首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The potential of Steinernema feltiae for the biological control of Lycoriella auripila was tested in commercial mushroom‐growing conditions. The nematodes, applied at rates of 1.5, 3, 6 or 12 x 10 6 infective juveniles per 34 kg tray of spawn‐run compost, were mixed into the casing material before it was spread over the compost surface. When compared with untreated control trays, any rate of nematode application significantly reduced fly emergence. Insecticides significantly reduced mushroom yields; nematodes significantly increased them. At a rate of 3 x 10 6 infectives/tray S. feltiae elicited mean total increases in the weight and numbers of mushrooms produced of 8% and 11% respectively. The nematodes also reduced the incidence of mushrooms spoiled by tunnelling sciarid larvae. The early decline in the numbers of nematodes persisting in casing was a trend that was reversed later, when evidence was obtained that S. feltiae was recycling in insects that had been killed. When applied at a rate of 3 ‐106infectives/tray of compost S. feltiae should provide reliable and cost‐effective biological control of L. auripila.  相似文献   

2.
The control potential of a strain (ScP) of Steinernema feltiae genetically selected against the mushroom sciarid Lycoriella solani, was evaluated for the management of L. mali. Trials were conducted at two commercial mushroom farms with high and low levels of fly infestation. The efficacy of the ScP strain was compared with the SN strain of S. feltiae and the chitin synthesis inhibitor, diflubenzuron. At low densities of L. mali, the two strains did not differ in efficacy and caused 85–94% reduction in fly populations. At high fly densities with a mixed infestation of the phorid fly, Megaselia halterata, the ScP stain caused 56–83% reduction in L. mali populations whereas the SN strain caused 51–73% reduction. Two doses of the improved strain (0.5 times 106 and 1.0 times 106 infective juveniles per m2 cropping area) did not differ in efficacy from diflubenzuron which caused 80% reduction in L. mali populations. The lower dose (0.5 times 106) of the SN strain was less effective than diflubenzuron. The ScP strain had a major advantage over the SN strain in persistence in casing material. Nematodes had no significant effect on mushroom yields.  相似文献   

3.
A method of selecting a Steinernema feltiae strain that is effective against a mushroom fly, Lycoriella solani, is described in detail. The pest control efficacy of the selected nematode strain was evaluated and compared with the efficacy of two unselected strains. The selection procedure was designed to give preference to nematode individuals with the greatest ability (1) to search effectively for the target insect larvae in their natural habitat, (2) to infect them shortly after application and (3) to reproduce in their haemocoel. Thirty‐four rounds of selection achieved a 4‐fold improvement in nematode ability to find and parasitize third‐ and fourth‐instar larvae of the pest in the mushroom substrate. In 24‐h laboratory experiments, mortality of the insect caused by nematode juveniles rose from 22.5%, recorded for the original unselected isolate, to 92.5% for the selected strain. In a 51‐day experiment conducted on a mixed age mushroom house population of L. solani, the enhanced pest control ability of the selected strain was detected shortly after nematode application and remained high throughout the experimental period. During the first 4 weeks of the trial the selected nematode strain was significantly better than both unselected strains and caused 91.1–92.7% reduction of the fly emergence from the mushroom substrate. No difference was observed between the efficacy of the selected nematodes applied at 1 × 106 and 3 ×106 infective juveniles per m2, while the unselected strains performed significantly better at the higher concentration. All the nematodes examined showed good persistence in the mushroom casing apparently due to recycling in the insect host.  相似文献   

4.
Field trials were conducted in Rheola Forest, Wales, Great Britain, to determine the effectiveness of Steinernema feltiae UK strain in controlling the web-spinning larch sawfly Cephalcia lariciphila. Foliar sprays at the rate of 5,000-20,000 nematodes/100 cm branch resulted in 3.4-29.4% infection of sawfly larvae. Soil application of 200 nematodes/cm² resulted in 61% infection of sawfly prepupae and 17.3% of pupae. Prepupal infection ranged from 4.8 to 14.7% 1 year after nematode application. Soil applications of this nematode show that it has potential for biological control of sawfly prepupae.  相似文献   

5.
The entomogenous nematode Steinernema feltiae was encapsulated in an alginate matrix containing a tomato seed. When these capsules were placed on 0.8% agar for 7 days, the seed germinated and ca. 20% of the nematodes escaped from the capsules, whereas only 0.1% escaped from capsules without seeds. When capsules containing nematodes and a seed were planted into sterilized or nonsterilized soil, nematodes escaped to infect Galleria mellonella larvae. When seed in capsules containing ca. 274 nematodes per capsule were planted in nonsterilized soil, Galleria mortality was 90% 1 week later. Galleria mortality declined to 27%, 23%, and 0% in weeks 2, 4, and 8 postplant, respectively. In sterilized soil, Galleria mortality was 96% and did not differ significantly from the nonsterilized soil in week 1, but was significantly higher in sterilized soil over nonsterilized soil for week 2 (81%) and week 4 (51%). When capsules containing nematodes only were used, Galleria mortality was 71% in sterilized soil 1 week after planting and 58%, 33%, and 12% in weeks 2, 4, and 8 postplant, respectively. In nonsterilized soil, Galleria mortality was 8%, 30%, 21%, and 28% after 1, 2, 4, and 8 weeks, respectively, using only encapsulated nematodes. When the number of nematodes per capsule was increased to ca. 817, Galleria mortality was 92 % or higher in sterilized soil from week 1 to week 4.  相似文献   

6.
The sciarid fly Lycoriella auripila is the major pest of mushrooms cultivated in the UK. Its larvae, which are capable of damaging the crop at all stages of production, may cause severe yield losses and can only be controlled with chemical pesticides. An indigenous isolate of the insect‐parasitic nematode Steinemema feltiae was tested as a biological control agent and its effects compared with two commonly used insecticides, diazinon and diflubenzuron. The timing of application of nematodes was found to affect their efficacy. When applied to compost during spawning, nematodes did not significantly reduce fly emergence, but they did if applied at casing when they were almost as effective as diflubenzuron. Diazinon incorporated into compost did not reduce fly emergence and was also the only treatment that did not lower the incidence of mushrooms spoiled by tunnelling of the larvae of L. auripila. When compared with untreated control plots those treated both with diazinon and diflubenzuron showed significant mean losses in yield of 10% in total weight and 17% in total numbers of mushrooms picked. In contrast, when S. feltiae was applied at casing significant mean increases in yield of 7% and 19%, respectively, were attained. Infective nematodes persisted well in casing, very few were found on sporophores.  相似文献   

7.
Median lethal concentrations (LC₅₀) were determined for four nematode populations (two strains of Steinernema feltiae, a S. feltiae hybrid, and S. bibionis) against fifth-instar fall armyworm (Spodoptera frugiperda) larvae and for the most virulent of these nematodes against different instars and stages of the insect. Based on lack of overlap of 95% fiducial limits, there were significant differences in virulence among the four nematodes. The LC₅₀ ranged from 7.6 to 33.3 nematodes/ 0.7 ml water, and slopes of the log dose-probit regression lines were similar except for the S. feltiae All strain. First-instar fall armyworms suffered virtually 100% mortality from the S. feltiae Mexican strain at 1.0 nematode/0.7 ml, and LC₅₀ were 2.3 and 7.9 nematodes/0.7 ml in third-instar and fifth-instar larvae, respectively. Pupae had 7-20% mortality at doses ranging from 30 to 60 nematodes/0.7 ml.  相似文献   

8.
9.
We investigated the existing susceptibility differences of the hazelnut weevil, Curculio nucum L. (Coleoptera:, Curculionidae) to entomopathogenic nematodes by assessing the main route of entry of the nematodes, Steinernema carpocapsae strain B14 and S. feltiae strain D114, into larvae and adult insects, as well as host immune response. Our results suggested that S. carpocapsae B14 and S. feltiae D114 primarily entered adult insects and larvae through the anus. Larvae were more susceptible to S. feltiae D114 than S. carpocapsae B14 and adults were highly susceptible to S. carpocapsae B14 but displayed low susceptibility to S. feltiae D114. Penetration rate correlated with nematode virulence. We observed little evidence that hazelnut weevils mounted any cellular immune response toward S. carpocapsae B14 or S. feltiae D114. We conclude the differential susceptibility of hazelnut weevil larvae and adults to S. carpocapsae B14 and S. feltiae D114 primarily reflected differences in the ability of these two nematodes to penetrate the host.  相似文献   

10.
The ability of Steinernema feltiae or Heterorhabditis bacteriophora infective juveniles (IJ), when applied to the soil surface, to infect a Galleria mellonella larva at the base of a soil-filled cup (276 cm³) was evaluated in the presence and absence of 100 larvae of a non-target insect, the aphid midge Aphidoletes aphidimyza, near the soil surface. In all four trials with either S. feltiae or H. bacteriophora, A. aphidimyza presence did not affect the number of IJ finding and infecting a G. mellonella larva. Steinernema feltiae and H. bacteriophora IJ movement (as measured by the percentage of IJ aggregating on either side of an experimental arena) in the presence of one or many A. aphidimyza larvae was evaluated in agar- and soil-filled petri dishes, respectively. Infective juvenile movement in the presence of A. aphidimyza did not differ from random, indicating that IJ were not attracted to A. aphidimyza. It is suggested, therefore, that A. aphidimyza does not reduce IJ efficacy when these two forms of biological control agent are present together in a field situation even though it is known that A. aphidimyza is susceptible to IJ of these species.  相似文献   

11.
Entomopathogenic nematodes (EPNs) from the Heterorhabditidae and Steinernematidae families are well-known biocontrol agents against numerous insect pests. The infective juveniles (IJs) are naturally occurring in the soil and their success in locating and penetrating the host will be affected by extrinsic/intrinsic factors that modulate their foraging behavior. Characterizing key traits in the infection dynamics of EPNs is critical for establishing differentiating species abilities to complete their life cycles and hence, their long-term persistence, in different habitats. We hypothesized that phenotypic variation in traits related to infection dynamics might occur in populations belonging to the same species. To assess these intraspecific differences, we evaluated the infection dynamics of 14 populations of Steinernema feltiae in two experiments measuring penetration and migration in sand column. Intraspecific variability was observed in the percentage larval mortality, time to kill the insect, penetration rate, and sex-ratio in both experiments (P < 0.01). Larval mortality and nematode penetration percentage were lower in migration experiments than in penetration ones in most of the cases. The sex-ratio was significantly biased toward female-development dominance (P < 0.05). When the populations were grouped by habitat of recovery (natural areas, crop edge, and agricultural groves), nematodes isolated in natural areas exhibited less larval mortality and penetration rates than those from some types of agricultural associated soils, suggesting a possible effect of the habitat on the phenotypic plasticity. This study reinforces the importance of considering intraspecific variability when general biological and ecological questions are addressed using EPNs.  相似文献   

12.
In a mushroom crop (Agaricus bisporus) affected by a very low level of sciarid fly (Lycoriella auripila) infestation, the effects of an indigenous isolate of insect-parasitic nematode (Steinernema feltiae) and of two commonly used insecticides (diazinon and diflubenzuron) were studied. When compared with untreated plots, nematodes applied to the casing had no adverse effects on mushroom yields whereas insecticides decreased yields. At a rate of 3 × 106 infective juveniles per tray (surface area = 0.56 m2), S. feltiae elicited increases of 28.5% and 19% in the mean total numbers and weights of mushrooms respectively. Treatment only with diflubenzuron resulted in 14.6% and 6% reductions in mean total numbers and weights of mushrooms, respectively; treatment with both diazinon and diflubenzuron caused 18.5% and 9.4% losses. Application of nematodes generally reduced the mean weight per mushroom whereas insecticides increased it; nematodes delayed the onset of mushroom production (first flush) whereas diflubenzuron delayed the third and fourth flushes. Nematode contamination of sporophores was minimal when S. feltiae was applied at casing. Although their numbers declined with time, the nematodes persisted, in the casing layer, throughout the cropping period of seven weeks. It is concluded that yield benefits associated with nematode application can result mainly from nematode effects on A. bisporus and not solely from suppression of a damaging pest population.  相似文献   

13.
14.
15.
A systematic program of genetic improvement was initiated by assessing the phenotypic variation of Steinernema feltiae strains for two traits assumed to limit efficacy: ultraviolet tolerance and host-finding ability. All of the strains assayed showed both low ultraviolet tolerance and poor host-finding ability, indicating that the likelihood of improving these traits through more extensive population sampling is remote. Limited genetic variation was detected among the strains for tolerance to ultraviolet, suggesting that selective breeding for increased tolerance would be inefficient. By contrast, highly significant phenotypic differences were found with regard to host-finding ability, suggesting that this trait would be responsive to selection. A genetically heterogeneous population was constructed by round-robin mating of 10 strains; it will serve as the foundation population for selective breeding.  相似文献   

16.
The entomopathogenic nematodes Steinernema feltiae (Biosys strain #27) and Heterorhabditis heliothidis were evaluated for the larval control of a mushroom-infesting sciarid, Lycoriella mali, and for the effects of these nematodes on mushroom (Agaricus bisporus) production. In a series of small-scale mushroom crops, infective-stage H. heliothidis and S. feltiae were applied to the mushroom casing surface in the irrigation water or incorporated into the casing material at densities ranging from 28 to 1120 and 11 to 1120 nematodes cm-2 of casing surface respectively. The mortality of L. mali larvae ranged from 52 to 100% for H. heliothidis and 38 to 100% for S. feltiae. Both nematode species reduced mycelial coverage on the casing surface at primordia initiation. Neither mushroom strain (off-white or white hybrid) or method of application (incorporation into or irrigation onto the casing surface) altered the effect on mycelial coverage. The nematodes's negative effect on mycelial growth confounded the benefit of fly control. At high nematode densities (up to 1120 nematodes cm-2), damage-free mushroom yields for the first week of harvest were less than those from the untreated control. However, at lower nematode densities, at or below 140 cm-2, the nematodes had less effect on mushroom growth, and consequently, damage-free mushroom yields for the first week of harvest were frequently greater than those from the untreated control. In the absence of flies, the first-week mushroom yield generally declined with increasing nematode densities for both white and off-white mushroom hybrids. After 4 weeks of harvest, accumulated mushroom yields had nearly recovered from the earlier decline.  相似文献   

17.
Monoxenic cultures of the nematode, Steinernema feltiae, were carried out on two complex liquid media: P1, mainly soybean flour/egg yolk/yeast extract, and P2, mainly egg yolk/yeast extract. Up to 140 000–200 000 nematodes ml–1 were produced within 7 days, and more than 95% of the final population was in the infective juvenile stage. The total nematode concentration growth curve had a sigmoidal shape. Nematode population growth kinetics were modelled using a re-parameterised Gompertz model. Yeast extract concentration appeared to be a key factor for obtaining high nematode concentrations.  相似文献   

18.
The insect-parasitic nematode, Steinernema feltiae Filipjev strain 42, was reared in liquid culture along with its bacterial symbiont, Xenorhabdus nematophilus Thomas &Poinar. First-stage juveniles developed into reproducing adults in a maintenance salts medium containing resuspended Xenorhabdus cells and the yeast Kluyveromyces marxianus (Hansen) van der Walt or cholesterol. Cultures with media depths greater than 4 mm required aeration. Nematode populations increased as bacterial density increased. An optimal culture system was obtained when the bacteria and nematodes developed in a semidefined medium containing tryptic soy, yeast extract, and cholesterol and were incubated on a rotary shaker at 25 ± 1 C. Under these conditions, up to 86% of the final population were infective juveniles.  相似文献   

19.
Respiration was measured in dauer stages of the insect-parasitic nematode Steinernema feltiae (= Neoaplectana carpocapsae) at 7, 17, and 27 C. Respiration, Q₁₀, and nematode viability were temperature dependent. Mean O₂ consumption for 5 × 10⁵ nematodes the first 24 hours was 0.27 ml at 7 C, 0.83 ml at 17 C, and 2.68 ml at 27 C. The Q₁₀ was 3.10 for 7-17 C and 3.24 for 17-27 C. Some nematodes died during 2, 14, and 21 days at 27, 17, and 7 C, respectively. The respiratory quotient was below 1 at all temperatures tested. A standard asymptotic model is expressed as oxygen consumed = 2.77 * {1 - exponent[-time * exponent(-B + C * temperature)]}; where 2.77 is the maximum response at 27 C. This model estimates nematode O₂ consumption and viability at storage temperatures between 7 and 27 C. The nematodes died when the O₂ concentration reached 0.5 ml/5 × 10⁵ nematodes. This model may be used to predict O₂ requirements of S. feltiae infective juveniles when stored as a waterless concentrate.  相似文献   

20.
Infective juveniles (J3) of the entomogenous nematodes Steinernema feltiae DD-136 (ca. 10,000 J3/100 ml) and S. glaseri (ca. 2,500 J3/100 ml) were incubated in steam-sterilized and nonsterilized sandy soil and bark compost for 8 weeks at 25 C. The nematodes were recovered by a two-step extraction procedure at 1-week intervals, and their infectivity to lepidopterous larvae (Spodoptera litura and Galleria mellonella) and their effect on the population and community of native nematodes in soil were determined. Survival of inoculated nematodes and mortality of insects were enhanced in sterilized media. Nonsterilized bark compost proved to be equally as suitable a medium as sterilized compost. In nonsterilized soil, the survival curve of S.feltiae declined more rapidly than that or S. glaseri which was less infective to insects despite its greater persistence even in nonsterilized soil. Soon after the addition of steinernematids to soil, the population of native nematodes showed a fluctuation with an increase in rhabditids and a decrease in other kinds of nematodes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号