首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The effects of the blue form of Fusarium solani, the causal agent of sudden death syndrome (SDS), on Heterodera glycines were examined in the greenhouse. Roots of soybean cv. Coker 156 were inoculated with either H. glycines alone or F. solani + H. glycines in combination. Population levels of H. glycines were reduced 47% in the presence of F. solani. Life-stage development of H. glycines increased 3% in 30 days in the presence of F. solani. Fusarium solani colonized epidermal and cortical cells adjacent to developing juveniles of H. glycines and the nematode-induced syncytia within the soybean root tissue. At 40 days after inoculation, F. solani was isolated from 37% of the cysts in soil recovered from the F. solani + H. glycines combination treatment. Fusarium solani significantly affected H. glycines population density, life-stage development, and succeeding populations.  相似文献   

2.
Half-root tests were established to examine the association between Heterodera glycines and the blue strain of Fusarium solani, the causal agent of sudden death syndrome (SDS) of soybean. Two independent root systems were established for soybean ''Coker 156'' and inoculated (half root/half root) with F. solani, H. glycines, both organisms on opposite root halves, both organisms on one root half, or neither one. Foliar symptoms were more severe for plants inoculated with both organisms on one root half than on opposite root halves or F. solani alone. Root necrosis ratings were more severe when both pathogens were combined on one root half than on opposite root halves. Heterodera glycines population development was reduced by the combination of both pathogens on one root half compared to opposite root halves or H. glycines alone, regardless of inoculation time.  相似文献   

3.
The occurrence ofchlamydospores of Glomus fasciculatum (Gf) within cysts of the soybean cyst nematode, Heterodera glycines, and the effects of vesicular-arbuscular mycorrhizae on nematode population dynamics and soybean (Glycine max) plant growth were investigated. Chlamydospores occupied 1-24% of cysts recovered from field soil samples. Hyphae of Missouri isolate Gfl penetrated the female nematode cuticle shortly after she ruptured the root epidermis. Convoluted hyphae filled infected eggs, and sporogenesis occurred within infected eggs. G. microcarpum, G. mosseae, and two isolates of Gf were inoculated with H. glycines on plants of ''Essex'' soybeans. Each of the two Gf isolates infected about 1% of the nematode eggs in experimental pot cuhures. The Gfl isolate decreased the number of first-generation adult females 26%, compared with the nonmycorrhizal control. The total numbers of first-generation plus second-generation adult females were similar for both Gf isolates and 29-41% greater than the nonmycorrhizal control. Soybean plants with Gf and H. glycines produced more biomass than did nonmycorrhizal plants with nematodes, but only Gfl delayed leaf senescence.  相似文献   

4.
Fungal colonization was determined for females and cysts of Heterodera glycines on soybean roots or in rhizosphere soil from a Florida soybean field. A total of 1,620 females and cysts were examined in 1991, and 1,303 were examined in 1992. More than 35 species of fungi were isolated from females and cysts. The frequency of fungi colonizing white and yellow females was low, but a high frequency of fungi was encountered in brown cysts, which increased with time of exposure of the cysts to the soil. No single fungal species predominated in the nematode females or cysts in this field. Rarely was a female or cyst colonized by more than one fungus. The common fungi isolated from the females and cysts were Neocosmospora vasinfecta, Fusarium solani, Fusarium oxysporum, Dictyochaeta coffeae, Dictyochaeta heteroderae, Pyrenochaeta terrestris, Exophiala pisciphila, Gliocladium catenulatum, Stagonospora heteroderae, and a black yeast-like fungus. The communities of common fungal species isolated from cysts in several regions in the southeastern United States appear to be similar.  相似文献   

5.
In previous greenhouse and laboratory studies, citrus seedlings infested with the citrus nematode Tylenchulus semipenetrans and later inoculated with the fungus Phylophthora nicotianae grew larger and contained less fungal protein in root tissues than plants infected by only the fungus, demonstrating antagonism of the nematode to the fungus. In this study, we determined whether eggs of the citrus nematode T. semipenetrans and root-knot nematode Meloidogyne arenaria affected mycelial growth of P. nicotianae and Fusarium solani in vitro. Approximately 35,000 live or heat-killed (60°C, 10 minutes) eggs of each nematode species were surface-sterilized with cupric sulfate, mercuric chloride, and streptomycin sulfate and placed in 5-pl drops onto the center of nutrient agar plates. Nutrient agar plugs from actively growing colonies of P. nicotianae or F. solani were placed on top of the eggs for 48 hours after which fungal colony growth was determined. Live citrus nematode eggs suppressed mycelial growth of P. nicotianae and F. solani (P ≤ 0.05) compared to heat-killed eggs and water controls. Reaction of the fungi to heat-killed eggs was variable. Root-knot nematode eggs had no effect on either P. nicotianae or F. solani mycelial growth. The experiment demonstrated a species-specific, direct effect of the eggs of the citrus nematode on P, nicotianae and F. solani.  相似文献   

6.
The objective of this study was to determine the effect of egg age and pre-colonization of cysts by a saprophytic or parasitic fungus on parasitism of Heterodera glycines eggs by other parasitic fungi. In agar and in soil tests, fungi generally parasitized more eggs in early developmental stages than eggs containing a juvenile. The effect of pre-colonization of cysts by a fungus on parasitism of eggs by other fungi depended on the fungi involved. In most cases, pre-colonization of cysts by an unidentified, saprophytic fungal isolate (A-1-24) did not affect parasitism of eggs in the cysts subsequently treated with other fungi. However, pre-colonization of cysts by A-1-24 reduced fungal parasitism of eggs in cysts subsequently treated with Cylindrocarpon destructans isolate 3. In agar tests, pre-colonization of cysts by Chaetomium cochliodes, a saprophytic or weakly parasitic fungus, reduced parasitism of eggs in cysts subsequently treated with Verticillium chlamydosporium Florida isolate, Fusarium oxysporum, Fusarium solani, ARF18, and another sterile fungus. However, in soil tests, pre-colonization of cysts by C. cochliodes had no effect on parasitism of eggs by subsequent fungal parasites. In another test, parasitism of eggs by V. chlamydosporium in cysts was not affected by pre-colonizing fungi C. destructans, F. oxysporum, and F. solani but was reduced by Mortierella sp., Pyrenochaeta terrestris, and C. cochliodes. Parasitism of eggs in cysts by ARF18 was reduced by pre-colonizing fungi C. destructans, F. oxysporum, F. solani, P. terrestris, and C. cochliodes but not Mortierella sp.  相似文献   

7.
A 2-year study was conducted in field microplots to determine the relative importance of soybean phenology and soil temperature on induction of dormancy in Heterodera glycines in Missouri. Four near-isogenic soybean lines differing for maturity date were planted in microplots infested with a race 5 isolate of H. glycines. Soil temperature was monitored at a depth of 15 cm. Eggs of H. glycines, extracted from cysts collected monthly from each microplot, were used in hatching tests and bioassays to determine dormancy. Egg hatching and second-stage juvenile (J2) infectivity rates decreased sharply from their highest levels in midsummer (July-August) to a low level by October of each year and remained low (< 10% hatching and < 0.2 J2/cm root) until May or June of the following year. The patterns of numbers of females and eggs in the bioassays were similar. The decreases were not related to soil temperature and did not differ consistently among soybean isolines. The monophasic changes in all nematode responses with peak midsummer rates suggest that H. glycines produces one primary generation per year in central Missouri. Changes in hatching rates and the timing of minimum and maximum rates suggested that H. glycines eggs exhibit more than one type of dormancy.  相似文献   

8.
Experiments were conducted to determine the effects of zinc fertilizers on hatching and soil population densities of Heterodera glycines. In vitro egg hatching in solutions of reagent-grade zinc sulfate and zinc chloride and fertilizer-grade zinc sulfate was significantly greater than hatching in deionized water, whereas zinc chelate fertilizer significantly inhibited egg hatching relative to deionized water. In greenhouse experiments, no differences in cumulative percentage egg hatch were detected in soil naturally infested with H. glycines amended with fertilizer-grade zinc sulfate and zinc chelate at rates equivalent to 0, 1.12, 11.2, and 112 kg Zn/ha and subsequently planted with corn (Zea mays L.). In a field experiment, no significant differences in H. glycines egg population densities and corn yields were detected among plots fertilized with 0, 11.2, and 22.4 kg Zn/ha rates of zinc chelate. Yields of H. glycines-susceptible soybean planted in plots 1 year after zinc fertilization of corn plots also were not significantly affected. Zinc compounds significandy affected H. glycines egg hatching in vitro, but had no effect on hatching in natural soils.  相似文献   

9.
A filamentous, nonsporulating fungus, designated Arkansas Fungus 18 (ARF18), was isolated from 9 of 95 populations of Heterodera glycines, the soybean cyst nematode, in Arkansas. In petri dishes, ARF18 parasitized 89% of H. glycines eggs in cysts. The fungus also infected eggs of Meloidogyne incognita and eggs in cysts of Cactodera betulae, H. graminophila, H. lespedezae, H. leuceilyma, H. schachtii, and H. trifolii. In pot tests, reproduction of SCN was 70% less in untreated field soil that was naturally infested by ARF18 than in autoclaved field soil. Although ARF18 grew well at 25 C on cornmeal agar over a wide pH range, it did not sporulate on 28 media and thus could not be identified to genus or species.  相似文献   

10.
Twenty-one isolates of 18 fungal species were tested on water agar for their pathogenicity to eggs of Heterodera glycines. An egg-parasitic index (EPI) for each of these fungi was recorded on a scale from 0 to 10, and hatch of nematode eggs was determined after exposure to the fungi on water agar for 3 weeks at 24 C. The EPI for Verticillium chlamydosporium was 7.6, and the fungus reduced hatch 74%. Pyrenochaeta terrestris and two sterile fungi also showed a high EPI and reduced hatch 42-73%. Arthrobotrys dactyloides, Fusarium oxysporum, Paecilomyces lilacinus, Stagonospora heteroderae, Neocosmospora vasinfecta, Fusarium solani, and Exophiala pisciphila were moderately pathogenic to eggs (EPI was 2.0-4.5, and hatch was reduced 21-56%). Beauveria bassiana, Hirsutella rhossiliensis, Hirsutella thompsonii, Dictyochaeta heteroderae, Dictyochaeta coffeae, Gliocladium catenulatum, and Cladosporium sp. showed little parasitism of nematode eggs but reduced hatch. A negative correlation was observed between hatch and fungal parasitism of eggs. Fusarium oxysporum, H. rhossiliensis, P. lilacinus, S. heteroderae, V. chlamydosporium, and sterile fungus 1 also were tested in soil in a greenhouse test. After 3 months, the nematode densities were lower in soil treated with H. rhossiliensis and V. chlamydosporium than in untreated soil. The nematode population densities were correlated negatively with the EPI, but not with the percentage of cysts colonized by the fungi. Plant weights and heights generally increased in the soil treated with the fungi.  相似文献   

11.
A high moisture level in the top 10 cm of soil at time of cutting of alfalfa increased the incidence of plant mortality and Fusarium wilt in soil infested with Ditylenchus dipsaci and Fusarium oxysporum f. sp. medicaginis in greenhouse and field microplot studies. Ranger alfalfa, susceptible to both D. dipsaci and F. oxysporum f. sp. medicaginis, was less persistent than Moapa 69 (nematode susceptible and Fusarium wilt resistant) and Lahontan alfalfa (nematode resistant with low Fusarium wilt resistance). In the greenhouse, the persistence of Ranger, Moapa 69, and Lahontan alfalfa plants was 46%, 64%, and 67% respectively, in nematode + fungus infested soil at high soil moisture at time of cutting. This compared to 74%, 84%, and 73% persistence of Ranger, Moapa 69, and Lahontan, respectively, at low soil moisture at time of cutting. Shoot weights as a percentage of uninoculated controls at the high soil moisture level were 38%, 40%, and 71% for Ranger, Moapa 69, and Lahontan, respectively. Low soil moisture at time of cutting negated the effect D. dipsaci on plant persistence and growth of subsequent cuttings, and reduced Fusarium wilt of plants in the nematode-fungus treatment; shoot weights were 75%, 90%, and 74% of uninoculated controls for Ranger, Moapa 69, and Lahontan. Similar results were obtained in the field microplot study, and stand persistence and shoot weights were less in nematode + fungus-infested soil at the high soil-moisture level (early irrigation) than at the low soil-moisture level (late irrigation).  相似文献   

12.
Egg hatch and emergence of second-stage juveniles (J2) of Heterodera glycines races 3 and 4 from cysts exposed to soybean root leachate of cv. Fayette (resistant to H. glycines) and H. glycines-susceptible cultivars A2575, A3127, and Williams 82 were determined in three sets of experiments. In the first experiment, cysts of both race 3 and race 4 were exposed to leachate of 8-week-old plants for a 2-week period. In the second experiment, cysts from populations of races 3 and 4 were raised on cultivars A2575, A3127, and Williams 82. Cysts then were exposed to leachate from 8-week-old plants for a 2-week period in all possible race-per-cultivar combinations. In the third experiment, cysts of races 3 and 4 were exposed at 4-day intervals to leachate from plants as the plants developed 7 to 59 days after planting. In experiments 1 and 2, leachate from 8-week-old Williams 82 and A3127 stimulated more hatch and emergence of H. glycines than leachate from A2575, Fayette, or the control. In the first experiment, cumulative hatch and emergence were greater for race 3 than for race 4. In experiment 2, no apparent relationship developed between leachate from a cultivar and the population developed on that cultivar in terms of stimulation of hatch and emergence. In the third experiment, A2575 stimulated more hatch and emergence of both race 3 and race 4 than A3127, Fayette, and Williams 82. Leachate from Fayette stimulated less hatch and emergence of both race 3 and race 4. Hatch and emergence were greatest during the initial 12 days of the experiment.  相似文献   

13.
Effects of a mixture of the postemergence herbicides acifluorfen and bentazon, and simulated defoliation expected from green cloverworm on population densities of Heterodera glycines were determined in field plots in Iowa. The herbicide mixture and defoliation each suppressed soybean growth. Population densities of H. glycines were generally lower in herbicide-treated than untreated plots. Population densities of the nematode were unaffected by defoliation in 1988 and 1990-91, but were increased by the treatment in 1989.  相似文献   

14.
Greenhouse and field experiments were conducted to determine the effects of phenamiphos and/or alachlor on early growth of soybean, root morphology, and infection and resurgence of Heterodera glycines (race 1). All tests were planted to ''Ransom'' soybeans. In greenhouse experiments without nematodes, root growth was inhibited at 5 days by alachlor treatments and at 10 days by phenamiphos treatments; with nematodes, phenamiphos treatments enhanced root growth. Phenamiphos also suppressed early penetration of soybean roots by H. glycines in the greenhouse. Early soybean growth parameters among treatments were generally similar in the field. Nematode penetration was limited with treatments containing phenamiphos at one location. Plants treated with only alachlor had less nematode infection than did the control; however, plants treated with herbicide/nematicide combinations had more nematode penetration than did plants treated with phenamiphos alone. Alterations of root growth and interference with the efficacy of phenamiphos are two processes by which alachlor may enhance soybean susceptibility or suitability to H. glycines.  相似文献   

15.
Soybeans with genes for resistance select against Heterodera glycines with the corresponding genes for avirulence. There may be a differential effect of sex with some specific gene interactions, which would influence the magnitude of gene frequency changes. No effect on H. glycines males was detected with one selected nematode population and the resistant soybean line PI88788. The selective effect of PI89772 against male nematodes was greater with two inbred nematode populations than with one selected (on PI88788) population, presumably due to differences in H. glycines gene frequencies. ''Peking'' also had few males with the one inbred nematode population, whereas Forrest and ''Pickett 71'' had intermediate numbers. Apparently Forrest and Pickett 71 did not get all the Peking genes for resistance that affect male as well as female nematode development. Other H. glycines-soybean genes stop only females, since there were few or no cysts, except on the susceptible soybean Williams. The number of males'' phenotype will help identify specific genes in both organisms.  相似文献   

16.
The pathogenicity of Heterodera glycines, Meloidogyne incognita, and Pratylenchus penetrans on H. glycines-resistant ''Bryan,'' tolerant-susceptible ''G88-20092,'' and intolerant-susceptible ''Tracy M'' soybean cultivars was tested using plants grown in 800 cm³ of soil in 15-cm-diam. clay pots in three greenhouse experiments. Plants were inoculated with 0, 1,000, 3,000, or 9,000 H. glycines race 3 or M. incognita eggs, or vermiform stages of P. penetrans/pot. Forty days after inoculation, nmnbers of all three nematodes, except H. glycines on Bryan, generally increased with increasing inoculum levels in Experiment I. Heterodera glycines and M. incognita significantly decreased growth only of Tracy M. At 45 and 57 days after inoculation with 6,000 individuals/pot in experiments II and III, respectively, significantly more P. penetrans and M. incognita than H. glycines were found on Bryan. However, H. glycines and M. incognita population densities were greater than P. penetrans on G88-20092 and Tracy M. Growth of Tracy M infected by H. glycines and M. incognita and growth of G88-20092 infected by M. incognita decreased in Experiment III. Pratylenchus penetrans did not affect plant growth. Reduction in plant growth differed according to the particular nematode species and cultivar, indicating that nematodes other than the species for which resistance is targeted can have different effects on cultivars of the same crop species.  相似文献   

17.
Crop rotation is a common means of reducing pathogen populations in soil. Several rotation crops have been shown to reduce soybean cyst nematode (Heterodera glycines) populations, but a comprehensive study of the optimal crops is needed. A greenhouse study was conducted to determine the effect of growth and decomposition of 46 crops on population density of H. glycines. Crops were sown in soil infested with H. glycines. Plants were maintained until 75 days after planting, when the soil was mixed, a sample of the soil removed to determine egg density, and shoots and roots chopped and mixed into the soil. After 56 days, soil samples were again taken for egg counts, and a susceptible soybean (‘Sturdy’) was planted in the soil as a bioassay to determine egg viability. Sunn hemp (Crotalaria juncea), forage pea (Pisum sativum), lab-lab bean (Lablab purpureus), Illinois bundleflower (Desman-thus illinoensis), and alfalfa (Medicago sativa) generally resulted in smaller egg population density in soil or number of cysts formed on soybean in the bioassay than the fallow control. Sunn hemp most consistently showed the lowest numbers of eggs and cysts. As a group, legumes resulted in lower egg population densities than monocots, Brassica species, and other dicots.  相似文献   

18.
Calonectria crotalariae enhanced root penetration of Lee 74 (susceptible) and Centennial (resistant) soybeans by juveniles of race 3 of Heterodera glycines. Numbers of cysts in and on the roots of Lee 74 increased during the first 30 days in the presence of the fungus. Percentage of root infection by the fungus increased at 40 days in Lee 74 in the presence of the nematode. Numbers of cysts in soil at 80 and 120 days after inoculation with both organisms accounted for the significantly increased nematode population levels on Lee 74. In the presence of the fungus on the resistant cultivar, significantly increased levels of cysts were recovered from soil at 120 days. Fungus infection of Centennial roots also infected with the nematode increased from 58 to 86% at 120 days. An inoculum timing study in which Lee 74 was infested with the nematode and fungus individually, sequentially, and in combination at days 0 and 35 indicated that enhanced nematode reproduction was related more to early plant-fungus than to early plant-fungus-nematode interaction(s).  相似文献   

19.
Population changes of Heterodera glycines eggs on soybean in small field plots were influenced by the lepidopterous insect pest, Helicoverpa zea; however, few effects on eggs due to the presence of annual weeds were detected. Soybeans defoliated 15-35% by H. zea during August remained green and continued to produce new flowers and pods later into the season than soybeans without H. zea, resulting in higher numbers of H. glycines eggs at harvest on insect-defoliated soybeans. Final H. glycines populations also were influenced by soil population density (Pi) of the nematode at planting. Fecundity of H. glycines was generally greater at the undetected and low Pi than at high Pi levels. Soybean yields were suppressed 12, 22, and 30% by low, moderate, and high H. glycines Pi, respectively. When weed competition and H. zea feeding damage effects were added, yields were suppressed 34, 40, and 57% by the three respective nematode Pi levels. Effects among the three pests on soybean yield were primarily additive.  相似文献   

20.
Competition on soybean between Heterodera glycines (race 3) and Meloidogyne incognita or H. glycines and Pratylenchus penetrans were investigated in greenhouse experiments. Each pair of nematode species was mixed in 3-ml suspensions at ratios of 1,000:0, 750:250, 500:500, 250:750, and 0:1,000 second-stage juveniles or mixed stages for P. penetrans. Nematodes from a whole root system were counted and infection rates standardized per 1,000 nematodes (per replication) prior to testing the null hypothesis through a lack-of-fit F-test. Although the effect of increasing H. glycines proportions on the infection rate of M. incognita was generally adverse, the rate deviated significantly from a trend of linear decline at the 75% H. glycines level in one of two experiments. All lack-of-fit F-tests for the H. glycines and P. penetrans mix were significant, indicating that infection rates for both nematodes varied considerably across inocula. The infection rate of H. glycines decreased with increasing P. penetrans proportions. The rate of P. penetrans infection increased with increasing H. glycines proportions up to the 50% level, but declined at the 75% level. Competition had no effect on nematode development. The general adverse relationships between M. incognita and H. glycines and those between P. penetrans and H. glycines showed a linear trend. The relationship between H. glycines and P. penetrans indicates that the former may be competitive when present at higher proportions than the latter. In this study we have evaluated nematode competition under controlled conditions and provide results that can form a basis for understanding the physical and physiological trends of multiple nematode interactions. Methods critical to data analyses also are outlined.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号