首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 7 毫秒
1.
2.
A prenatal diagnosis of adult polycystic kidney disease (ADPKD) by DNA testing is reported. Evidence showing a linkage between the disease and the DNA markers on chromosome 16 was obtained in the family by linkage analysis and homogeneity testing with Italian families of the linked type. Prenatal diagnosis was performed either by polymerase chain reaction (PCR) of GGG1 fragment either by Southern blotting analysis of the others chromosome 16 markers. Diagnostic results were available by PCR analysis in a few hours and then were confirmed by Southern blotting of the others probes. The foetus was monitored by ultrasounds. At 26th week the foetal kidney were enlarged with small cysts and, at birth, the newborn had bilateral renal cysts, confirming the foetal genotype prediction based on flanking markers.  相似文献   

3.
4.
Until recently, the nature of the molecules involved in inherited cystic disease of the kidney remained unknown. These diseases are characterized by the development of multiple abnormal fluid-filled sacs or dilations in the kidney parenchyma, often leading to significant renal failure. The recent characterization of the PKD1 gene product and of other genes involved in murine polycystic models underscores the complexity of the pathways that lead to renal cystic disease.  相似文献   

5.
Apoptosis is the process of programmed cell death. It is a ubiquitous, controlled process consuming cellular energy and designed to avoid cytokine release despite activation of local immune cells, which clear the cell fragments. The process occurs during organ development and in maintenance of homeostasis. Abnormalities in any step of the apoptotic process are associated with autoimmune diseases and malignancies. Polycystic kidney disease (PKD) is the most common inherited kidney disease leading to end-stage renal disease (ESRD). Cyst formation requires multiple mechanisms and apoptosis is considered one of them. Abnormalities in apoptotic processes have been described in various murine and rodent models of PKD as well as in human PKD kidneys. The purpose of this review is to outline the role of apoptosis in progression of PKD as well as to describe the mechanisms involved. This article is part of a Special Issue entitled: Polycystic Kidney Disease.  相似文献   

6.
Polycystic kidney diseases (PKDs) comprise a large group of genetic disorders characterized by formation of cysts in the kidneys and other organs, ultimately leading to end-stage renal disease. Although PKDs can be caused by mutations in different genes, they converge on a set of common molecular mechanisms involved in cystogenesis and ciliary dysfunction, and can be qualified as ciliopathies. Recent advances in understanding the mechanisms regulating disease progression have led to the development of new therapies that are being tested in both preclinical and clinical trials. In this article, we briefly review a network of molecular pathways of cystogenesis that are regulated by ciliary functions. We discuss the mTOR pathway in depth, highlighting recent progress in understanding its role in PKD and the current results of clinical trials.  相似文献   

7.
8.
Polycystic kidney disease (PKD) is one of the most prevalent causes of heritable renal failure. The disease is characterized by the occurrence of numerous fluid-filled cysts within the parenchyma of kidney. The cysts are epithelial in origin and expand in size, leading to crowding of normal kidney tissue. Ultimately, there is gross enlargement of the kidneys with loss of normal functions, and death usually occurs because of complications related to renal failure. Animal models of polycystic kidney disease are proving to be extremely useful for studying the molecular basis of renal cyst formation and for the isolation of genes carrying the mutations. This article describes the various animal models of polycystic kidney disease, spontaneously and experimentally derived, that have recently been identified.  相似文献   

9.
Sphingolipids and glycosphingolipids are classes of structurally and functionally important lipids that regulate multiple cellular processes, including membrane organization, proliferation, cell cycle regulation, apoptosis, transport, migration, and inflammatory signalling pathways. Imbalances in sphingolipid levels or subcellular localization result in dysregulated cellular processes and lead to the development and progression of multiple disorders, including polycystic kidney disease. This review will describe metabolic pathways of glycosphingolipids with a focus on the evidence linking glycosphingolipid mediated regulation of cell signalling, lipid microdomains, cilia, and polycystic kidney disease. We will discuss molecular mechanisms of glycosphingolipid dysregulation and their impact on cystogenesis. We will further highlight how modulation of sphingolipid metabolism can be translated into new approaches for the treatment of polycystic kidney disease and describe current clinical studies with glucosylceramide synthase inhibitors in Autosomal Dominant Polycystic Kidney Disease.  相似文献   

10.
11.
12.
A transcriptional network in polycystic kidney disease   总被引:11,自引:0,他引:11  
  相似文献   

13.
Epithelial cell polarity is essential for the establishment and maintenance of morphological and functional asymmetries that underlie normal renal structure and function and are brought about by the appropriate delivery of growth factor receptors and ion and fluid transporters and channels to apical or basolateral cell membranes. The fundamental process of cellular polarization is established early during development and is controlled by sets of evolutionarily conserved proteins that integrate intrinsic and extrinsic polarity cues. Specialized structural domains between adjacent cells and cells with their matrix, termed adherens junctions (AJ) and focal adhesions (FA), respectively, are formed that contain specific components of multi-molecular complexes acting as sites to recruit proteins and to activate intracellular mechano-transduction pathways. Regulation of these processes results in tight spatio-temporal control of renal tubule growth and lumen diameter. Abnormalities in macromolecular polarization complexes lead to a variety of diseases in different organs, a common example of which is Polycystic Kidney Disease (PKD), where epithelial cysts replace normal renal tubules. Membrane protein polarity defects in Autosomal Dominant (AD) PKD include the mis-polarization of normally basolateral membrane proteins to apical, lumenal membranes, such as epidermal growth factor (EGFR/ErbB) receptors and Na+K+-ATPase-α1 subunit; mis-polarization of normally apical membrane proteins to basolateral membranes, including the Na+K+2Cl (NKCC1) symporter; and the failure to traffic and insert proteins into membranes resulting in their intracellular accumulation, such as E-cadherin and the β1 subunit of Na+K+-ATPase. Abnormalities in structural AJ, FA and polarity complexes in ADPKD epithelia include loss of E-cadherin, and focal adhesion kinase (FAK), MALS-3, Crb and Dlg complexes as well as disruptions in Rab/sec and syntaxin trafficking and membrane docking pathways. Since proper polarization of epithelial cells lining renal tubules is essential for normal kidney development and differentiation to prevent abnormal cystic dilation, interventions to reverse polarity defects to normal would offer therapeutic opportunities for PKD. This article is part of a Special Issue entitled: Polycystic Kidney Disease.  相似文献   

14.
Inflammatory activity is evident in patients with chronic kidney disease with limited data available in autosomal dominant polycystic kidney disease (ADPKD). We hypothesized that inflammation is an upstream event in the pathogenesis of ADPKD and may be a contributing factor in the disease severity and progression. Serum samples from 61 HALT study A group patients were compared with samples from 49 patients from HALT study B group with moderately advanced disease. Targeted MS analysis of bioactive lipid mediators as markers of inflammation was performed and correlated with eGFR and total kidney volume (TKV) normalized to the body surface area (BSAR) to assess if these markers are predictive of ADPKD severity. ADPKD patients with eGFR >60 ml/min/1.73 m2 showed higher levels of 5- and 12/15-lipoxygenase (LOX) and cyclooxygenase, and generated higher levels of hydroxy-octadecadienoic acids 9-HODE and 13-HODE and HETEs 8-HETE, 11-HETE, 12-HETE, and 15-HETE as compared with healthy subjects. Linear regression of 9-HODE and 13-HODE revealed a significant relationship with eGFR and TKV, while 15-HETE significantly correlated with TKV/BSAR. Production of 20-HETE, a P450-produced metabolite of arachidonic acid, was higher in ADPKD patients as compared with healthy subjects and significantly correlated with eGFR and TKV/BSAR. Perturbation in fatty acid metabolism is evident early in ADPKD patients, even in those with preserved kidney function. The identified LOX pathways may be potential therapeutic targets for slowing down ADPKD progression.  相似文献   

15.
Polycystic kidney disease is a common genetic disorder in which fluid-filled cysts displace normal renal tubules. Here we focus on autosomal dominant polycystic kidney disease, which is attributable to mutations in the PKD1 and PKD2 genes and which is characterized by perturbations of renal epithelial cell growth control, fluid transport, and morphogenesis. The mechanisms that connect the underlying genetic defects to disease pathogenesis are poorly understood, but their exploration is shedding new light on interesting cell biological processes and suggesting novel therapeutic targets.  相似文献   

16.
Polycystic kidney growth implies expansion of the vasculature, suggesting that vascular endothelial growth factor (VEGF)-dependent processes play a critical role and that VEGF is a putative therapeutic target. Whether an anti-VEGF antibody improves renal cystic disease has not been determined. We administrated 5 mg/kg B20.4.1, an anti-VEGF-A antibody, or vehicle intraperitoneally twice weekly to 4-wk-old male normal (+/+) and cystic (Cy/+) Han:SPRD rats for 6 wk. Renal function, urinary protein excretion, organ/body weight ratios, cyst volume, tubular epithelial cell (TEC) proliferation, renal VEGF, hypoxia-inducible factor (HIF)-1α and -2α expression, renal histology, and kidney hypoxia visualized by [(18)F]fluoromisonidazole positron emission tomography were assessed. The treated compared with untreated +/+ rats had lower TEC proliferation rates, whereas Cy/+ rats receiving B20.4.1 displayed an increased proximal TEC proliferation rate, causing enhanced cyst and kidney growth. The +/+ and Cy/+ rats receiving B20.4.1 had severe renal failure and extensive glomerular damage. Proteinuria, which was highest in anti-VEGF-treated Cy/+ and lowest in untreated normal littermates, was positively correlated with renal HIF-1α and negatively correlated with VEGF expression. The untreated Cy/+ vs. +/+ rats had higher overall [(18)F]fluoromisonidazole uptake. The +/+ rats receiving B20.4.1 vs. untreated had increased [(18)F]fluoromisonidazole uptake, whereas the uptake was unchanged among treated vs. untreated Cy/+ animals. In conclusion, B20.4.1 caused an exaggerated cystic response of the proximal tubules in cystic rats and severe kidney injury that was associated with low renal VEGF and high HIF-1α levels. Anti-VEGF drug therapy may therefore not be a treatment option for polycystic kidney disease.  相似文献   

17.
Ali SM  Nambi P  Fredrickson TA  Brooks DP 《Peptides》1999,20(12):49-1495
Epithelins are polypeptides that are preferentially expressed in epithelial cells and modulate growth. Epithelin expression is predominant in tissues of epithelial origin such as the kidney, spleen, lung, placenta, and colon. Because polycystic kidney disease involves abnormal proliferation of the proximal and/or distal tubule epithelial cells, we investigated epithelin mRNA expression in polycystic kidneys of mice homozygous for the mutation. Epithelin mRNA was highly expressed in the polycystic kidneys of homozygous mice when compared with the heterozygotes or wild type controls. A study on the time course of epithelin expression indicated that epithelin mRNA expression paralleled cyst formation and progression of the disease. A 2-fold increase in expression was observed at Day 15, a stage when cystic changes were first visible. This increase in expression was also observed at Day 21, a stage of maximum disease pathology, which ultimately results in the death of the animal. In situ hybridization localized epithelin mRNA predominantly to the epithelial cell layer surrounding the cysts. The high levels of epithelin in epithelial cells suggest a role in renal epithelial cell proliferation and cyst formation in polycystic kidney disease.  相似文献   

18.
The roles of epigenetic modulation of gene expression and protein functions in autosomal dominant polycystic kidney disease (ADPKD) have recently become the focus of scientific investigation. Evidence generated to date indicates that one of the epigenetic modifiers, histone deacetylases (HDACs), are important regulators of ADPKD. HDACs are involved in regulating the expression of the Pkd1 gene and are the target of fluid flow-induced calcium signal in kidney epithelial cells. Pharmacological inhibition of HDAC activity has been found to reduce the progression of cyst formation and slow the decline of kidney function in Pkd1 conditional knockout mice and Pkd2 knockout mice, respectively, implicating the potential clinical application of HDAC inhibitors on ADPKD. Since the expression of HDAC6 is upregulated in cystic epithelial cells, the potential roles of HDAC6 in regulating cilia resorption and epidermal growth factor receptor (EGFR) trafficking through deacetylating α-tubulin and regulating Wnt signaling through deacetylating β-catenin are also discussed. This article is part of a Special Issue entitled: Polycystic Kidney Disease.  相似文献   

19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号