首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The influence of resistant and susceptible potato cultivars on Globodera rostochiensis population density changes was studied at different nematode inoculum levels (Pi) in the greenhouse and field. Soil in which one susceptible and two resistant cultivars were grown and fallow soil in pots was infested with cysts to result in densities of 0.04-75 eggs/cm³ soil. A resistant cultivar was grown in an infested field with Pi of 0.7-16.7 eggs/cm³ soil. Pi was positively correlated with decline of soil population densities due to hatch where resistant potatoes were grown in the greenhouse and in the field but not in fallow soil. However, Pi was not correlated with in vitro hatch of G. rostochiensis cysts in water or potato root diffusate. Under continuous culture o f a resistant cultivar, viable eggs per cyst declined 60-90% per plant growth cycle (4 weeks) and the number of cysts containing viable eggs had decreased by 77% after five cycles. The rate of G. rostochiensis reproduction on both resistant and susceptible cultivars was negatively correlated with Pi. These data were used to predict the effect of resistant and susceptible potato cultivars on G. rostochiensis soil population dynamics.  相似文献   

2.
The reproduction of a Wyoming population of Heterodera schachtii was determined for resistant trap crop radish (Raphanus sativus) and mustard (Sinapis alba) cultivars, and resistant and susceptible sugar beet (Beta vulgaris) cultivars in a greenhouse (21 °C/16 °C) and a growth chamber study (25 °C). Oil radish cultivars also were field tested in 2000 and 2001. In the greenhouse study, reproduction was suppressed similarly by the resistant sugar beet cultivar Nematop and all trap crop cultivars (P ≤ 0.05). In the growth chamber study, the radish cultivars were superior to most of the mustard cultivars in reducing nematode populations. All trap crops showed less reproduction than Nematop (P ≤ 0.05). In both studies, Nematop and all trap crops had lower Pf than susceptible sugar beet cultivars HH50 and HM9155 (P ≤ 0.05). In field studies, Rf values of radish cultivars decreased with increasing Pi of H. schachtii (r² = 0.59 in 2000 and r² = 0.26 in 2001). In 2000, trap crop radish cv. Colonel (Rf = 0.89) reduced nematode populations more than cv. Adagio (Rf = 4.67) and cv. Rimbo (Rf = 13.23) (P ≤ 0.05) when Pi was lower than 2.5 H. schachtii eggs and J2/cm³ soil. There were no differences in reproductive factors for radish cultivars in 2001 (P ≤ 0.05); Rf ranged from 0.23 for Adagio to 1.31 for Commodore for all Pi.  相似文献   

3.
Cropping systems in which resistant potato cultivars were grown at different frequencies in rotation with susceptible cultivars and a nonhost (oats) were evaluated at four initial nematode population densities (Pi) for their ability to maintain Globodera rostochiensis at a target level of <0.2 egg/cm³ of soil. At a Pi of 0.1 to 1 egg/cm³ of soil, cropping systems with 2 successive years of a resistant cultivar every 3 years of potato production reduced and maintained G. rostochiensis at <0.2 egg/cm³ of soil. At a Pi of 1 to 4 eggs/cm³ of soil, 2 successive years of a resistant cultivar followed by 1 year of oats for every 4 years of production were necessary to reduce and maintain G. rostochiensis populations at <0.2 egg/cm³ of soil. At a Pi greater than 4 eggs/cm³ of soil, 2 successive years of a resistant cultivar plus 1 year of oats reduced G. rostochiensis densities to <0.2 egg/cm³ of soil, but the population increased above that density after cropping 1 year to a susceptible cultivar. The numbers of cysts and eggs per cyst in the final population (Pf) of G. rostochiensis were influenced by initial density and the frequency of growing a susceptible cultivar in a cropping system. The lowest number of cysts and eggs per cyst in the final G. rostochiensis population occurred with a cropping system consisting of 2 successive years of a resistant cultivar followed by oats with a susceptible cultivar grown the fourth year of production.  相似文献   

4.
The level of resistance to root-knot nematode, Meloidogyne incognita, in NemX, a new cultivar of the Acala-type upland cotton, was evaluated in relation to four resistant breeding lines (N6072, N8577, N901, and N903) and four susceptible cultivars (Maxxa, SJ2, Royale, and Prema). In growth pouch tests, an average of only 4 nematode egg masses was produced on roots of NemX or the resistant lines, compared to a significantly higher average of 21 on the susceptible cultivars. In pot tests, the nematode reproduction factor (RF = Pf/Pi) in NemX and the resistant lines averaged 0.7, compared to a significantly higher average of 10 on the susceptible cultivars. Root galling in NemX or other resistant cotton averaged 15%, compared to 74% on the susceptible cultivars, in either pot or field tests. In plots with low levels of nematode infestation (Pi ≤ 150 second-stage juveniles [J2]/500 g soil), lint yield of NemX averaged 1,370 kg/ha and was less than the yield of susceptible Maxxa (1,450 k g /h a ). However, in plots with medium or high levels of nematode infestation (Pi = 151-300 or >300 J2/500 g soil, respectively), yields of NemX decreased only slightly and averaged 1,300 or 1,050 kg/ha, respectively, whereas yields of Maxxa were severely reduced to 590 or 503 kg/ha, respectively. Fusarium wih symptoms were observed on both NemX and Maxxa, and percent occurrence increased with increasing preplant nematode density. In plots with the highest nematode densities, 22% of NemX and 65% of Maxxa plants were wilted. NemX was highly effective against five M. incognita isolates and moderately effective against a sixth isolate that had been exposed to resistant cotton over several seasons. These results showed that NemX is as resistant to M. incognita as the four breeding lines, and much more resistant than the tested susceptible cultivars of cotton.  相似文献   

5.
Fourteen plant species, including 30 genotypes, were assessed for host suitability to Meloidogyne megadora in a growth room at 20 to 28°C. Host suitability was based on the gall index (GI) and the reproduction factor (Rf):final population density (Pf)/initial population density (Pi). The presence of distinct galling was observed on roots of six plant species, and reproduction occurred on five of the 14 species tested. Three cultivars of cantaloupe (cvs. Branco do Ribatejo, Concerto, and Galia), three of cucumber (cvs. LM 809, Half Long Palmetto, and Market More), six of banana (cvs. Maçá, Ouro Branco, Ouro Roxo, Prata, Páo, and Valery), and one of broad bean (cv. Algarve) were considered susceptible (Pf/Pi > 1). Resistant cultivars (Pf/Pi = 0) included beet (cv, Crosby), pepper (cv. LM 204), watermelon (cvs. Black Magic and Crimson Sweet), tomato (cvs. Moneymaker and Rossol), radish (cv. Cherry Belle), and corn (cv. Dunia); sunn hemp and black velvetbean genotypes were also resistant. All Brassica cultivars were galled, although no egg masses were observed (Pf/Pi = 0), and classified as resistant/hypersensitive.  相似文献   

6.
The effect of increasing initial population density levels (Pi) of Meloidogyne incognita race 2 on nematode population development and yield of a susceptible (Prima2000) and resistant (LS5995) soybean cultivar was investigated. Two experiments, one in a hail net cage and one in microplots, were conducted one each during two consecutive growing seasons at Potchefstroom in the North West Province of South Africa. Nematode reproduction was assessed by determining the number of eggs and second-stage juveniles (J2) in the rhizosphere and roots, egg masses, egg-laying females (ELF) and reproduction factor (Rf) values per root system at harvesting 110 days after planting. Percentage yield reduction in the two cultivars was also calculated. Strong non-linear relationships existed between all nematode variables as well as between Pi and percentage yield loss in both cultivars for both experiments in this study. Significantly higher numbers of eggs and J2, egg masses and ELF were maintained in the roots of the nematode-susceptible Prima2000 than in the resistant LS5995 from Pi = 100 and higher in both experiments. Rf values were inversely related to Pi for both cultivars and were lowest on LS5995, with Prima2000 maintaining significantly higher Rf values in both experiments. Yield loss in LS5995 was at least six times higher than that of Prima2000. The difference in monetary terms is demonstrated, although it is suggested that host plant resistance to plant-parasitic nematodes may not be sufficient as the only management tool in highly infested soils or in rotation systems including nematode susceptible crops.  相似文献   

7.
Globodera rostochiensis population densities and potato root growth were measured in field plots of one susceptible and two resistant potato cultivars. Root growth and nematode densities were estimated from soil samples taken at three depths between plants within the rows, three depths 22.5 cm from the rows, and at two depths midway between rows (furrows). Four weeks after plant emergence (AE), nematode densities in the rows had declined 68% in plots of the susceptible cultivar and up to 75% in plots of both resistant cultivars. Significant decline in nematode densities in the furrows 4 weeks AE occurred only in plots of the susceptible cultivar. Total decline in nematode density in fallow soil was 50%, whereas in plots of the resistant cultivars, decline was more than 70% in the rows and more than 50% in the furrows. Nematode densities increased in the rows of the susceptible cultivar but declined in the furrows. We conclude that G. rostochiensis decline or increase is correlated with host resistance and the amount of roots present at any particular site.  相似文献   

8.
Effects of several population densities ofMeloidogyne incognita on the sweet potato cultivars Centennial (susceptible) and Jasper (moderately resistant) were studied. Field plots were infested with initial levels (Pi) of 0, 10, 100, 1,000, 5,000, and 10,000 eggs and juveniles/500 cm³ soil in 1980 and 0, 100, 1,000, 2,000, 3,000, 4,000, and 5,000 in 1981. M. incognita population development trends were similar on both cultivars; however, at high Pi, more eggs and juveniles were recovered from Centennial than from Jasper. The highest Pi did not result in the highest mid-season (Pm) counts. Pi was negatively correlated with the number of marketable roots and root weight but positively correlated with total cracked roots, percentage of cracked roots, and cracking severity. Jasper tolerated higher Pi with greater yields and better root quality than Centennial. Cracking of fleshy roots occurred with both cultivars at low Pi.  相似文献   

9.
Several abiotic and biotic stresses can affect soybean in a growing season. Heterodera glycines, soybean cyst nematode, reduces yield of soybean more than any other pathogen in the United States. Field and greenhouse studies were conducted to determine whether preemergence and postemergence herbicides modified the reproduction of H. glycines, and to determine the effects of possible interactive stresses caused by herbicides and H. glycines on soybean growth and yield. Heterodera glycines reproduction factor (Rf) generally was less on resistant than susceptible cultivars, resulting in a yield advantage for resistant cultivars. The yield advantage of resistant cultivars was due to more pods per plant on resistant than susceptible cultivars. Pendimethalin reduced H. glycines Rf on the susceptible cultivars in 1998 at Champaign, Illinois, and in greenhouse studies reduced dry root weight of H. glycines-resistant and susceptible cultivars, therefore reducing Rf on the susceptible cultivars. The interactive stresses from acifluorfen or imazethapyr and H. glycines reduced the dry shoot weight of the resistant cultivar Jack in a greenhouse study. Herbicides did not affect resistant cultivars'' ability to suppress H. glycines Rf; therefore, growers planting resistant cultivars should make herbicide decisions based on weeds present and cultivar tolerance to the herbicide.  相似文献   

10.
The effects of host genotype and initial nematode population densities (Pi) on yield of soybean and soil population densities of Heterodera glycines (Hg) race 3 and Meloidogyne incognita (Mi) race 3 were studied in a greenhouse and field microplots in 1983 and 1984. Centennial (resistant to Hg and Mi), Braxton (resistant to Mi, susceptible to Hg), and Coker 237 (susceptible to Hg and Mi) were planted in soil infested with 0, 31, or 124 eggs of Hg and Mi, individually and in all combinations, per 100 cm³ soil. Yield responses of the soybean cultivars to individual and combined infestations of Hg and Mi were primarily dependent on soybean resistance or susceptibility to each species separately. Yield of Centennial was stimulated or unaffected by nematode treatments, yield of Braxton was suppressed by Hg only, and yield suppressions caused by Hg and Mi were additive and dependent on Pi for Coker 237. Other plant responses to nematodes were also dependent on host resistance or susceptibility. Population densities of Mi second-stage juveniles (J2) in soil were related to Mi Pi and remained constant in the presence of Hg for all three cultivars. Population densities of Hg J2 on the two Hg-susceptible Cultivars, Braxton and Coker 237, were suppressed in the presence of Mi at low Hg Pi.  相似文献   

11.
Alternate planting dates and periodic destruction of the previous year''s soybean crop as well as 1-year bare fallow were used to establish a range of population densities ofHeterodera glycines for the subsequent year. Soybean cultivar Coker 156 (susceptible, moderately tolerant) was compared to cultivars Essex (susceptible, intolerant) and Bedford (resistant) to evaluate tolerance at different H. glycines population densities established through the previous year''s treatments. Yield of Coker 156 was consistently intermediate between yields of Bedford and Essex in 1986 and 1987. Yield of Essex was negatively correlated (P = 0.05) with preplant egg numbers of H. glycines in 1987, whereas yield of Bedford and Coker 156 were not related to nematode density. Reproduction of H. glycines was greater (P = 0.05) on the moderately tolerant Coker 156 than on either of the other cultivars.  相似文献   

12.
The feasibility of alternating use of resistant vs. susceptible flue-cured tobacco cultivars to improve control of Globodera tabacum subsp, solanacearum (TCN) was investigated at two Virginia locations in 1984-86. Post-harvest TCN population densities were reduced in each year of the study when fenamiphos was used with a TCN-resistant cultivar (NC 567), relative to susceptible cultivars (K 326 or Mc 944). Using NC 567 with fenamipbos also reduced preplant TCN population densities in the next growing season. Egg population densities before planting in 1986 were significantly lower in plots planted with NC 567 in 1984, even when a susceptible cultivar had been planted in 1985. Use of fenamiphos with NC 567 in 1984 and 1985 further reduced preplant egg population densities in 1986. Economic returns were significantly greater in 1984 when NC 567 was used with fenamiphos, rather than a susceptible cultivar. Treatments involving fenamiphos and (or) NC 567 in 1984 and 1985 resulted in higher economic returns in 1986 than did treatments using a susceptible cultivar without fenamiphos in both previous years. Economic returns were highest in 1986 when fenamiphos and NC 567 were used in 1984 and 1985 and a susceptible cultivar was planted in 1986.  相似文献   

13.
Reproduction of reniform nematode Rotylenchulus reniformis on 139 soybean lines was evaluated in a greenhouse in the summer of 2001. Cultivars and lines (119 total) were new in the Arkansas and Mississippi Soybean Testing Programs, and an additional 20 were submitted by C. Overstreet, Louisiana State Extension Nematologist. A second test of 32 breeding lines and 2 cultivars from the Clemson University soybean breeding program was performed at the same time under the same conditions. Controls were the resistant cultivars Forrest and Hartwig, susceptible Braxton, and fallow infested soil. Five treatment replications were planted in sandy loam soil infested with 1,744 eggs and vermiform reniform nematodes, grown for 10 weeks in 10 cm-diam.- pots. Total reniform nematodes extracted from soil and roots was determined, and a reproductive factor (final population (Pf)/ initial inoculum level (Pi)) was calculated for each genotype. Reproduction on each genotype was compared to the reproduction on the resistant cultivar Forrest (RF), and the log ratio [log₁₀(RF + 1) is reported. Cultivars with reproduction not significantly different from Forrest (log ratio) were not suitable hosts, whereas those with greater reproductive indices were considered suitable hosts. These data will be useful in the selection of soybean cultivars to use in rotation with cotton or other susceptible crops to help control the reniform nematode and to select useful breeding lines as parent material for future development of reniform nematode resistant cultivars and lines.  相似文献   

14.
Nine resistant processing tomato (Lycopersicon esculentum) cultivars and advanced lines were compared with four susceptible cultivars in 1,3-dichloropropene-fumigated and nontreated plots on Meloidogyne incognita-infested sites over 3 years. Yield of all resistant genotypes grown in nontreated and nematicide-treated plots did not differ and was greater than yield of susceptible genotypes. M. incognita initial soil population densities caused 39.3-56.5% significant (P = 0.05) yield suppressions of susceptible genotypes. Nematode injury to susceptible plants usually caused both fruit soluble solids content and pH to increase significantly (P = 0.05). Only trace nematode reproduction occurred on resistant genotypes in nontreated plots, whereas large population density increases occurred on susceptible genotypes. Slightly greater nematode reproduction occurred on resistant genotypes at the southern desert location, where soil temperature exceeded 30 C, than at other locations. At two locations resistant MOX 3076 supported greater reproduction than other resistant genotypes.  相似文献   

15.
Greenhouse and field microplot studies were conducted to compare soybean shoot and root growth responses to root penetration by Heterodera glycines (Hg) and Meloidogyne incognita (Mi) individually and in combination. Soybean cultivars Centennial (resistant to Hg and Mi), Braxton (resistant to Mi, susceptible to Hg), and Coker 237 (susceptible to Hg and Mi) were selected for study. In the greenhouse, pot size and number of plants per pot had no effect on Hg or Mi penetration of Coker 237 roots; root weight was higher in the presence of either nematode species compared with the noninoculated controls. In greenhouse studies using a sand or soil medium, and in field microplot studies, each cultivar was grown with increasing initial population densities (Pi) of Hg or Mi. Interactions between Hg and Mi did not affect early plant growth or number of nematodes penetrating roots. Root penetration was the only response related to Pi. Mi penetration was higher in sand than in soil, and higher in the greenhouse than in the field, whereas Hg penetration was similar under all conditions. At 14 days after planting, more second-stage juveniles were present in roots of susceptible than in roots of resistant plants. Roots continued to lengthen in the greenhouse in the presence of either Mi or Hg regardless of host genotype, but only in the presence of Mi in microplots; otherwise, responses in field and greenhouse studies were similar and differed only in magnitude and variability.  相似文献   

16.
The influence of soil texture on Soybean yield in the presence of Heterodera glycines was investigated by comparing yields of susceptible cultivars with a resistant cultivar for 2 years. Soybean yield was negatively correlated with increasing sand content (P = 0.05). Yields of susceptible cultivars were suppressed with increasing sand content. Final nematode population densities were lowest in plots with greatest sand content. Soybean infection by SCN, as determined by the number of cysts 30 days after planting, was not consistently related to soil texture over 2 years. Initial nematode population density was positively related to soybean yield the first year and negatively related to soybean yield the second, probably a result of greater yield suppression by H. glycines in plots with greater sand content.  相似文献   

17.
Greenhouse and growth chamber studies were established to determine if there are pathological and physiological differences among Meloidogyne hapla populations from California (CA), Nevada (NV), Utah (UT), and Wyoming (WY) on alfalfa cultivars classified as resistant or susceptible to root-knot nematodes. In the greenhouse, plant survival was not consistent with resistance classifications. While all highly resistant Nevada Synthetic germplasm (Nev Syn XX) plants survived inoculation with all nematode populations, two cultivars classified as moderately resistant (''Chief'' and ''Kingstar'') survived (P ≤ 0.05) inoculation with M. hapla populations better than did ''Lobo'' cultivar, which is classified as resistant. Plant growth of Nev Syn XX was suppressed by only the CA population, whereas growth of the other alfalfa cultivars classified as M. hapla resistant or moderately resistant was suppressed by all nematode populations. Excluding Nev Syn XX, all alfalfa cultivars were severely galled and susceptible to all nematode populations. Except for Nev Syn XX, reproduction did not differ among the nematode populations on alfalfa cultivars. Nev Syn XX was not as favorable a host to CA as were the other cultivars; but, it was a good host (reproductive factor [Rf] = 37). Temperature affected plant resistance; the UT and WY populations were more pathogenic at 15-25 C, and CA was more pathogenic at 30 C. Nev Syn XX was susceptible to all nematode populations, except for CA, at only 30 C, and all other alfalfa cultivars were susceptible to all nematode populations at all temperatures.  相似文献   

18.
Field experiments were conducted in 1982 and 1983 to assess interactions between Heterodera glycines and Pratylenchus scribneri on soybean in southern Illinois. Soybean cyst nematode susceptible cultivar Williams 79 and resistant cultivar Fayette were treated or not treated with aldicarb 15G. Initial population densities were 35 H. glycines cysts containing eggs, 100 P. scribneri, 30 Helicotylenchus pseudorobustus, 225 Paratylenchus projectus, and 85 Tylenchorhynchus martini per 250 cm³ soil in 1982, whereas in 1983 populations were 11 H. glycines cysts, 330 P. scribneri, and 620 H. pseudorobustus. In both years H. glycines populations increased on nontreated Williams 79, decreased on both treated and nontreated Fayette, and remained at initial levels on treated Williams 79. Recovery of P. scribneri per gram dry root was different between nontreated cultivars in 1982 but not in 1983. Aldicarb treatment suppressed soil and root populations of P. scribneri on both cultivars in both years. Populations of H. pseudorobustus, P. projectus, and T. martini at harvest indicated little population increase on either nontreated cultivar. In 1982 H. glycines caused yield suppression but P. scribneri did not, as differences in yield occurred between cultivars but not between aldicarb treatments. In 1983, however, there were no yield differences between cultivars, but aldicarb application resulted in yield increase in both cultivars. In 1983 the yield increase resulting from P. scribneri control was approximately 25%. No synergistic effect on yield was observed between H. glycines and P. scribneri.  相似文献   

19.
The response of two soybean plant introductions, PI 96354 and PI 417444, highly resistant to Meloidogyne incognita, to increasing initial soil population densities (Pi) (0, 31, 125, and 500 eggs/100 cm³ soil) of M. incognita was studied in field microplots for 2 years. The plant introductions were compared to the cultivars Forrest, moderately resistant, and Bossier, susceptible to M. incognita. Averaged across years, the yield suppressions of Bossier, Forrest, PI 417444, and PI 96354 were 97, 12, 18, and < 1%, respectively, at the highest Pi when compared with uninfested control plots. Penetration of roots by second-stage juveniles (J2) increased linearly with increasing Pi at 14 days after planting. At the highest Pi, 62% fewer J2 were present in roots of PI 96354 than in roots of the other resistant genotypes. Soil population densities of M. incognita were lower on both plant introductions than on Forrest. At 75 and 140 days after planting, PI 96354 had the lowest number of J2 in the soil, with 49% and 56% fewer than Forrest at the highest Pi. The resistance genes in PI 96354 should be useful in a breeding program to improve the level of resistance to M. incognita in soybean cultivars.  相似文献   

20.
Nine sources of resistance to Rotylenchulus reniformis in Gossypium (cotton) were tested by measuring population density (Pf) and root-length density 0 to 122 cm deep. A Pf in the plow layer less than the autumn sample treatment threshold used by consultants was considered the minimum criterion for acceptable resistance, regardless of population density at planting (Pi). Other criteria were ample roots and a Pf lower than on the susceptible control, as in pot studies. In a Texas field in 2001 and 2002, no resistant accessions had Pf less than the control but all did in microplots into which nematodes from Louisiana were introduced. An environmental chamber experiment ruled out nematode genetic variance and implicated unknown soil factors. Pf in field experiments in Louisiana, Mississippi, and Alabama were below threshold for zero, six and four of the accessions and above threshold in the control. Gossypium arboreum A2–87 and G. barbadense GB-713 were the most resistant accessions. Results indicate that cultivars developed from these sources will suppress R. reniformis populations but less than in pots in a single season.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号