首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Paenibacillus alvei is known as a secondary invader during European foulbrood of honeybees. Here, we announce the 6.83-Mb draft genome sequence of P. alvei type strain DSM 29. Putative genes encoding an antimicrobial peptide, a binary toxin, a mosquitocidal toxin, alveolysin, and different polyketides and nonribosomal peptides were identified.  相似文献   

2.
Pseudomonas C12B is able to degrade alkyl sulfates, alkylbenzene sulfonates, and linear alkanes and alkenes. Mitomycin C curing experiments and conjugation experiments demonstrated that the ability to utilize n-alkanes (C9–C12) and n-alkenes (C10 and C12) of medium chain length was plasmid-encoded. The plasmid was designated pDEC. Its size was estimated at several hundreds kb according to mobility in agarose gels. The plasmid did not confer resistance to the antibiotics tested. Analysis of alkylsulfatases P1 and P2 in original and cured strains confirmed that both enzymes are encoded by the chromosome. The ability of Pseudomonas C12B to utilize alkylbenzene sulfonates also appears to be encoded by the chromosome. pDEC could be transferred only to cured derivatives of Pseudomonas C12B, but not to strains of P. aeruginosa, P. putida, or Acinetobacter sp. Cured derivatives of Pseudomonas C12B could not serve as hosts for the broad host range plasmid CAM–OCT. The enzyme system encoded by the putative dec genes present on plasmid pDEC differs from the system coded by the alk genes of plasmid OCT in the size range of hydrocarbons preferentially used.  相似文献   

3.
Staphylococcus capitis is a member of the human and mammal skin microbiomes and is considered less harmful than Staphylococcus aureus. S. capitis subsp. urealyticus BN2 was isolated from a cat and expressed strong antibacterial activity against a range of Gram-positive species, most notably including S. aureus strains with resistance to methicillin (MRSA) and strains with intermediate resistance to vancomycin (VISA). These latter strains are normally relatively resistant to bacteriocins, due to cell wall and cell membrane modifications. Genomic sequencing showed that the strain harboured at least two complete gene clusters for biosynthesis of antagonistic substances. The complete biosynthetic gene cluster of the well-known lantibiotic gallidermin was encoded on a large plasmid and the mature peptide was present in isopropanol cell extracts. In addition, a chromosomal island contained a novel non-ribosomal peptide synthetase (NRPS) gene cluster. Accidental deletion of two NRPS modules and partial purification of the anti-VISA activity showed that this novel bacteriocin represents a complex of differently decorated, non-ribosomal peptides. Additionally, a number of phenol-soluble modulins (PSMs) was detected by mass spectrometry of whole cells. Producing these compounds, the strain was able to outcompete several S. aureus strains, including MRSA and VISA, in tube cultures.  相似文献   

4.
Summary Sixteen pediococcal strains, including eleven Pediococcus acidilactici and five P. pentosaceus strains were screened for inhibitory potential using a deferred overlay spot method against a limited collection of foodborne pathogens. Of those screened, P. acidilactici PC, an organism isolated from fermented sausage, was effective and subsequently screened for inhibitory potential against 46 foodborne pathogens and 28 other lactic acid bacteria. Strain PC produced an antimicrobial agent capable of inhibiting members of the genera Listeria, Clostridium, Leuconostoc and Pediococcus. Gram-negative microorganisms from seven genera, Lactococcus, Streptococcus and Lactobacillus strains were unaffected by the inhibitory substance. The inhibitory agent was sensitive to proteolytic enzymes and exhibited a bactericidal mode of action, confirming the identity as a bacteriocin. In addition, the partially purified bacteriocin was thermally stable up to 100°C for 60 min and maintained inhibitory potential over a wide range of pH values. Plasmid curing studies suggested linkage of bacteriocin production to a 5.5-MDa plasmid. Plasmid profiles were identical for P. acidilactici PC, PAC1.0 and PO2. Genetic analysis of total genomic DNA via DNA fingerprinting and ribosomal RNA (rRNA) typing provided further evidence that these strains were identical. DNA fingerprinting and rRNA typing also showed utility in discrimination between and within other species of pediococci.Published as paper no. 19574 of the contribution series of the Minnesota Agricultural Experiment Station Correspondence to: S. Harlander  相似文献   

5.

Background

NP4P is a synthetic peptide derived from a natural, non-antimicrobial peptide fragment (pro-region of nematode cecropin P4) by substitution of all acidic amino acid residues with amides (i.e., Glu → Gln, and Asp → Asn).

Results

In the presence of NP4P, some membrane-disrupting antimicrobial peptides (ASABF-α, polymyxin B, and nisin) killed microbes at lower concentration (e.g., 10 times lower minimum bactericidal concentration for ASABF-α against Staphylococcus aureus), whereas NP4P itself was not bactericidal and did not interfere with bacterial growth at ≤ 300 μg/mL. In contrast, the activities of antimicrobial agents with a distinct mode of action (indolicidin, ampicillin, kanamycin, and enrofloxacin) were unaffected. Although the membrane-disrupting activity of NP4P was slight or undetectable, ASABF-α permeabilized S. aureus membranes with enhanced efficacy in the presence of NP4P.

Conclusions

NP4P selectively enhanced the bactericidal activities of membrane-disrupting antimicrobial peptides by increasing the efficacy of membrane disruption against the cytoplasmic membrane.  相似文献   

6.
枯草芽孢杆菌抗菌肽生物合成的研究进展   总被引:1,自引:0,他引:1  
革兰氏阳性菌模式生物--枯草芽孢杆菌能分泌多种肽类及由肽类衍生的抗菌活性物质,按合成途径不同,可分为核糖体肽和非核糖体肽。其中,非核糖体肽分子量较小,一般为3000Da以下,其生物合成是通过多功能复合酶系--非核糖体肽链合成酶来完成的,多发生在菌体生长停止之后;而核糖体肽分子量较大,其合成多于菌体快速生长时期。非核糖体肽链合成酶和核糖体肽的合成及其调控均需基因参与,而这一系列基因就构成了各种抗菌肽生物合成的基因簇。对核糖体肽和非核糖体肽的生物合成及其相关调控机制进行了综述。  相似文献   

7.

Bacteria from the genus Paenibacillus make a variety of antimicrobial compounds, including lipopeptides produced by a non-ribosomal synthesis mechanism (NRPS). In the present study, we show the genomic and phenotypical characterization of Paenibacillus elgii AC13 which makes three groups of small molecules: the antimicrobial pelgipeptins and two other families of peptides that have not been described in P. elgii. A family of lipopeptides with [M?+?H]+ 1664, 1678, 1702, and 1717 m/z was purified from the culture cell fraction. Partial characterization revealed that they are similar to tridecaptin from P. terrae. However, they present amino acid chain modifications in positions 3, 7, and 10. These new variants were named tridecaptin G1, G2, G3, and G4. Furthermore, a gene cluster was identified in P. elgii AC13 genome, revealing high similarity to the tridecaptin-NRPS gene cluster from P. terrae. Tridecaptin G1 and G2 showed in vitro antimicrobial activity against Escherichia coli, Klebsiella pneumonia (including a multidrug-resistant strain), Staphylococcus aureus, and Candida albicans. Tri G3 did not show antimicrobial activity against S. aureus and C. albicans at all tested concentrations. An intriguing feature of this family of lipopeptides is that it was only observed in the cell fraction of the P. elgii AC13 culture, which could be a result of the amino acid sequence modifications presented in these variants.

  相似文献   

8.
He Z  Yuan C  Zhang L  Yousef AE 《FEBS letters》2008,582(18):2787-2792
N-terminal acetylation was uncovered in paenibacillin, a novel lantibiotic recently reported as a product of Paenibacillus polymyxa OSY-DF. This N-terminal modification is unprecedented among bacteria-derived antimicrobial peptides and further illustrates the broad range of modifications that can occur in lantibiotics. Additionally, the primary structure of paenibacillin has been finally determined unequivocally by the extensive NMR analysis taken together with previous MS/MS results. These analyses revealed the structure of paenibacillin as one of the most post-translationally modified lantibiotics.  相似文献   

9.
Relatively few genes in the yeast Saccharornyces cerevisiae are known to contain intervening sequences. As a group, yeast ribosomal protein genes exhibit a higher prevalence of introns when compared to non-ribosomal protein genes. In an effort to quantify this bias we have estimated the prevalence of intron sequences among non-ribosomal protein genes by assessing the number of prp2-sensitive mRNAs in an in vitro translation assay. These results, combined with an updated survey of the GenBank DNA database, support an estimate of 2.5% for intron-containing non-ribosomal protein genes. Furthermore, our observations reveal an intriguing distinction between the distributions of ribosomal protein and non-ribosomal protein intron lengths, suggestive of distinct, gene class-specific evolutionary pressures.  相似文献   

10.
Summary A lysine decarboxylase (LDC) gene from Hafnia alvei was cloned in the Escherichia coli strain HB101. A gene bank consisting of 2,000 clones, carrying recombinant plasmids with large DNA fragments of H. alvei integrated in the BamH1 site of pBR322, was screened for LDC activity by a colony filter radioimmunoassay. The gene bank yielded clone 462 expressing high LDC activity with the presence of a plasmid carrying a 7.5 kb insert of H. alvei. Two LDC-positive subclones derived from 462 with inserts of 2.9 and 3.3 kb were sequenced by the shotgun method. An open reading frame for a 83 K protein with 739 amino acids was determined as the coding region for the LDC. The identification of this reading frame as the true reading frame of the H. alvei LDC gene and its similarities with LDC of E. coli are described. The use of the cloned gene for the transformation of plant cells is discussed.  相似文献   

11.
Summary The value of a heterologous peptide extracellular production system in Streptomyces using a secretory protease inhibitor, was examined. DNA was synthesized encoding apidaecin 1b (AP1), an interesting antibacterial peptide discovered in lymph fluid of the honeybee, and was joined to the Streptomyces subtilisin inhibitor (SSI) gene via a 12-bp nucleotide sequence corresponding to the amino acid sequence specific for cleavage by blood coagulation factor Xa. The fusion protein (SSI-AP1) could be expressed and excreted efficiently into the medium by culturing S. lividans 66 harbouring a plasmid vector constructed for SSI secretion, into which the synthetic DNA was introduced. Sodium dodecyl sulphate-polyacrylamide gel electrophoresis and amino acid analysis of the purified SSI-AP1 protided reasonable results of molecular size and composition value. Interestingly, SSI-AP1 protein showed bifunctional activity: inhibitory activity of SSI and antibacterial activity of AP1. The inhibitory activity against Escherichia coli could be also detected after the fusion protein was cleaved by factor Xa. The extracellular production system presented here should provide a useful tool for production, analysis of mode of action, and also for genetic improvement of antimicrobial peptides such as apidaecin.Offprint requests to: H. Momose  相似文献   

12.
A wild-type, Gram-positive, rod-shaped, endospore-forming and motile bacteria has been isolated from palm oil mill sludge in Malaysia. Molecular identification using 16S rRNA gene sequence analysis indicated that the bacteria belonged to genus Paenibacillus. With 97 % similarity to P. alvei (AUG6), the isolate was designated as P. alvei AN5. An antimicrobial compound was extracted from P. alvei AN5-pelleted cells using 95 % methanol and was then lyophilized. Precipitates were re-suspended in phosphate buffered saline (PBS), producing an antimicrobial crude extract (ACE). The ACE showed antimicrobial activity against Salmonella enteritidis ATCC 13076, Escherichia coli ATCC 29522, Bacillus cereus ATCC 14579 and Lactobacillus plantarum ATCC 8014. By using SP-Sepharose cation exchange chromatography, Sephadex G-25 gel filtration and Tricine SDS-PAGE, the ACE was purified, which produced a ~2-kDa active band. SDS-PAGE and infrared (IR) spectroscopy indicated the proteinaceous nature of the antimicrobial compound in the ACE, and liquid chromatography electrospray ionization mass spectroscopy and de novo sequencing using an automatic, Q-TOF premier system detected a peptide with the amino acid sequence F–C–K–S–L–P–L–P–L–S–V–K (1,330.7789 Da). This novel peptide was designated as AN5-2. The antimicrobial peptide exhibited stability from pH 3 to 12 and maintained its activity after being heated to 90 °C. It also remained active after incubation with denaturants (urea, SDS and EDTA).  相似文献   

13.
Small ubiquitin-related modifier (SUMO) technology has been widely used in Escherichia coli expression systems to produce antimicrobial peptides. However, E. coli is a pathogenic bacterium that produces endotoxins and can secrete proteins into the periplasm, forming inclusion bodies. In our work, cathelicidin-BF (CBF), an antimicrobial peptide purified from Bungarus fasciatus venom, was produced in a Bacillus subtilis expression system using SUMO technology. The chimeric genes his-SUMO-CBF and his-SUMO protease 1 were ligated into vector pHT43 and expressed in B. subtilis WB800N. Approximately 22 mg of recombinant fusion protein SUMO-CBF and 1 mg of SUMO protease 1 were purified per liter of culture supernatant. Purified SUMO protease 1 was highly active and cleaved his-SUMO-CBF with an enzyme-to-substrate ratio of 1:40. Following cleavage, recombinant CBF was further purified by affinity and cation exchange chromatography. Peptide yields of ~3 mg/l endotoxin-free CBF were achieved, and the peptide demonstrated antimicrobial activity. This is the first report of the production of an endotoxin-free antimicrobial peptide, CBF, by recombinant DNA technology, as well as the first time purified SUMO protease 1 with high activity has been produced from B. subtilis. This work has expanded the application of SUMO fusion technology and may represent a safe and efficient way to generate peptides and proteins in B. subtilis.  相似文献   

14.
In this study, among a collection of heavy metals resistant endophytic bacterial strains isolated from aquatic hyperaccumulator plant (Eichhornia crassipes), one plant growth promoting endophytic bacteria (PGPE), SVUB4 was selected for its ability to utilize 1-aminocyclopropane-1-carboxylic acid (ACC) as the sole N source and accumulate different heavy metals. The SVUB4 strain was characterized as Enterobacter sp. on the basis of its 16S rDNA sequences. Assessment of the parameters of plant growth promotion revealed the intrinsic ability of the strain for the production of IAA, siderophore and solubilization of insoluble phosphate. Furthermore, plasmid DNA analysis of Enterobacter sp. strain SVUB4 indicated the presence of a single large plasmid element. The results of plasmid curing experiments demonstrated that the ability of this strain to grow in presence of Cd and Zn was encoded by the 98 kb plasmid, whereas the ability to grow in the presence of Pb appeared to be encoded by the chromosome. The Cd and Zn removal capacity of the respective metal sensitive strain (plasmidless) were about 36 and 45 μg/g-1 DW, respectively, while the removal capacity of the both metal by metal resistant strain (p SVUB4) showed a significantly higher Cd and Zn removal capacity of 153 and 228 μg/g?1 DW, respectively. However, both strains exhibited a similar pattern of Pb accumulation. The present observation also showed that for wild-type strain SVUB4 (pSVUB4), the overall level of IAA production in the absence and in the presence of Cd2+ or Zn2+was approximately the same. Nevertheless, strain SVUB4M in this respect appeared to be more sensitive to heavy metals: a noticeable decrease in IAA production was observed under the effect of both metals, especially with Cd2+.  相似文献   

15.
Aim: To characterize novel multiple bacteriocins produced by Leuconostoc pseudomesenteroides QU 15. Methods and Results: Leuconostoc pseudomesenteroides QU 15 isolated from Nukadoko (rice bran bed) produced novel bacteriocins. By using three purification steps, four antimicrobial peptides termed leucocin A (ΔC7), leucocin A‐QU 15, leucocin Q and leucocin N were purified from the culture supernatant. The amino acid sequences of leucocin A (ΔC7) and leucocin A‐QU 15 were identical to that of leucocin A‐UAL 187 belonging to class IIa bacteriocins, but leucocin A (ΔC7) was deficient in seven C‐terminal residues. Leucocin Q and leucocin N are novel class IId bacteriocins. Moreover, the DNA sequences encoding three bacteriocins, leucocin A‐QU 15, leucocin Q and leucocin N were obtained. Conclusions: These bacteriocins including two novel bacteriocins were identified from Leuc. pseudomesenteroides QU 15. They showed similar antimicrobial spectra, but their intensities differed. The C‐terminal region of leucocin A‐QU 15 was important for its antimicrobial activity. Leucocins Q and N were encoded by adjacent open reading frames (ORFs) in the same operon, but leucocin A‐QU 15 was not. Significance and Impact of Study: These leucocins were produced concomitantly by the same strain. Although the two novel bacteriocins were encoded by adjacent ORFs, a characteristic of class IIb bacteriocins, they did not show synergistic activity.  相似文献   

16.
A bacterial strain was isolated from Petra City Wastewater Treatment Plant. This isolate was identified as Klebsiella oxytoca based on 16S rDNA analysis. A single plasmid (> 23 kb) was detected in this strain and transformed into Esherichia coli JM83. The transformed E. coli cells exhibited elevated resistance to cadmium as compared to parental plasmid-free cells. The sodium dodecyl sulfate (SDS)-treated cells showed higher efficiency in plasmid curing than the ethidium bromide–treated cells. The ethidium bromide–cured cells grew only in a 10 μ g/ml Cd+ 2 minimal tolerable concentration, whereas the SDS-treated cells had no growth in any of the Cd concentrations tested (2, 5, 10, 20, 30, 40, and 50 ppm). Contrary to the Freundlich model, the Langmuir model gave a good fit to the Cd biosorption data by K. oxytoca cells. Plasmid curing caused 80%, 82%, and 70% inhibition in the Cd biosorption, adsorption, and uptake, respectively. Furthermore, the absence of lysine decarboxylase (LDC) activity in the cured strain strongly implies that the structural gene-encoding LDC in this bacterium is plasmid encoded. After curing of the plasmid, 100% of the antibiotic-resistant loci were observed as chromosomal encoded. All of the results shown above indicated that the Cd resistance is plasmid mediated.  相似文献   

17.
Plasmid transformation is an efficient and crucial biotechnological tool that enables the enhancement of many important microbial characters that would be beneficial in a lot of industrial, agricultural and environmental applications. In the present study, five Bacillus species (B. subtilis, B. cereus, B. alvei, B. circulans and B. pumilus) were investigated. They were isolated from agricultural soils of different local arid environments of the Kingdom of Saudi Arabia, identified and characterized for their plasmid content. The main objective of the present study was to enhance the production of alkaline protease in Bacillus circulans (the recipient strain) through plasmid transformation from B. subtilis (the donor strain). All the tested Bacillus strains successfully produced unique multiple (3, 4 and 5) spontaneous antibiotic resistant mutants against chloramphenicol, neomycin, rifampicin, streptomycin, kanamycin and tetracycline and all of which were mutated to Rifr strains. B. pumilus showed the highest resistance against five of the six tested antibiotics while both of B. alvei and B. circulans showed the lowest resistance to only three of the tested antibiotics. Results revealed that B. subtilis was the best among the tested species concerning the production of alkaline protease (90.2 U/ml) while B. pumilus was the lowest in activity (40.3 U/ml). Screening of plasmid content revealed the presence of one or two mega indigenous plasmids in all the tested species. The four transformant strains BC 1 , BC 2 , BC 3 and BC 4 resulting from plasmid transformation exhibited significant increases in the activity of alkaline protease and recorded 2.31- to 3-fold increases compared to the parent B. circulans cells and 2.11- to 2.75-fold increases compared to the donor cells of B. subtilis. They also acquired antibiotic resistance to tetracycline and chloramphenicol that was completely absent in the parent cells of B. circulans. Results revealed that plasmid transformation among the tested Bacillus spp. is a powerful technique that can be efficiently exploited to enhance alkaline protease production in the transformed Bacillus spp. compared to their wild strains and we recommend using the improved transformant strains for commercial and industrial purposes.  相似文献   

18.
19.
As an alternative carotenoid producer, non-carotenogenic Pichia pastoris was chosen for a reddish carotenoid lycopene production because it can grow to high cell density without accumulation of ethanol and utilize various classes of organic materials such as methanol as carbon sources. Two synthetic lycopene-pathway plasmids, pGAPZB-EBI* and pGAPZB-EpBpI*p, were designed and constructed. The pGAPZB-EpBpI*p plasmid encoded three carotenogenic enzymes that were engineered to be targeted into peroxisomes of P. pastoris whereas the pGAPZB-EBI* plasmid encoded non-targeted enzymes. After both plasmids were transformed into P. pastoris, the lycopene-producing clone containing the pGAPZB-EpBpI*p plasmid, referred to as Ω, was selected and used for further optimization study. Of the carbon sources tested, glucose resulted in the highest level of lycopene production in complex and minimal media. Batch fermentation of the Ω clone resulted in the production of 4.6 mg-lycopene/g-DCW, with a concentration of 73.9 mg/l of lycopene in minimal medium. For the first time non-carotenogenic yeast P. pastoris was metabolically engineered by heterologously expressing lycopene-pathway enzymes and the lycopene concentration of 73.9 mg/l was obtained. This serves as a basis for the development of biological process for carotenoids using P. pastoris at a commercial production level.  相似文献   

20.
The sponge-associated actinomycetes were isolated from the marine sponge Dendrilla nigra, collected from the southwest coast of India. Eleven actinomycetes were isolated depending upon the heterogeneity and stability in subculturing. Among these, Nocardiopsis dassonvillei MAD08 showed 100% activity against the multidrug resistant pathogens tested. The culture conditions of N. dassonvillei MAD08 was optimized under submerged fermentation conditions for enhanced antimicrobial production. The unique feature of MAD08 includes extracellular amylase, cellulase, lipase, and protease production. These enzymes ultimately increase the scope of optimization using broad range of raw materials which might be efficiently utilized. The extraction of the cell free supernatant with ethyl acetate yielded bioactive crude extract that displayed activity against a panel of pathogens tested. Analysis of the active thin layer chromatography fraction by Fourier transform infrared and gas chromatography-mass spectrometry evidenced 11 compounds with antimicrobial activity. The ammonium sulfate precipitation of the culture supernatant at 80% saturation yielded an anticandidal protein of molecular weight 87.12 kDa. This is the first strain that produces both organic solvent and water soluble antimicrobial compounds. The active extract was non-hemolytic and showed surface active property envisaging its probable role in inhibiting the attachment of pathogens to host tissues, thus, blocking host–pathogen interaction at an earlier stage of pathogenesis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号