首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Meloidogyne chitwoodi race 1 reproduced on Piper sudangrass (Sorghum bicolor (L.) Moench), 332 (sudangrass hybrid), and P855F and P877F (sorghum-sudangrass hybrids), but failed to reproduce efficiently on Trudan 8, Trudex 9 (sudangrass hybrids), and Sordan 79, SS-222, and Bravo II (sorghum-sudangrass hybrids). Meloidogyne chitwoodi race 2 behaved similarly and reproduced more efficiently on Piper, P855F, and P877F than on Trudan 8, Trudex 9, or Sordan 79. The mean reproductive factor for M. chitwoodi races on the poorer hosts ranged from <0.1 to 0.9 under greenhouse and field conditions. Meloidogyne hapla failed to reproduce on any of the cultivars tested. In the laboratory, leaves of each cultivar chopped and incorporated as green manure reduced the M. chitwoodi population in infested soil more than unamended or wheat green manure treatments. Trudan 8, although limited to the zone of incorporation, protected this zone from colonization of upward migrating second stage juveniles (J2) for up to 6 weeks. Leaves of Trudan 8 but not roots were effective against M. chitwoodi, and J2 appeared to be more sensitive than egg masses. Trudan 8 and Sordan 79 as green manure reduced M. chitwoodi in bucket microplots under field conditions.  相似文献   

2.
Most of the 15 carrot cultivars tested were moderate to good hosts to Meloidogyne chitwoodi race 1, whereas all except Orlando Gold were nonhosts or poor hosts for M. chitwoodi race 2. All carrot cultivars were good hosts for M. hapla. The plant weights of the carrot cultivars Red Cored Chantenay and Orlando Gold infected with either race of M. chitwoodi were significantly less than uninoculated checks in pots. Under field microplot conditions, however, detrimental effects on quality were rarely observed. M. hapla was pathogenic to both cultivars in the greenhouse and the field. The tolerance level of Orlando Gold to M. hapla was lower than Red Cored Chantenay.  相似文献   

3.
The reproductive factor (R = final egg density at 55 days ÷ 5,000, initial egg density) of Meloidogyne chitwoodi race 2 (alfalfa race) on 46 crop cultivars ranged from 0 to 130. The reproductive efficiency of M. chitwoodi race 1 (non-alfalfa race) and M. chitwoodi race 2 was compared on selected crop cultivars. The basic difference between the two races lay in their differential reproduction on Thor alfalfa and Red Cored Chantenay carrot. M. chitwoodi race 2 reproduced on alfalfa but not on carrot. Conversely, alfalfa was a poor host and carrots were suitable for M. chitwoodi race 1. Based on host responses to M. chitwoodi races and M. hapla, a new differential host test was proposed to distinguish the common root-knot nematode species of the Pacific Northwest.  相似文献   

4.
Responses of egg masses, free eggs, and second-stage juveniles (J2) ofMeloidogyne hapla and M. chitwoodi to ethoprop were evaluated. The results indicated that J2 were the most sensitive, followed by free eggs and egg masses. In general, M. chitwoodi was more susceptible to ethoprop than M. hapla. Ethoprop at 7.2 μg a.i./g soil protected tomato roots from upward migrating M. chitwoodi for 5 weeks. The zone of protection was extended to 10 and 20 cm below the root zone when 3.6 and 7.2 cm water were applied over 8 days. Ethoprop at 1.8, 3.6, and 7.2 μg a.i./g soil degraded faster and killed fewer M. chitwoodi J2 in potato field soil previously exposed to ethoprop than in unexposed soil or sterilized exposed soil. The enhanced biodegradation property of the exposed soil lasted 17 months after the last application of ethoprop. The limited downward movement of ethoprop in the soil, migration of M. chitwoodi J2 into the treated zone, presence of resistant life stage(s) at the time of application, and loss of efficacy due to enhanced biodegradation may have a significant effect on the performance of ethoprop.  相似文献   

5.
Second-stage juveniles (J2) of races 1 and 2 of Meloidogyne chiiwoodi and M. hapla readily penetrated roots of Thor alfalfa and Columbian tomato seedlings; however, few individuals of M. chitwoodi race 1 were able to establish feeding sites and mature on alfalfa. Histopathological studies indicate that J2 of race 1 either failed to initiate feeding sites or they caused cell enlargement without typical cell wall thickening. The protoplasm of these cells coagulated, and juveniles of race 1 did not develop beyond the swollen J2 stage. A few females of race 1 fed on small giant cells and deposited a few eggs at least 20 and 30 days later than M. chitwoodi race 2 and M. hapla, respectively. Failure of race 1 to establish feeding sites was related to egression of J2 from the roots. The M. chitwoodi race 1 J2 egression from alfalfa roots was higher than egression of race 2 and M. hapla. Egression of J2 of M. chitwoodi races 1 and 2 from tomato roots was similar and higher than that of M. hapla. Thus egression plays an important role in the host-parasite relationship of M. chitwoodi and alfalfa.  相似文献   

6.
The effect of the Mi gene on the reproductive factor of Meloidogyne chitwoodi and M. hapla, major nematode pests of potato, was measured on nearly isogenic tomato lines differing in presence or absence of the Mi gene. The Mi allele controlled resistance to reproduction of race 1 of M. chitwoodi and to one of two isolates of race 2. No resistance to race 3 of M. chitwoodi or to M. hapla was found. Variability in response to isolates of race 2 may reflect diversity of virulence genotypes heretofore undetected. Resistance to race 1 of M. chitwoodi could be useful in potato if the Mi gene were functional following transferral by gene insertion technology into potato. Since the Mi gene is not superior to RMc₁ derived from Solarium bulbocastanum, the transferral by protoplast fusion appears to offer no advantage.  相似文献   

7.
Legumes of the genera Astragalus (milkvetch), Coronilla (crownvetch), Lathyrus (pea vine), Lotus (birdsfoot trefoil), Medicago (alfalfa), Melilotus (clover), Trifolium (clover), and Vicia (common vetch) were inoculated with a population of Melaidogyne chitwoodi from Utah or with one of three M. hapla populations from California, Utah, and Wyoming.Thirty-nine percent to 86% of alfalfa (M. scutellata) and 10% to 55% of red clover (T. pratense) plants survived inoculation with the nematode populations at a greenhouse temperature of 24 ± 3°C. All plants of the other legume species survived all nematode populations, except 4% of the white clover (T. repens) plants inoculated with the California M. hapla population. Entries were usually more susceptible to the M. hapla populations than to M. chitwoodi. Galling of host roots differed between nematode populations and species. Root-galling indices (1 = none, 6 = severely galled) ranged from 1 on pea vine inoculated with the California population of M. hapla to 6 on yellow sweet clover inoculated with the Wyoming population of M. hapla. The nematode reproductive factor (Rf = final nematode population/initial nematode population) ranged from 0 for all nematode populations on pea vine to 35 for the Wyoming population of M. hapla on alfalfa (M. sativa).  相似文献   

8.
Hirsutella rhossiliensis and Verticillium chlamydosporium infected second-stage juveniles (J2) and eggs of Meloidogyne hapla, respectively, in petri dishes and in organic soil in pots planted to lettuce in the greenhouse. In vitro, H. rhossiliensis produced 78 to 124 spores/infected J2 of M. hapla. The number of J2 in roots of lettuce seedlings decreased exponentially with increasing numbers of vegetative colonies of H. rhossiliensis in the soil. At an infestation of 8 M. hapla eggs/cm³ soil, 1.9 colonies of H. rhossiliensis/cm³ soil were needed for a 50% decrease in J2 penetration of lettuce roots. Egg-mass colonization with V. chlamydosporium varied from 16% to 43% when soil was infested with 8 M. hapla eggs and treated with 5,000 or 10,000 chlamydospores of V. chlamydosporium/cm³ soil. This treatment resulted in fewer J2 entering roots of bioassay lettuce seedlings planted in the infested soils after harvesting the first lettuce plants 7 weeks after infestation with M. hapla. Hirsutella rhossiliensis (0 to 4.3 colonies/cm3 soil), V. chlamydosporium (500 to 10,000 chlamydospores/cm3 soil), or their combination, added to organic soils with 8 M. hapla eggs/cm³ soil, generally did not affect lettuce weight, root galling, or egg production of M. hapla. However, when lettuce was replanted in a mix of infested and uninfested soil (1:3 and 1:7, v:v), egg production was lower in soils with V. chlamydosporium than in soils without the fungus. Both fungi have potential to reduce the M. hapla population, but at densities below 8 eggs/cm³ soil.  相似文献   

9.
In a rapeseed-squash cropping system, Meloidogyne incognita race 1 and M. javanica did not enter, feed, or reproduce in roots of seven rapeseed cultivars. Both nematode species reproduced at low levels on roots of the third crop of rapeseed. Reproduction of M. incognita and M. javanica was high on squash following rapeseed, hairy vetch, and fallow. The application of fenamiphos suppressed (P = 0.05) root-gall indices on squash following rapeseed, hairy vetch, and fallow; and on Dwarf Essex and Cascade rapeseed, but not Bridger and Humus rapeseed in 1987. The incorporation of 30-61 mt/ha green biomass of rapeseed into the soil 6 months after planting did not affect the population densities of Criconemella ornata, M. incognita, M. javanica, Pythium spp., Rhizoctonia solani AG-4; nor did it consistently increase yield of squash. Hairy vetch supported larger numbers of M. incognita and M. javanica than rapeseed cultivars or fallow. Meloidogyne incognita and M. javanica survived in fallow plots in the absence of a host from October to May each year at a level sufficient to warrant the use of a nematicide to manage nematodes on the following susceptible crop.  相似文献   

10.
Single populations of Meloidogyne arenaria races 1 (MA1) and 2 (MA2) and M. hapla (MH), and mixed populations of MA1 + MA2 and MA1 + MH with four inoculum levels of eggs were tested on peanut cv. ''Florigiant'' and M. incognita-resistant tobacco cv. ''McNair 373'' in a greenhouse experiment. Root infection, female development, and reproduction of MA2 on peanut and MA1 on resistant tobacco were limited at 2 and 6 weeks. MA1, MH, and MA1 + MH on peanut had similar root infection (total parasitic forms per root unit) at both 2 and 6 weeks, and similar female development and reproduction potentials at 6 weeks. MA2 tended to depress root infection, female development, and reproduction of MA1 on peanut. MH had little effect on MA1 on this crop. On tobacco, MA2 population had greater incidence of root infection than did MH at 2 weeks. The two nematode species had similar development in roots at 6 weeks. All of these processes were restricted when either MA2 or MH was present together with MA1. As initial inoculum level of parasitically fit populations increased, relative infection ratio on both peanut and tobacco, and reproduction factor on peanut decreased. Populations that had high infection incidence and reproduction rates induced greater root galling than did other populations. Root galling was suppressed in the presence of antagonistic response between nematode populations.  相似文献   

11.
Progressive development in cotton root morphology of resistant A623 and susceptible M-8 cotton (Gossypium hirsutum L.) lines following infection by the root-knot nematode Meloidogyne incognita was studied in glass front boxes. Symptom development and radicle growth were observed; degree of galling, gall and egg mass diameter, and number of eggs per egg mass were recorded; and root segments were examined histologically. Small cracks caused by M. incognita appeared in the root epidermis and cortex soon after the cotyledons expanded on day 4. The cracks were longer and wider and extended through the cortex when the first true leaf became visible at day 8. Galls had formed on taproots by this time. When exposed to M. incognita, A623 had faster radicle growth (22%), fewer and smaller cracks in the root epidermis and cortex, fewer and smaller root galls, one-twelfth as many egg masses, and one-fourth as many eggs per egg mass as M-8. Root cracking, galling, and giant cell formation are major effects of M. incognita that may predispose cotton roots to pathogens resulting in synergistic interactions and diseases.  相似文献   

12.
This study examines the types of structural information that can be gained by utilizing the scanning electron microscope (SEM) and a cryofracture technique to examine the host-parasite interaction. Roots of tomato, Lycopersicon esculentum cv. Marglobe, were cultured aseptically and inoculated with the root-knot nematode, Meloidogyne incognita. Twenty-four hours to four weeks after inoculation, developing galls were removed from the cultures and processed for SEM observation. The cryofracture technique was used to reveal internal structural features within the developing galls. The results illustrate structural details concerning penetration of the roots, differentiation of syncytia, and development of the nematodes beginning with the second-stage larvae and ending with adult egg-laying females.  相似文献   

13.
Meloidogyne mayaguensis n. sp. is described and illustrated from specimens obtained from galled roots of eggplant, Solanum melongena L., from Puerto Rico. The perineal pattern of females is round to ovoid with fine, widely spaced striae. It has occasional breaks of striation laterally and a circular tail tip area lacking striae. The stylet, 15.8 μm long, has reniform knobs that merge gradually with the stylet shaft. Males have a high, rectangular, smooth head region, not set off from the body contour. The labial disc is continuous with the medial lips which do not slope posteriorly. The styler, 22.9 μm long, has large rounded backward sloping knobs; the shaft is of uneven diameter. Mean body length of second-stage juveniles is 453.6 μm. The truncate head region is not annulated, and the rounded, slightly raised labial disc and the crescentic medial lips form dumbbell-shaped lip structures. The stylet, 11.6 μm long, has rounded, posteriorly sloping knobs. The slender tail, 54.4 μm long, gradually tapers to a bluntly pointed tip. Tomato, tobacco, pepper, and watermelon are good hosts; cotton and peanut are not hosts. M. mayaguensis n. sp. reproduces by mitotic parthenogenesis and has a somatic chromosome number of 2n = 44-45. The enzyme patterns are unique among Meloidogyne species.  相似文献   

14.
Five isolates of M. hapla originating from the Netherlands and California were inbred by sequential transfer of single egg masses to produce six strains. Cytological examination showed that oocytes of these strains underwent meiosis and had n = 16 chromosomes. Strains were tested for ability to infect and to develop on several hosts by in vitro assays. The two strains from California infected tomato roots at a higher rate than those from the Netherlands, but no difference among strains was seen for ability to develop on tomato with or without the resistance gene Mi-1. All strains developed on the common bean cultivar Kentucky Wonder, but strains differed in ability to develop on the nematode-resistant cultivar NemaSnap. Strain-specific differences were also seen in ability to infect and to develop on Solanum bulbocastanum clone SB-22. Strain VW13, derived from nematodes treated with the mutagen EMS, was defective in ability to infect tomato and potato roots in vitro. Comparison of DNA using AFLP markers showed an average of 4% of the bands were polymorphic across the six strains, but no correlation was observed between the geographical origin or virulence and DNA polymorphism pattern.  相似文献   

15.
Stands of several cultivars and experimental lines of sainfoin (Onobrychis viciifolia) were severely reduced (92% average loss) in a field naturally infested with Meloidogyne hapla. Stands of two alfalfa cultivars included in the test were unaffected. In studies conducted in the greenhouse with plants inoculated at the time of seeding, average mortality was 55% for sainfoin entries and 7% for Ladak alfalfa. Little mortality occurred when plants were inoculated after establishment. Three months after inoculation, all sainfoin entries were heavily galled (range of 3.3-3.7 on a scale of 1-4) while roots of Ladak were only slightly galled (rating of 1.6). Intermating of plants selected in the field plots for resistance to M. hapla showed a slight increase in resistance. Of the 147 plant introduction lines tested in the greenhouse, none were resistant to M. hapla.  相似文献   

16.
Brassicaceous cover crops can be used for biofumigation after soil incorporation of the mowed crop. This strategy can be used to manage root-knot nematodes (Meloidogyne spp.), but the fact that many of these crops are host to root-knot nematodes can result in an undesired nematode population increase during the cultivation of the cover crop. To avoid this, cover crop cultivars that are poor or nonhosts should be selected. In this study, the host status of 31 plants in the family Brassicaceae for the three root-knot nematode species M. incognita, M. javanica, and M. hapla were evaluated, and compared with a susceptible tomato host in repeated greenhouse pot trials. The results showed that M. incognita and M. javanica responded in a similar fashion to the different cover cultivars. Indian mustard (Brassica juncea) and turnip (B. rapa) were generally good hosts, whereas most oil radish cultivars (Raphanus. sativus ssp. oleiferus) were poor hosts. However, some oil radish cultivars were among the best hosts for M. hapla. The arugula (Eruca sativa) cultivar Nemat was a poor host for all three nematode species tested. This study provides important information for chosing a cover crop with the purpose of managing root-knot nematodes.  相似文献   

17.
The Mi-1.2 resistance gene in tomato (Solanum lycopersicum) confers resistance against several species of root-knot nematodes (Meloidogyne spp.). This study examined the impact of M. javanica on the reproductive fitness of near-isogenic tomato cultivars with and without Mi-1.2 under field and greenhouse conditions. Surprisingly, neither nematode inoculation or host plant resistance impacted the yield of mature fruits in field microplots (inoculum=8,000 eggs/plant), or fruit or seed production in a follow-up greenhouse bioassay conducted with a higher inoculum level (20,000 eggs/plant). However, under heavy nematode pressure (200,000 eggs/plant), greenhouse-grown plants carrying Mi-1.2 had more than ten-fold greater fruit production than susceptible plants and nearly forty-fold greater estimated lifetime seed production, confirming prior reports of the benefits of Mi-1.2. In all cases Mi-mediated resistance significantly reduced nematode reproduction. These results indicated that tomato can utilize tolerance mechanisms to compensate for moderate levels of nematode infection, but that the Mi-1.2 resistance gene confers a dramatic fitness benefit under heavy nematode pressure. No significant cost of resistance was detected in the absence of nematode infection.  相似文献   

18.
Population dynamics of Meloidogyne chitwoodi were studied for 2 years in a commercial potato field and microplots. Annual second-stage juvenile (J2) densities peaked at harvest in mid-fall, declined through the winter, and were lowest in early summer. In the field and in one microplot study, population increase displayed trimodal patterns during the 1984 and 1985 seasons. Overwintering nematodes produced egg masses on roots by 600-800 degree-days base 5 C (DD₅) after planting. Second-generation and third-generation eggs hatched by 950-1,100 DD₅ and 1,500-1,600 DD₅, respectively, and J2 densities rapidly increased in the soil. A fourth generation was observed at 2,150 DD₅ in 1985 microplot studies. Tubers were initiated by 450-500 DD₅, but J2 were not observed in the tubers until after the second generation hatched at 988-1,166 DD₅. A second period of tuber invasion was observed when third generation J2 hatched. The regional variation in M. chitwoodi damage on potato may be explained by degree-day accumulation in different potato production regions of the western United States.  相似文献   

19.
White yam tissues naturally and artificially infected with root-knot nematodes were fixed, sectioned, and examined with a microscope. Infective second-stage juveniles of Meloidogyne incognita penetrated and moved intercellularly within the tuber. Feeding sites were always in the ground tissue layer where the vascular tissues are distributed in the tubers. Giant cells were always associated with xylem tissue. They were thin walled with dense cytoplasm and multinucleated. The nuclei of the giant cells were only half the size of those found in roots of infected tomato plants. Normal nematode growth and development followed giant cell formation. Females deposited eggs into a gelatinous egg mass within the tuber, and a necrotic ring formed around the female after eggs had been produced. Second-stage juveniles hatched, migrated, and re-infected other areas of the tuber. No males were observed from the tuber.  相似文献   

20.
The pathogenicity of two populations of the northern root-knot nematode, Meloidogyne hapla Chitwood, population 1 (P1) from alfalfa and population 2 (P2) from sainfoin, was studied on both alfalfa and sainfoin for 25 weeks. Alfalfa and sainfoin plants inoculated with P2 had significantly (P ≤ 0.05) higher mortality than plants inoculated with P1. Plant stands over all weeks for the uninoculated control, P1, and P2 were 90.5, 78.5, and 64.0% for alfalfa and 84.5, 51.0, and 41.0% for sainfoin, respectively. The increased virulence of P2 was again shown when means of plant species were combined (inoculation × week of count interaction). Plants inoculated with P2 had significantly higher mortality than either those inoculated with P1 or the uninoculated control beginning at week 7 and continuing through week 25. Plant stands over species at 25 weeks for the uninoculated control, P1, and P2 were 82.5, 29.0, and 18.0%, respectively. Sainfoin was significantly more susceptible to either population than alfalfa (plant species × week of count interaction). Separation between species first occurred after week 7 and continued until week 25. Percentages of plants remaining for alfalfa and sainfoin were 61.5 and 25.0 after 25 weeks. Significantly higher reproduction occurred in the alfalfa plants remaining after 25 weeks in P2 than in P1. Mean number of eggs per root system were 60,371 for P1 and 104,438 for P2, a difference of 42%. The results of this study indicate a need for breeders to adequately sample nematode populations present in the intended area of cultivar use and to design screening procedures to account for population pathogenicity variability.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号