首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Numbers of cyst and root-knot nematodes and percentage parasitism by the nematophagous fungus Hirsutella rhossiliensis were quantified in microplots over 2 years. The microplots contained either sugarbeets in loam infested with Heterodera schachtii or tomatoes in sand infested with Meloidogyne javanica. The fungus was added to half of the microplots for each crop. Although H. rhossiliensis established in both microplot soils, the percentage of nematodes parasitized did not increase with nematode density and nematode numbers were not affected by the fungus. The results indicate that long-term interactions between populations of the fungus and cyst or root-knot nematodes will not result in biological control.  相似文献   

2.
Pasteuria penetrans is a mycelial, endospore-forming, bacterial parasite that has shown great potential as a biological control agent of root-knot nematodes. Considerable progress has been made during the last 10 years in understanding its biology and importance as an agent capable of effectively suppressing root-knot nematodes in field soil. The objective of this review is to summarize the current knowledge of the biology, ecology, and biological control potential of P. penetrans and other Pasteuria members. Pasteuria spp. are distributed worldwide and have been reported from 323 nematode species belonging to 116 genera of free-living, predatory, plant-parasitic, and entomopathogenic nematodes. Artificial cultivation of P. penetrans has met with limited success; large-scale production of endospores depends on in vivo cultivation. Temperature affects endospore attachment, germination, pathogenesis, and completion of the life cycle in the nematode pseudocoelom. The biological control potential of Pasteuria spp. have been demonstrated on 20 crops; host nematodes include Belonolaimus longicaudatus, Heterodera spp., Meloidogyne spp., and Xiphinema diversicaudatum. Pasteuria penetrans plays an important role in some suppressive soils. The efficacy of the bacterium as a biological control agent has been examined. Approximately 100,000 endospores/g of soil provided immediate control of the peanut root-knot nematode, whereas 1,000 and 5,000 endospores/g of soil each amplified in the host nematode and became suppressive after 3 years.  相似文献   

3.
Recombinant DNA techniques have been used to introduce agronomically valuable traits, including resistance to viruses, herbicides, and insects, into crop plants. Introduction of these genes into plants frequently involves Agrobacterium-mediated gene transfer. The potential exists for applying this technology to nematode control by introducing genes conferring resistance to nematodes. Transferred genes could include those encoding products detrimental to nematode development or reproduction as well as cloned host resistance genes. Host genes that confer resistance to cyst or root-knot nematode species have been identified in many plants. The best characterized is Mi, a gene that confers resistance to root-knot nematodes in tomato. A map-based cloning approach is being used to isolate the gene. For development of a detailed map of the region of the genome surrounding Mi, DNA markers genetically linked to Mi have been identified and analyzed in tomato lines that have undergone a recombination event near Mi. The molecular map will be used to identify DNA corresponding to Mi. We estimate that a clone of Mi will be obtained in 2-5 years. An exciting prospect is that introduction of this gene will confer resistance in plant species without currently available sources of resistance.  相似文献   

4.
Among important nematode species occurring in Japan, current research achievements with the following four nematodes are reviewed: 1) Soybean cyst nematode (SCN), Heterodera glycines - breeding for resistance, race determination, association with Cephalosporium gregatum in azuki bean disease, and isolation of hatching stimulant. 2) Potato-cyst nematode (PCN), Globodera rostochiensis - pathotype determination (Ro 1), breeding for resistance, and control recommendations. 3) Pinewood nematode (PWN), Bursaphelenchus xylophilus - primary pathogen in pine wilt disease, life cycle exhibiting a typical symbiosis with Japanese pine sawyer, Monochamus alternatus, and project for control. 4) Rice root nematodes (RRN), Hirschmanniella imamuri and H. oryzae - distribution of species, population levels in roots, and role of these nematodes in rice culture.  相似文献   

5.
The significance of double crop (intercrop and sequential crop), single crop (rainy season crop fallow from June to September), and rotations on densities of Heterodera cajani, Helicotylenchus retusus, and Rotylenchulus reniformis was studied on Vertisol (Typic Pellusterts) between 1987 and 1993. Cowpea (Vigna sinensis), mungbean (Phaseolus aureus), and pigeonpea (Cajanus cajan) greatly increased the population densities of H. cajani and suppressed the population densities of other plant-parasitic nematodes. Mean population densities of H. cajani were about 8 times lower in single crop systems than in double crop systems, with pigeonpea as a component intercrop. Plots planted to sorghum, safflower, and chickpea in the preceding year contained fewer H. cajani eggs and juveniles than did plots previously planted to pigeonpea, cowpea, or mungbean. Continuous cropping of sorghum in the rainy season and safflower in the post-rainy season markedly reduced the population density of H. cajani. Sorghum, safflower, and chickpea favored increased population densities of H. retusus. Adding cowpea to the system resulted in a significant increase in the densities of R. reniformis. Mean densities of total plant-parasitic nematodes were three times greater in double crop systems, with pigeonpea as a component intercrop than in single crop systems with rainy season fallow component. Cropping systems had a regulatory effect on the nematode populations and could be an effective nematode management tactic. Intercropping of sorghum with H. cajani tolerant pigeonpea could be effective in increasing the productivity of traditional production systems in H. cajani infested regions.  相似文献   

6.
In-vitro methods were developed to test fungi for production of metabolites affecting nematode egg hatch and mobility of second-stage juveniles. Separate assays were developed for two nematodes: root-knot nematode (Meloidogyne incognita) and soybean cyst nematode (Heterodera glycines). For egg hatch to be successfully assayed, eggs must first be surface-disinfested to avoid the confounding effects of incidental microbial growth facilitated by the fungal culture medium. Sodium hypochlorite was more effective than chlorhexidine diacetate or formaldehyde solutions at surface-disinfesting soybean cyst nematode eggs from greenhouse cultures. Subsequent rinsing with sodium thiosulfate to remove residual chlorine from disinfested eggs did not improve either soybean cyst nematode hatch or juvenile mobility. Soybean cyst nematode hatch in all culture media was lower than in water. Sodium hypochlorite was also used to surface-disinfest root-knot nematode eggs. In contrast to soybean cyst nematode hatch, root-knot nematode hatch was higher in potato dextrose broth medium than in water. Broth of the fungus Fusarium equiseti inhibited root-knot nematode egg hatch and was investigated in more detail. Broth extract and its chemical fractions not only inhibited egg hatch but also immobilized second-stage juveniles that did hatch, confirming that the fungus secretes nematode-antagonistic metabolites.  相似文献   

7.
Plant-parasitic nematodes are important pathogens of intensely-managed turf used on golf courses. Two of these nematodes that are common in the southeastern US are Belonolaimus longicaudatus and Mesocriconema ornata. Currently, there is a lack of effective treatments that can be used to manage these important pests. Turfgrass field trials evaluated DL-methionine as a turfgrass nematicide against B. longicaudatus and M. ornata. One trial was on a bermudagrass putting green, the other was on zoysiagrass maintained under putting-green conditions. Two rates of methionine, 1120 kg/ha in a single application, and 112 kg/ha applied twice four weeks apart, were compared with untreated control and fenamiphos treatments. Measurements collected included soil nematode counts, turf density, and root lengths. In both trials, 1120 kg/ha of methionine reduced numbers of both nematode species (P ≤ 0.1), and 112 kg/ha of methionine reduced numbers of both nematode species after two applications. Bermudagrass turf density responded favorably to both methionine rates and root lengths were improved by the 1120 kg/ha rate. Zoysiagrass showed short-term phytotoxicity to methionine, but quickly recovered and treated plots were improved compared to the untreated controls by the end of the trial. These trials indicated that methionine has potential for development as a turfgrass nematicide, but further research is needed to determine how it can best be used.  相似文献   

8.
Fifty-two alfalfa (Medicago sativa L.) clones, randomly selected from the cultivar Baker and the experimental line MNGRN-4, were evaluated for resistance (based on nematode reproduction) to Pratylenchus penetrans in growth chamber tests (25 C). Twenty-five clones, representing the range of nematodes and eggs per plant, were selected and retested. Four moderately resistant and two susceptible alfalfa clones were identified. Inheritance of resistance to P. penetrans was studied in these six clones using a diallel mating design. The S₁, Fl, and reciprocal progenies differed for numbers of nematodes and eggs per g dry root and for shoot and root weights (P < 0.05). Resistance, measured as numbers of nematodes in roots, was correlated between parental clones and their S₁ families (r = 0.94), parental clones and their half-sib families (r = 0.81), and S₁ and half-sib families (r = 0.88). General combining ability (GCA) effects were significant for nematode resistance traits. Both GCA and specific combining ability (SCA) effects were significant for plant size traits, but SCA was more important than GCA in predicting progeny plant size. Reciprocal effects were significant for both nematode resistance and plant size traits, which may slow selection progress in long-term selection programs. However, the GCA effects are large enough that breeding procedures that capitalize on additive effects should be effective in developing alfalfa cultivars with resistance to P. penetrans.  相似文献   

9.
Root-knot and cyst nematodes are biotrophic parasites that invade the root apex of host plants and migrate toward the vascular cylinder where they cause the differentiation of root cells into galls (or root-knots) containing hypertrophied multinucleated giant-feeding cells, or syncytia, respectively. The precise molecular mechanisms that drive the formation of such unique nematode feeding sites are still far-off from being completely understood. The diverse gene expression changes occurring within the host cells suggest that both types of plant-parasitic nematodes modulate a variety of plant processes. Induction and repression of genes belonging to the host cell cycle control machinery have shown to be essential to drive the formation of such specialized nematode feeding cells. We demonstrate that nematodes usurp key components regulating the endocycle in their favor. This is illustrated by the involvement of anaphase-promoting complex (APC) genes (CCS52A and CCS52B), the endocycle repressor DP-E2F-like (E2F/DEL1) gene and the ROOT HAIRLESS 1 PROTEIN (RHL1), which is part of a multiprotein complex of the toposiomerase VI, in the proper formation of nematode feeding sites. Altering the expression of these genes in Arabidopsis plants by down- or overexpressing strategies strongly influences the extent of endoreduplication in both types of nematode feeding site leading to a disturbance of the nematode’s life cycle and reproduction.  相似文献   

10.
The first internally transcribed spacer region (ITS1) from cyst nematode species (Heteroderidae) was compared by nucleotide sequencing and PCR-RFLP. European, Asian, and North American isolates of five heterodefid species were examined to assess intraspecific variation. PCR-RFLP patterns of amplified ITS1 DNA from pea cyst nematode, Heterodera goettingiana, from Northern Ireland were identical with patterns from Washington State. Sequencing demonstrated that ITS1 heterogeneity existed within individuals and between isolates, but did not result in different restriction patterns. Three Indian and two U.S. isolates of the corn cyst nematode, Heterodera zeae, were compared. Sequencing detected variation among ITS1 clones from the same individual, between individuals, and between isolates. PCR-RFLP detected several restriction site differences between Indian and U.S. isolates. The basis for the restriction site differences between isolates from India and the U.S. appeared to be the result of additional, variant ITS1 regions amplified from the U.S. isolates, which were not found in the three India isolates. PCR-RFLP from individuals of the U.S. isolates created a composite pattern derived from several ITS1 types. A second primer set was specifically designed to permit discrimination between soybean (H. glycines) and sugar beet (H. schachtii) cyst nematodes. Fok I digestion of amplified product from soybean cyst nematode isolates displayed a uniform pattern, readily discernible from the pattern of sugar beet and clover cyst nematode (H. trifolii).  相似文献   

11.
Plant-parasitic nematodes are obligate parasites, and planting cultivars that are highly resistant to these organisms places extensive selection pressure on the target species and affects nontarget nematodes as well. Problems encountered with long-term planting of cultivars resistant to nematodes include shifts in nematode races or species and the occurrence of multiple species of nematodes within the same field. These problems can be alleviated to some extent when crop management is used to lessen the selection pressure for change on the nematode populations. Race shifts within populations and possibly shifts between nematode species can be delayed by rotating susceptible cultivars and nonhost crops with resistant cultivars. Nematicides in conjunction with resistant cultivars may be used to limit damage by multiple species of nematodes. Some cultivars have resistance to multiple species of nematodes, but greatly increased research effort is needed in this area. More intensive plant breeding effort will be required to make nematode resistant cultivars competitive in quality and yield with more productive, susceptible cultivars.  相似文献   

12.
Allelopathy in the Management of Plant-Parasitic Nematodes   总被引:1,自引:0,他引:1  
There are numerous reports of nematicidal chemicals in crude plant homogenates, leachates, and decomposing residues. These compounds are usually assumed to be secondary metabolites, which serve as chemical defenses against disease and parasites. When such compounds are released into the rhizosphere, they are known as allelochemicals. The possibility exists to exploit allelochemicals for nematode control, and there have been many attempts to use this approach either by rotation, intercropping, or green manure treatments. Results have met with mixed success. Proof of allelochemical activity in field situations is difficult to obtain, but it is evident that some rotation crops are significantly better at reducing nematode populations than others. Rotations with non-host plants may simply deny the nematode population an adequate food source for reproduction (passive suppression), whereas allelopathic crops kill nematodes by the production of toxic compounds (active suppression). Progress toward sustainable agriculture should benefit from studies on allelopathic nematode control. However, grower acceptance of new plant-rotation strategies are based on economic and logistical considerations as well as efficacy. A potential practical application of allelopathic nematode control that involves using rapeseed as a green manure crop to reduce populations of Xiphinema americanum sensu lato in temperate orchards is presented.  相似文献   

13.
Transmission of pinewood nematode through Monochamus carolinensis oviposition wounds was documented. Nematode transmission was measured as the average number of nematodes isolated per oviposition wound excavated and also as the percentage of oviposition wounds from which nematodes were isolated. The influence of three factors that might affect nematode transmission was investigated: age of the beetle vector, number of nematodes carried per beetle, and egg deposition in the oviposition wound. Only the number of nematodes carried by the beetle was found to have a significant effect on transmission. Nematodes were transmitted more frequently and in slightly greater numbers by beetles carrying more nematodes. The influence of pinewood on nematode exit from beetles were investigated by comparing nematode exit from beetles placed over pine chips with those placed over distilled water. Nematodes exited in greater numbers and at a higher frequency from beetles over pine chips than from beetles over distilled water. Apparently, the nematodes are able to detect a factor from the pine chips that promotes their exit from the beetles.  相似文献   

14.
Avermectins are macrocyclic lactones produced by Streptomyces avermitilis. Abamectin is a blend of B1a and B1b avermectins that is being used as a seed treatment to control plant-parasitic nematodes on cotton and some vegetable crops. No LD50 values, data on nematode recovery following brief exposure, or effects of sublethal concentrations on infectivity of the plant-parasitic nematodes Meloidogyne incognita or Rotylenchulus reniformis are available. Using an assay of nematode mobility, LD50 values of 1.56 μg/ml and 32.9 μg/ml were calculated based on 2 hr exposure for M. incognita and R. reniformis, respectively. There was no recovery of either nematode after exposure for 1 hr. Mortality of M. incognita continued to increase following a 1 hr exposure, whereas R. reniformis mortality remained unchanged at 24 hr after the nematodes were removed from the abamectin solution. Sublethal concentrations of 1.56 to 0.39 μg/ml for M. incognita and 32.9 to 8.2 μg/ml for R. reniformis reduced infectivity of each nematode on tomato roots. The toxicity of abamectin to these nematodes was comparable to that of aldicarb.  相似文献   

15.
Longidorus breviannulatus was detected in a field planted to corn after 13 years of potato. Nematode populations were maintained in this field in adjacent corn and potato plots for 2 years but did not increase significantly on either crop. Population levels increased until approximately 60 days after planting and then declined until the end of the growing season. Overwinter mortality was negligible. The vertical distribution of the nematode population changed during the course of the season. More nematodes were recovered from depths of 0-15 cm in early season samples and from depths of 15-30 cm in late season samples. Data indicated that this redistribution was due to nematode migration.  相似文献   

16.
Cut flower producers currently have limited options for nematode control. Four field trials were conducted in 2006 and 2007 to evaluate Midas® (iodomethane:chloropicrin 50:50) for control of root-knot nematodes (Meloidogyne arenaria) on Celosia argentea var. cristata in a commercial floriculture production field in southeastern Florida. Midas (224 kg/ha) was compared to methyl bromide:chloropicrin (98:2, 224 kg/ha), and an untreated control. Treatments were evaluated for effects on Meloidogyne arenaria J2 and free-living nematodes in soil through each season, and roots at the end of each season. Plant growth and root disease were also assessed. Population levels of nematodes isolated from soil were highly variable in all trials early in the season, and generally rebounded by harvest, sometimes to higher levels in fumigant treatments than in the untreated control. Although population levels of nematodes in soil were not significantly reduced during the growing season, nematodes in roots and galling at the end of the season were consistently reduced with both methyl bromide and Midas compared to the untreated control. Symptoms of phytotoxicity were observed in Midas treatments during the first year and were attributed to Fe toxicity. Fertilization was adjusted during the second year to investigate potential fumigant/fertilizer interactions. Interactions occurred at the end of the fourth trial between methyl bromide and fertilizers with respect to root-knot nematode J2 isolated from roots and galling. Fewer J2 were isolated from roots treated with a higher level of Fe (3.05%) in the form of Fe sucrate, and galling was reduced in methyl bromide treated plots treated with this fertilizer compared to Fe EDTA. Reduced galling was also seen with Midas in Fe sucrate fertilized plots compared to Fe EDTA. This research demonstrates the difficulty of reducing high root-knot nematode population levels in soil in subtropical conditions in production fields that have been repeatedly fumigated. Although soil population density may remain stable, root population density and disease can be reduced.  相似文献   

17.
Meloidogyne incognita causes more damage to cotton in the US than any other pathogen. The objective of this study was to document the cumulative effect of moderate resistance on M. incognita population density, root galling, and yield suppression in the southern United States on a moderately resistant cotton genotype grown continuously for three years. Cotton genotypes were Phytogen PH98-3196 (77% suppression of M. incognita), Acala NemX (85% suppression of M. incognita), and Delta and Pine Land DP458 B/R (susceptible standard, 0% suppression). Cotton was grown in fumigated and non-fumigated plots to measure yield loss. Each genotype and nematicide combination was planted in the same place for three years at two sites to document cumulative effects. In 2006, following three years of the different genotypes, all plots at one site were planted with susceptible cotton to document residual effects of planting resistant genotypes. Root galling and nematode population densities in the soil were significantly lower, and percentage yield suppression was numerically lower, when moderately resistant cotton was grown compared to the susceptible standard in both fields in all three years. Differences between susceptible and moderately resistant genotypes are established quickly (after only one season) and then either maintained at similar levels or slightly increased in subsequent years depending on initial nematode levels. However, when susceptible cotton was grown following three years of the moderately resistant genotypes, the nematode suppression provided by moderate resistance was undetectable by the end of the first season. Moderately resistant cotton genotypes are more beneficial than previously reported and should be pursued for nematode management. Rotation of moderately resistant and susceptible cotton could be used along with nematicides to manage root-knot nematodes in a continuous cotton cropping system and reduce selection pressure on the nematodes.  相似文献   

18.
Tobacco, eastern black nightshade, and tomato were grown for 3 to 13 weeks to assess differences in invasion, development, and soil density of Globodera tabacum tabacum (tobacco cyst nematode) in field plots and microplots over three seasons. Tobacco cyst nematodes invaded roots of resistant and susceptible tobacco, nightshade, and tomato. Nematode development was fastest in nightshade and slowest in tomato, and few adults developed in roots of nematode-resistant tobacco. Soil populations of tobacco cyst nematodes were reduced up to 80% by destroying nightshade or susceptible tobacco grown for 3 to 6 weeks. Nematode populations were reduced up to 96% by destroying tomato or resistant tobacco grown for 3 to 6 weeks. Timing of crop destruction was less critical with tomato and resistant tobacco, as nematode populations did not increase after 13 weeks of growth. These studies demonstrate that trap cropping, through crop destruction, can significantly reduce G. t. tabacum populations.  相似文献   

19.
The effect of soybean genotype on competition between Meloidogyne incognita race 2 (Mi) and Rotylenchulus reniformis (Rr) was evaluated in greenhouse and microplot replacement series experiments. Soil in pots containing seedlings of ''Davis'' (susceptible to Mi) or ''Buckshot 66'' (resistant to Mi) was infested with 1,000 vermiform individuals in the following Mi:Rr ratios: 0:0, 100:0, 75:25, 50:50, 25:75, or 0:100. After 91 days, the relative nematode yields (number of nematodes in mixed culture divided by the number in nonmixed culture) of each species were calculated based on soil and root nematode populations expressed as nematodes per gram of dry root tissue. To define the relationship between the two species, calculated relative nematode yields were compared with a theoretical noncompetition model using lack-of-fit regression. In the greenhouse, Mi populations on ''Davis'' were stimulated in the presence of Rr. In microplots, low Mi and Rr population densities likely resulted from severe galling and destruction of feeder roots that probably occurred early in the season. Enhanced susceptibility to Mi was not observed on ''Buckshot 66'', which remained resistant to Mi even when colonized by Rr. Host resistance is a key factor in determining the nature of the relationship between Mi and Rr.  相似文献   

20.
Field trials were conducted in Rheola Forest, Wales, Great Britain, to determine the effectiveness of Steinernema feltiae UK strain in controlling the web-spinning larch sawfly Cephalcia lariciphila. Foliar sprays at the rate of 5,000-20,000 nematodes/100 cm branch resulted in 3.4-29.4% infection of sawfly larvae. Soil application of 200 nematodes/cm² resulted in 61% infection of sawfly prepupae and 17.3% of pupae. Prepupal infection ranged from 4.8 to 14.7% 1 year after nematode application. Soil applications of this nematode show that it has potential for biological control of sawfly prepupae.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号