches of therapeutic biological products is prevented and the safety of the product ensured.  相似文献   

10.
Inactivation of protein synthesis stimulating activity in serum by cells   总被引:2,自引:0,他引:2  
When Ehrlich ascites cells were cultivated in serum-free media their cellular protein synthetic rate declined to a new steady-state level and the cells stopped multiplying. On addition of serum the cellular protein synthetic rate increased to the level before serum starvation and cells resumed multiplication. The activity in serum stimulating protein synthesis was inactivated on incubation with cells. At cell concentrations of the usual culture conditions this inactivation took several hours; at very high cell concentrations it was complete in ten minutes. Serum-starved cells inactivated low serum (2%–6%) media in the same length of time. Studies of inactivation of high serum media demonstrated that cells had a limted capacity to inactivate. Cells grown in 10% serum were unable to inactivate. Inactivation was not due to accumulation in the medium of either low molecular or macromolecular cell products. Inactivation was strongly inhibited at 4° or by treatment of cells with fluoride or cycloheximide (long exposure): less inhibited by treatment with 2-deoxyglucose or glutaraldehyde; and slightly inhibited by treatment with cyanide or cycloheximide (short exposure). Inactivating ability was unaffected by trypsinization. These findings are best explained by the hypothesis that cells take up the serum activity by endocytosis.  相似文献   

11.
The potential for human immunodeficiency virus (HIV) to enter domestic sewers via contaminated body fluids such as blood has spurred interest in the survival of this virus in water and wastewater. This study focused on establishing the inactivation of HIV and productively infected lymphocytes in dechlorinated tap water. In addition, HIV survival was compared with that of poliovirus. Results indicated that either free HIV or cell-associated HIV was rapidly inactivated, with a 90% loss of infectivity within 1 to 2 h at 25 degrees C and a 99.9% loss by 8 h. In comparison, poliovirus showed no loss of infectivity over 24 h. The presence of human serum in tap water slowed the rate of HIV inactivation through 8 h but did not stabilize the virus through 24 h. In addition, blood from stage IV AIDS patients was introduced into tap water, and the recovery of HIV was monitored by using both an infectivity assay and polymerase chain reaction amplification of viral sequences. Virally infected cells were no longer detectable after 5 min in dechlorinated tap water, while little diminution in amplifiable sequences was observed over 2 h. Thus, detection of viral sequences by polymerase chain reaction technology should not be equated with risk of exposure to infectious HIV.  相似文献   

12.
Summary Bone alkaline (AlP) and acid phosphatase (AcP) activities were simultaneusly demonstrated in tissue sections obtained from mice, rats, and humans. The method involved tissue fixation in ethanol, embedding in glycol methacrylate (GMA), and demonstration of AlP and AcP activities employing a simultaneous coupling azo dye technique using substituted naphthol phosphate as a substrate. AlP activity was demonstrated first followed by AcP activity. Both enzyme activities were demonstrated in tissue sections from bones fixed and/or stored in acetone or 70% ethanol for up to 14 days or stored in GMA for 2 months. AlP activity in tissue sections from bones fixed in 10% formalin, 2% glutaraldehyde, or formal-calcium, however, was markedly inhibited after 3–7 days and was no longer detectable after 14 days of fixation. Moreover, AlP activity was diminished in tissue sections from bones fixed in 70% ethanol or 10% formalin and subsequently demineralized in 10% EDTA (pH7) for 2 days, and the activity was completely abolished in tissue sections from bones subsequently demineralized in 5% formic acid: 20% sodium citrate (1:1, pH 4.2) for 2 days. Methyl methacrylate (MMA) embedding at concentrations above 66% completely inhibited AlP activity. AcP activity, however, was only partially inhibited by formalin, glutaraldehyde, or formal-calcium after 7 or 14 days of fixation or by MMA embedding and was unaffected by the demineralizing agent formic acid-citrate for 2 days. While AcP activity was preserved in bones fixed in formalin and subsequently demineralized in EDTA, the activity was completely abolished when EDTA demineralization was carried out on bones previously fixed in 70% ethanol. These results indicate that bone AlP and AcP activities can be demonstrated simultaneously in the same section using a simple tissue preparation technique and that the activities are retained in tissues fixed and/or stored in acetone, 70% ethanol or GMA, but are differentially inactivated by other fixatives studied, and by EDTA, formic acid-citrate, and MMA embedding.Abbreviations AcP acid phosphatase - AlP alkaline phosphatase - GMA glycol methacrylate - MMA methyl methacrylate - EDTA ethylenediaminetetraacetic acid  相似文献   

13.
The virucidal properties of iodophor, chlorine (sodium hypochlorite), formalin, thimerosal (organic mercurial compound), malachite green, and acriflavine were tested on infectious pancreatic necrosis virus (IPNV). Iodine and chlorine showed good activity, but efficacy depended on the concentration of virus, the presence of organic matter (calf serum), and water pH. Water hardness (0-300 mg 1−1 as CaCO3) did not affect virucidal activity. In a 5 min exposure, 4 mg 1−1 available iodine inactivated 103.9 TCID50 m1−1 IPNV but 16 mg 1−1 iodine were needed for inactivation of 106.3TCID50m1−1. The addition of 0-5% calf serum significantly reduced the iodine concentration and the virucidal activity. In comparison, 4 mg 1−1 chlorine were needed to inactivate 1046 TCID50 m1−1 IPNV in 5 min. However, the addition of 0-07 % serum greatly reduced the chlorine concentration and extended the virucidal contact time to 30 min or more. IPNV at 106.3 TCID60 m1−1 was not inactivated by exposures for 60 min to 0-2% formalin, 10 min to 0-2% thimerosal, 60 min to 5 mg 1−1 malachite green, or 20 min to 500 mg 1−1 acriflavine. However, acriflavine at 0-5 mg 1−1 in cell culture media prevented the development of cytopathology caused by IPNV and may be useful in the treatment of the disease.  相似文献   

14.
S Ohno 《Histochemistry》1985,82(6):565-575
Synthesized N protein of vesicular stomatitis virus (VSV) is associated with replicated viral genomes in the infected cells. The cytoplasmic side of cell membranes was examined by quick-freezing and deep-etching replica method, in order to clarify the localization of VSV genomes. Control or infected monolayer Vero cells were fixed in 2% paraformaldehyde, scraped and centrifuged to make pellets. A drop of the cell pellet was put between two glass coverslips, which were coated with 3-aminopropyl triethoxy silane and glutaraldehyde. The cells were consequently split open and postfixed in the mixture of glutaraldehyde and paraformaldehyde. Some inside-out cell membranes on the coverslips were immunostained with anti-N monoclonal antibody directly coupled to gold particles. Others were immunostained with anti-N monoclonal antibody and rabbit anti-mouse IgG coupled to peroxidase and fixed again in glutaraldehyde. They were incubated in diaminobenzidine and hydrogen peroxide solution for 1 min. All of them were infiltrated with 10% methanol in distilled water and quickly frozen in a mixture of isopentane and propane cooled by liquid nitrogen. Such preparations were deep-etched and shadowed by platinum and carbon. Although many cell organelles were found to be associated with the cytoplasmic side of cell membranes in the normal Vero cells, few cell organelles were attached to it in the infected cells. On the contrary, special strand structures were identified, which could be immunostained with anti-N monoclonal antibody. It is concluded that platinum replicas have sufficient resolution to identify the VSV genomes coated with N protein and that these nucleocapsids can be associated with the cytoplasmic side of cell membranes in the infected cells.  相似文献   

15.
Summary Synthesized N protein of vesicular stomatitis virus (VSV) is associated with replicated viral genomes in the infected cells. The cytoplasmic side of cell membranes was examined by quick-freezing and deep-etching replica method, in order to clarify the localization of VSV genomes. Control or infected monolayer Vero cells were fixed in 2% paraformaldehyde, scraped and centrifuged to make pellets. A drop of the cell pellet was put between two glass coverslips, which were coated with 3-aminopropyl triethoxy silane and glutaraldehyde. The cells were consequently split open and postfixed in the mixture of glutaraldehyde and paraformaldehyde. Some inside-out cell membranes on the coverslips were immunostained with anti-N monoclonal antibody directly coupled to gold particles. Others were immunostained with anti-N monoclonal antibody and rabbit anti-mouse IgG coupled to peroxidase and fixed again in glutaraldehyde. They were incubated in diaminobenzidine and hydrogen peroxide solution for 1 min. All of them were infiltrated with 10% methanol in distilled water and quickly frozen in a mixture of isopentane and propane cooled by liquid nitrogen. Such preparations were deep-etched and shadowed by platinum and carbon. Although many cell organelles were found to be associated with the cytoplasmic side of cell membranes in the normal Vero cells, few cell organelles were attached to it in the infected cells. On the contrary, special strand structures were identified, which could be immunostained with anti-N monoclonal antibody. It is concluded that platinum replicas have sufficient resolution to identify the VSV genomes coated with N protein and that these nucleocapsids can be associated with the cytoplasmic side of cell membranes in the infected cells.S. Ohno was a visiting fellow from the Fogarty International Center at the National Institutes of Health, USA, while this work was in progress  相似文献   

16.
A series of experiments was undertaken in which cells dissociated from the abdominal lymph nodes of mice were lightly centrifuged into slides and fixed either wet or after drying in 70% ethanol, 1% glutaraldehyde, 1% formaldehyde, or neutral formalin. Three fluorescent cytochemical methods were evaluated: staining of DNA with mithramycin; fluorochroming of basic groups of proteins with brilliant sulfaflavine (BSF); and staining of sulfhydryl and disulfide groups with N-(7-dimethylamino-4-methylcoumarinyl)maleimide (DACM). In the case of mithramycin, the best results were obtained after fixation in 70% ethanol without drying. Staining of dried preparations fixed in 1% glutaraldehyde also yielded reasonably consistent results, although the fluorescence was lower, and the variability higher, than in the group fixed without drying in 70% ethanol. The use of fixatives containing formaldehyde resulted in fluorescence values of only about one-third those of the other two groups, and the variability of the data was higher. In material stained with BSF, satisfactory results were obtained in preparations fixed without drying in neutral formalin containing mersalyl acid. Other fixatives could be used, but the resulting coefficients of variation were higher than those of formalin-fixed material. Sulfhydryl to disulfide ratios approaching those expected from biochemical evidence were obtained in DACM-stained material only after fixation without drying in neutral formalin containing mersalyl acid. Inverted sulfhydryl-disulfide ratios were observed in material fixed without drying in 70% ethanol; and in dried material fixed in 1% formaldehyde, neutral formalin, or 1% glutaraldehyde.  相似文献   

17.
Summary A series of experiments was undertaken in which cells dissociated from the abdominal lymph nodes of mice were lightly centrifuged into slides and fixed either wet or after drying in 70% ethanol, 1% glutaraldehyde, 1% formaldehyde, or neutral formalin. Three fluorescent cytochemical methods were evaluated: staining of DNA with mithramycin; fluorochroming of basic groups of proteins with brilliant sulfaflavine (BSF); and staining of sulfhydryl and disulfide groups with N-(7-dimethylamino-4-methylcoumarinyl)maleimide (DACM). In the case of mithramycin, the best results were obtained after fixation in 70% ethanol without drying. Staining of dried preparations fixed in 1% glutaraldehyde also yielded reasonably consistent results, although the fluorescence was lower, and the variability higher, than in the group fixed without drying in 70% ethanol. The use of fixatives containing formaldehyde resulted in fluorescence values of only about onethird those of the other two groups, and the variability of the data was higher. In material stained with BSF, satisfactory results were obtained in preparations fixed without drying in neutral formalin containing mersalyl acid. Other fixatives could be used, but the resulting coefficients of variation were higher than those of formalin-fixed material. Sulfhydryl to disulfide ratios approaching those expected from biochemical evidence were obtained in DACM-stained material only after fixation without drying in neutral formalin containing mersalyl acid. Inverted sulfhydryl-disulfide ratios were observed in material fixed without drying in 70% ethanol; and in dried metarial fixed in 1% formaldehyde, neutral formalin, or 1% glutaraldehyde.  相似文献   

18.
In lentivirus infections, there are typically few cells in the host that harbor the provirus. For this reason, molecular clones of human and simian immunodeficiency viruses (HIV and SIV) are generally derived after passage and amplification of the virus in cell culture. To determine whether SIV variants that persist in culture are similar to the variants that predominate in the host, we examined the proviral sequence of the SIV envelope (env) gene before and after cocultivation of lymphocytes from a macaque with AIDS with naive macaque lymphocytes or human cell lines. Many of the predominant variants in the monkey replicated and persisted in macaque lymphocytes and CEMx174 cells in culture, but a more limited population of variants replicated in C8166 cells. Passage of virus, harvested after 4 weeks of coculture, onto naive cells further demonstrated that the majority of proviruses detected by polymerase chain reaction were also viral variants that were expressed and packaged into infectious virions.  相似文献   

19.
Human leukocytes fixed in suspension were allowed to settle onto poly-L-lysine-coated glass coverslips and prepared for observation with the scanning electron microscope (SEM). The coverslips were dehydrated in ethanol, critical point dried with CO2, and coated with gold-palladium. With the aid of a locator grid, several fields were photographed with light microscopy after the cells had settled onto the poly-L-lysine-coated coverslips and again after completion of the processing before SEM observation. Quantitative comparison of the number of cells present after settling with the number retained for final viewing with the SEM revealed a cell yield approaching 100%. This simple, reproducible, high-yield technique for processing cells fixed in suspension for SEM prevents changes in surface architecture induced by collecting live cells onto various substrates before fixation and also avoids potentially selective cell losses. Such a technique should allow quantitative correlations between SEM and other morphological and functional parameters.  相似文献   

20.
We describe a new approach for the preparation of inactivated retroviruses for vaccine application. The lipid domain of the viral envelope was selectively targeted to inactivate proteins and lipids therein and block fusion of the virus with the target cell membrane. In this way, complete elimination of the infectivity of human immunodeficiency virus (HIV) and simian immunodeficiency virus (SIV) could be achieved with preservation of antigenic determinants on the surface of the viral envelope. Inactivation was accomplished by modification of proteins and lipids in the viral envelope using the hydrophobic photoinduced alkylating probe 1,5 iodonaphthylazide (INA). Treatment of HIV and SIV isolates with INA plus light completely blocked fusion of the viral envelope and abolished infectivity. The inactivated virus remained structurally unchanged, with no detectable loss of viral proteins. Modifications to envelope and nucleocapsid proteins were detected by changes in their elution pattern on reverse-phase high-performance liquid chromatography. These modifications had no effect on primary and secondary structure epitopes as determined by monoclonal antibodies. Likewise, the inactivated HIV reacted as well as the live virus with the conformation-sensitive and broadly neutralizing anti-HIV type 1 monoclonal antibodies 2G12, b12, and 4E10. Targeting the lipid domain of biological membranes with hydrophobic alkylating compounds could be used as a general approach for inactivation of enveloped viruses and other pathogenic microorganisms for vaccine application.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号