首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 359 毫秒
1.
Fifty-four susceptible soybean, Glycine max, cultivars or plant introductions were evaluated for tolerance to H. glycines, the soybean cyst nematode (SCN). Seed yields of genotypes were compared in nematicide-treated (1,2-dibromo-3-chloropropane, 58 kg a.i./ha) and nontreated plots at two SCN-infested locations over 3 years. Distinct and consistent levels of tolerance to SCN were observed among soybean genotypes. PI 97100, an introduction from Korea, exhibited the highest level of tolerance with an average tolerance index ([yield in nontreated plot ÷ yield in nematicide-treated plot] × 100) of 96 over 2 years. Coker 156 and Wright had moderate levels of tolerance (range in index values 68 to 95) compared to the intolerant cuhivars Bragg and Coker 237 (range in index values 33 to 68). Most of the soybean genotypes evaluated were intolerant to SCN. The rankings of five genotypes for tolerance to SCN and Hoplolaimus columbus were similar. Tolerance for seed yield was more consistently correlated with tolerance for plant height (r = 0.55 to 0.64) than for seed weight (r = 0.23 to 0.65) among genotypes.  相似文献   

2.
Population dynamics of Heterodera glycines (SCN) were influenced by initial nematode population density in soil, soybean root growth pattern, soil type, and environmental conditions in two field experiments. Low initial populations (Pi) of SCN increased more rapidly during the growing season than high Pi and resulted in greater numbers of nematodes at harvest. Egg and juvenile (J2) populations increased within 2-6 weeks after planting when early-season soil temperatures were 20 C and above and were delayed by soil temperatures of 17 C or below in May and early June. Frequencies of occurrence and number of nematodes decreased with increasing depth and distance from center of the soybean row. Spatial pattern of SCN paralleled that of soybean roots. Higher clay content in the subsoil 30-45 cm deep in one field restricted soil penetration by roots, indirectly influencing vertical distribution of SCN. Shoot dry weight was a good indicator of the effect of SCN on seed yield. Root dry weight was poorly correlated with soybean growth and yield. The relationship of yield (seed weight) to Pi was best described by a quadratic equation at one site, but did not fit any regression model tested at the second site.  相似文献   

3.
Transgenic soybean cultivars, resistant to glyphosate herbicide in maturity groups V and VI, were evaluated for tolerance to the Columbia lance nematode, Hoplolaimus columbus, in field experiments conducted in 1998 and 1999. Treatment with 43 liter/ha of 1,3-dichloropropene was effective in suppressing H. columbus population densities in a split-plot design. Fumigation increased soybean yield, but a significant cultivar × fumigation interaction indicated variation in cultivar response to H. columbus. A tolerance index (yield of nontreated ÷ yield of treated × 100) was used to compare cultivar differences. Two cultivars in maturity group VI and one cultivar in maturity group V had a tolerance index greater than 90, indicating a high level of tolerance.  相似文献   

4.
Integrating remote sensing and geographic information systems (GIS) technologies offers tremendous opportunities for farmers to more cost effectively manage the causes of crop stress. Initial soybean cyst nematode (SCN) population densities from 995 2-×-3-m quadrats were obtained from a soybean field near Ames, Iowa, in 2000. The percentage of sunlight reflected from each quadrat was measured weekly using a multispectral radiometer beginning in mid-May and continuing through mid-September. Aerial images were obtained at heights above the field ranging from 45 to 425 m on 12 dates during the soybean growing season. This was accomplished using color film and infrared film in conjunction with a filter to measure reflectance in the near-infrared region (810 nm). Satellite images (Landsat 7) were obtained for five dates during the 2000 growing season. Maps depicting initial SCN population densities, soybean yield, soy oil, and soy protein were generated using the GIS software program ArcView. Percentage reflectance (810 nm), aerial image intensity, and satellite image intensity data then were regressed against soybean yield, soy oil, and soy protein concentrations obtained from each geospatially referenced soybean quadrat. Percentage reflectance measurements explained up to 60% of the variation in initial SCN population densities within soybean quadrats and up to 91% of the variation in soybean yield. Aerial image and satellite image intensities explained up to 80% and 47% of the variation in soybean yield, respectively. Percentage reflectance data also explained 36% and 54% of the variation in oil and protein concentrations of the harvested soybeans, respectively. These results indicate that remote sensing coupled with GIS technologies may provide new tools to detect and quantify SCN population densities and their impacts on the quantity and quality of soybean yield.  相似文献   

5.
The soybean cyst nematode (SCN), Heterodera glycines, can cause significant reductions in soybean yield and quality in many parts of the world. Natural biological control may play an important role in regulating SCN population. In this study the bacterial communities associated with SCN cysts obtained from fields under different lengths of soybean monoculture were explored. Soil samples were collected in 2010 and 2011 from six fields that had been used for soybean monoculture for 2 to 41 yr. SCN population densities were determined and bacterial communities from SCN cysts were investigated by Biolog and PCR-DGGE methods. SCN population densities initially increased in the first 5 yr of soybean monoculture but then declined steeply as years of soybean monoculture increased. Catabolic diversity of bacterial communities associated with cysts tended to decline as number of years of monoculture increased. Some specific PCR-DGGE bands, mainly representing Streptomyces and Rhizobium, were obtained from the cysts collected from the long-term monoculture fields. Principal component analysis of Biolog and PCR-DGGE data revealed that bacterial communities associated with cysts could be divided into two groups: those from cysts obtained from shorter (< 8 yr) vs. longer (> 8 yr) monoculture. This research demonstrates that the composition of the bacterial communities obtained from SCN cysts changes with length of soybean monoculture; the suppressive impact of these bacterial communities to SCN is yet to be determined.  相似文献   

6.
The soybean cyst nematode Heterodera glycines (SCN) is of major economic importance and widely distributed throughout soybean production regions of the United States where different maturity groups with the same sources of SCN resistance are grown. The objective of this study was to assess SCN-resistant and -susceptible soybean yield responses in infested soils across the north-central region. In 1994 and 1995, eight SCN-resistant and eight SCN-susceptible public soybean cultivars representing maturity groups (MG) I to IV were planted in 63 fields, either infested or noninfested, in 10 states in the north-central United States. Soil samples were taken to determine initial SCN population density and race, and soil classification. Data were grouped for analysis by adaptation based on MG zones. Soybean yields were 658 to 3,840 kg/ha across the sites. Soybean cyst nematode-resistant cultivars yielded better at SCN-infested sites but lost this superiority to susceptible soybean cultivars at noninfested sites. Interactions were observed among initial SCN population density, cultivar, and location. This study showed that no region-wide predictive equations could be developed for yield loss based on initial nematode populations in the soil and that yield loss due to SCN in our region was greatly confounded by other stress factors, which included temperature and moisture extremes.  相似文献   

7.
In a repeated greenhouse experiment, organic soil amendments were screened for effects on population density of soybean cyst nematode (SCN), Heterodera glycines, and soybean growth. Ten amendments at various rates were tested: fresh plant material of field pennycress, marigold, spring camelina, and Cuphea; condensed distiller’s solubles (CDS), ash of combusted CDS, ash of combusted turkey manure (TMA), marigold powder, canola meal, and pennycress seed powder. Soybeans were grown for 70 d in field soil with amendments and SCN eggs incorporated at planting. At 40 d after planting (DAP), many amendments reduced SCN egg population density, but some also reduced plant height. Cuphea plant at application rate of 2.9% (amendment:soil, w:w, same below), marigold plant at 2.9%, pennycress seed powder at 0.5%, canola meal at 1%, and CDS at 4.3% were effective against SCN with population reductions of 35.2%, 46.6%, 46.7%, 73.2%, and 73.3% compared with control, respectively. For Experiment 1 at 70 DAP, canola meal at 1% and pennycress seed powder at 0.5% reduced SCN population density 70% and 54%, respectively. CDS at 4.3%, ash of CDS at 0.2%, and TMA at 1% increased dry plant mass whereas CDS at 4.3% and pennycress seed powder at 0.1% reduced plant height. For Experiment 2 at 70 DAP, amendments did not affect SCN population nor plant growth. In summary, some amendments were effective for SCN management, but phytoxicity was a concern.  相似文献   

8.
Although the soybean cyst nematode (SCN), Heterodera glycines, has been known to exist in Wisconsin for at least 14 years, relatively few growers sample for SCN or use host resistance as a means to manage this nematode. The benefit of planting the SCN-resistant cultivar Bell on a sandy soil in Wisconsin was evaluated in 1992 and 1993. A range of SCN population densities was achieved by planting 11 crops with varying degrees of susceptibility for 1 or 2 years before the evaluation. Averaged over nematode population densities, yield of ''Bell'' was 30 to 43% greater than that of the susceptible cultivars, ''Corsoy 79'' and ''BSR 101''. Counts of cysts collected the fall preceding soybean were more predictive of yield than counts taken at planting. Yields of all three cultivars were negatively related (P < 0.001) to cyst populations. Fewer (P < 0.01) eggs were produced on ''Bell'' than on the susceptible cultivars. The annual (fall to fall) change in cyst population densities was dependent on initial nematode density for all cultivars in 1992 and for the susceptible cultivars in 1993. Yield reductions induced by the SCN under the conditions of this study indicate that planting a SCN-resistant cultivar in Wisconsin can be beneficial if any cysts are detected.  相似文献   

9.

Background and Aims

It is essential to illuminate the evolutionary history of crop domestication in order to understand further the origin and development of modern cultivation and agronomy; however, despite being one of the most important crops, the domestication origin and bottleneck of soybean (Glycine max) are poorly understood. In the present study, microsatellites and nucleotide sequences were employed to elucidate the domestication genetics of soybean.

Methods

The genomes of 79 landrace soybeans (endemic cultivated soybeans) and 231 wild soybeans (G. soja) that represented the species-wide distribution of wild soybean in East Asia were scanned with 56 microsatellites to identify the genetic structure and domestication origin of soybean. To understand better the domestication bottleneck, four nucleotide sequences were selected to simulate the domestication bottleneck.

Key Results

Model-based analysis revealed that most of the landrace genotypes were assigned to the inferred wild soybean cluster of south China, South Korea and Japan. Phylogeny for wild and landrace soybeans showed that all landrace soybeans formed a single cluster supporting a monophyletic origin of all the cultivars. The populations of the nearest branches which were basal to the cultivar lineage were wild soybeans from south China. The coalescent simulation detected a bottleneck severity of K′ = 2 during soybean domestication, which could be explained by a foundation population of 6000 individuals if domestication duration lasted 3000 years.

Conclusions

As a result of integrating geographic distribution with microsatellite genotype assignment and phylogeny between landrace and wild soybeans, a single origin of soybean in south China is proposed. The coalescent simulation revealed a moderate genetic bottleneck with an effective wild soybean population used for domestication estimated to be ≈2 % of the total number of ancestral wild soybeans. Wild soybeans in Asia, especially in south China contain tremendous genetic resources for cultivar improvement.  相似文献   

10.
Large pot (2 years) and field experiments (1 year) were conducted to determine the response of susceptible soybean Glycine max (L.) Merr. cultivars (Essex and Hutcheson) grown in soybean-cyst-nematode (SCN), Heterodera glycines-infested soils at three soil water regimes. The soil water regimes were irrigation whenever soil water potential ([psi]s) 0.30-m deep was i) -30 kPa (I-30) or ii) - 50 kPa (I-50), and iii) no irrigation. Cyst nematode levels in the pot experiment were either 0 or 20,000 second-stage juveniles (J2) per pot. The field experiment was conducted on soil naturally infested with a population of 145 to 475 cysts L⁻¹ of soil. All growth parameters studied were drastically affected in the presence of SCN under nonirrigated conditions for the large pot tests; however, SCN did not influence growth parameters in the field experiment. Seed yield was lowest in the no irrigation treatment when all treatments were compared in both the pot and field experiments. The infested no irrigation treatment in the pot experiment had the lowest yield among soil water treatments.  相似文献   

11.
Effects of vesicular-arbuscular mycorrhizal (VAM) fungi and soil phosphorus (P) fertility on parasitism of soybean cultivars Bragg and Wright by soybean cyst nematode (SCN) were investigated in field micropiot and greenhouse experiments. VAM fungi increased height of both cultivars and yield of Wright in microplot studies in 1986 and 1987. Conversely, yield of mycorrhizal and nonmycorrhizal plants of both cultivars was suppressed by SCN. Soil population densities of SCN were unaffected by VAM fungi in 1986 but were greater in microplots infested with VAM fungi than in control microplots in 1987. Growth of Wright soybean was stimulated by VAM fungi and suppressed by SCN in greenhouse experiments. The effect of VAM fungi on SCN varied with time. Numbers of SCN in roots and soil were decreased by VAM fungi by as much as 73% at the highest SCN inoculum level through 49 days after planting. Later, however, SCN numbers were usually comparable on mycorrhizal and nonmycorrhizal plants. Soil P fertility generally had no effect on SCN. Results of a split-root experiment indicated that VAM fungal suppression of SCN was not systemic.  相似文献   

12.
The number of resistance genes in soybean to soybean cyst nematode (SCN) Heterodera glycines was estimated using progeny from a cross of ''Williams 82'' x ''Hartwig'' (derived from ''Forrest''³ x PI 437.654) screened with a fourth-generation inbred nematode line derived from a race 3 field population of SCN. Numbers of females developing on roots of inoculated seedlings were assigned to phenotype cells (resistant, susceptible, or segregating) using Ward''s minimum variance cluster analysis. The ratio obtained from screening 220 F₃ soybean families was not significantly different from a 1:8:7 (resistant:segregating:susceptible) ratio, suggesting a two-gene system for resistance. The ratio obtained from screening 183 F₂ plants was not significantly different from a 3:13 (resistant:susceptible) ratio, indicating both a dominant (Rhg) and a recessive (rhg) resistance gene.  相似文献   

13.
Soybean cyst nematode (SCN), Heterodera glycines Ichinohe, is a major pest of soybean, Glycine max L. Merr. Soybean cultivars resistant to SCN are commonly grown in nematode-infested fields. The objective of this study was to examine the stability of SCN resistance in soybean genotypes at different soil temperatures and pH levels. Reactions of five SCN-resistant genotypes, Peking, Plant Introduction (PI) 88788, Custer, Bedford, and Forrest, to SCN races 3, 5, and 14 were studied at 20, 26, and 32 C, and at soil pH''s 5.5, 6.5, and 7.5. Soybean cultivar Essex was included as a susceptible check. Temperature, SCN race, soybean genotype, and their interactions significantly affected SCN reproduction. The effect of temperature on reproduction was quadratic with the three races producing significantly greater numbers of cysts at 26 C; however, reproduction on resistant genotypes remained at a low level. Higher numbers of females matured at the soil pH levels of 6.5 and 7.5 than at pH 5.5. Across the ranges of temperature and soil pH studied, resistance to SCN in the soybean genotypes remained stable.  相似文献   

14.
Growth room and field experiments were conducted to determine the influence of soil temperature and soybean phenology on dormancy induction of a North Carolina population of Heterodera glycines race 1. Three temperature regimes and two photoperiods to regulate plant phenology were investigated in growth rooms. H. glycines hatch was greatest from the 26 and 22 C (day and night) temperature treatment, intermediate at 22 and 18 C, and least from the decreasing regime (26 and 22 C, 22 and 18 C, and 18 and 14 C). More eggs hatched and greater nematode reproduction occurred on pod-producing soybeans than on those that remained vegetative. In the field study, hatching patterns were not different between depodded and naturally senescing soybeans nor between the different maturity groups of soybean cultivars (groups V through VIII). Egg hatch (9-16%) was greatest in August and September when mean soil temperatures were between 25 and 29 C. Hatch declined to 1% in vitro and was not detectable in the bioassay in November. Greatest nematode numbers were observed on the latest maturing cultivar (group VIII) and fewest on the cultivar which matured earliest (group V). Decreasing temperature appears to be more important than soybean phenology in dormancy induction of H. glycines.  相似文献   

15.
An experiment to evaluate the control of soybean cyst nematodes compared 1-year, 2-year, and 3-year nonhost rotations with continuous soybeans (Glycine max) in 0.2-ha plots. In a second 1-year rotation, the plots were planted to soybean or corn (Zea mays) after fumigation in the spring with a split application of 1,3-dichloropropene (748.2 liters/ha). The effects of the nematicide were apparent the first year. Soybean yield was 1,482 kg/ha compared to 233 kg/ha in the untreated plots. In the second year, the highest yielding plants (2,035 kg/ha) were those following 1 year of corn that had been treated the previous year; plants in untreated plots yielded 288 kg/ha. Average yield of soybean following 1 year of corn was 957 kg/ha compared to 288 kg/ha for continuous soybean. In the third year, the effects of the nematicide were still evident. Soybean plants in plots treated the first year, followed by corn, then soybean, yielded 1,044 kg/ha compared to 761 kg/ ha for soybean following 1 year of corn and 991 kg/ha for soybean following 2 years of corn. Plots planted to soybean for 3 consecutive years yielded 337 kg/ha. Nematicidal effects were no longer evident during the fourth year. Yields were most improved by the greatest number of years in the nonhost crop; highest yields in descending order were from plants following 3 years of corn, 2 years of corn, and 1 year of corn. Plots planted to soybean for 4 consecutive years yielded 130 kg/ha. Highly significant negative correlations occurred each year between initial nematode population densities and seed yield.  相似文献   

16.
Management of Meloidogyne incognita on soybean as affected by winter small grain crops or fallow, two tillage systems, and nematicides was studied. Numbers of M. incognita did not differ in plots planted to wheat and rye. Yields of soybean planted after these crops also did not differ. Numbers of M. incognita were greater in fallow than in rye plots, but soybean yield was not affected by the two treatments. Soybean yields were greater in subsoil-plant than in moldboard plowed plots. Ethylene dibromide reduced nematode population densities more consistently than aldicarb and phenamiphos. Also, ethylene dibromide increased yields the most and phenamiphos the least. There was a positive correlation (P = 0.001) of seed size (weight of 100 seeds) with yield (r = 0.79), indicating that factors affecting yield also affected seed size.  相似文献   

17.
Locations of syncytia induced by the soybean cyst nematode (SCN), Heterodera glycines race 3, were compared in roots of ''Essex'', a susceptible soybean (Glycine max (L.) Merr.) cultivar, at three soil water regimes. The plants were grown in wet (-5 to -20 kPa), moderately wet (-30 to -50 kPa), and moderately dry (-60 to -80kPa) autoclaved Captina silt loam soil (Typic Fragiudult). In the moderately dry soil, syncytia were found only in the stele, but in moderately wet and wet soils, syncytia occurred primarily in the cortex and occasionally in the stele. The location of syncytia in the cortical tissue of roots growing in wet and moderately wet soils may account for the tolerance of susceptible soybean cultivars grown under well-irrigated conditions where there is less interference with water transport through roots. Cell-wall perforations and dense cytoplasm were characteristic of syncytial cells observed in root tissues of all treatments.  相似文献   

18.
Several abiotic and biotic stresses can affect soybean in a growing season. Heterodera glycines, soybean cyst nematode, reduces yield of soybean more than any other pathogen in the United States. Field and greenhouse studies were conducted to determine whether preemergence and postemergence herbicides modified the reproduction of H. glycines, and to determine the effects of possible interactive stresses caused by herbicides and H. glycines on soybean growth and yield. Heterodera glycines reproduction factor (Rf) generally was less on resistant than susceptible cultivars, resulting in a yield advantage for resistant cultivars. The yield advantage of resistant cultivars was due to more pods per plant on resistant than susceptible cultivars. Pendimethalin reduced H. glycines Rf on the susceptible cultivars in 1998 at Champaign, Illinois, and in greenhouse studies reduced dry root weight of H. glycines-resistant and susceptible cultivars, therefore reducing Rf on the susceptible cultivars. The interactive stresses from acifluorfen or imazethapyr and H. glycines reduced the dry shoot weight of the resistant cultivar Jack in a greenhouse study. Herbicides did not affect resistant cultivars'' ability to suppress H. glycines Rf; therefore, growers planting resistant cultivars should make herbicide decisions based on weeds present and cultivar tolerance to the herbicide.  相似文献   

19.
The efficacy of abamectin as a seed treatment for control of Meloidogyne incognita on cotton was evaluated in greenhouse, microplot, and field trials in 2002 and 2003. Treatments ranging from 0 to 100 g abamectin/100 kg seed were evaluated. In greenhouse tests 35 d after planting (DAP), plants from seed treated with abamectin were taller than plants from nontreated seed, and root galling severity and nematode reproduction were lower where treated seed were used. The number of second stage juveniles that had entered the roots of plants from seed treated with 100 g abamectin/kg seed was lower during the first 14 DAP than with nontreated seed. In microplots tests, seed treatment with abamectin and soil application of aldicarb at 840 g/kg of soil reduced the number of juveniles penetrating seedling roots during the first 14 DAP compared to the nontreated seedlings. In field plots, population densities of M. incognita were lower 14 DAP in plots that received seed treated with abamectin at 100 g/kg seed than where aldicarb (5.6 kg/ha) was applied at planting. Population densities were comparable for all treatments, including the nontreated controls, at both 21 DAP and harvest. Root galling severity did not differ among treatments at harvest.  相似文献   

20.
A split-root technique was applied to soybean, Glycine max (L.) Merr. cv. Lee 68, to characterize the nature of the nodulation suppression by race 1 of the soybean cyst nematode (SCN), Heterodera glycines. Root-halves of each split-root plant were inoculated with Rhizobium japonicum, and one root-half only was inoculated with various numbers of SCN eggs. Nodulation (indicated by nodule number, nodule weights, and ratio of nodule weight to root weight) and nitrogen-fixing capacity (indicated by rate of acetylene reduction) were systemically and variously suppressed on both root-halves of the split-root plant 5 weeks after half-root inoculation with 12,500 SCN eggs. Inoculation with 500 eggs caused this suppression only on the SCN-infected (+NE) root-half; nodulation on the companion uninfected (-NE) root-half was stimulated slightly. The +NE root-halves inoculated with 5,000 eggs were excised at 2-week intervals; nodulation on the remaining -NE root-halves was not different from that of the noninoculated control when measured 6 weeks after the SCN inoculation. Thus, the systemic suppression of nodulation was reversible upon the removal of the SCN. Similarly, application of various levels of KNO₃ to the -NE root-halves of the split-root plant did not alleviate the suppressed nodulation on the companion +NE root-halves, even though plant growth was much improved at certain levels of nitrogen (125 μg N/g soil). This indicated that the localized suppression of nodulation by SCN was caused by factors in addition to poor plant growth.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号