首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
This study examines the types of structural information that can be gained by utilizing the scanning electron microscope (SEM) and a cryofracture technique to examine the host-parasite interaction. Roots of tomato, Lycopersicon esculentum cv. Marglobe, were cultured aseptically and inoculated with the root-knot nematode, Meloidogyne incognita. Twenty-four hours to four weeks after inoculation, developing galls were removed from the cultures and processed for SEM observation. The cryofracture technique was used to reveal internal structural features within the developing galls. The results illustrate structural details concerning penetration of the roots, differentiation of syncytia, and development of the nematodes beginning with the second-stage larvae and ending with adult egg-laying females.  相似文献   

2.
Rates of penetration and development ofMeloidogyne incognita race 4 in roots of resistant (inbred Mp307, and S4 lines derived from the open-pollinated varieties Tebeau and Old Raccoon) and susceptible (Pioneer 3110) corn genotypes were determined. Seedlings grown in styrofoam containers were inoculated with 5,000 eggs of M. incognita. Roots were harvested at 3-day intervals starting at 3 days after inoculation (DAI) to 27 DAI and stained with acid fuchsin. Penetration of roots by second-stage juveniles (J2) at 3 DAI was similar for the four corn genotypes. Meloidogyne incognita numbers in Tebeau, Old Raccoon, Mp307, and Pioneer 3110 peaked at 12, 12, 15, and 27 DAI, respectively. Nematode development in the resistant genotypes was greatly suppressed compared to Pioneer 3110. Resistance to M. incognita in these genotypes appears to be expressed primarily as slower nematode development rather than differences in J2 penetration.  相似文献   

3.
Effects of soil matrix potential on longevity of egg masses of Meloidogyne incognita were determined during simulated winter conditions. Egg masses were recovered from isolated root fragments incubated in field soil at matrix potentials of -0.1, -0.3, -1.0, and -4.0 bars throughout winter survival periods of 10 weeks for tomato roots and 12 weeks for cotton roots. Egg masses were more superficial on cotton roots than on tomato roots and were more easily dislodged from cotton roots during recovery of root fragments by elutriation. The rate of decline in numbers of eggs and J2 per egg mass was greater in wet as compared to dry soils (P = 0.01), with the relationship between numbers of eggs and J2 per egg mass and time being best described by quadratic models. Percentage hatch of recovered eggs declines linearly with time at soil matrix potentials of -0.1 and -0.3 bars, but at -1.0 and -4.0 bars the percentage hatch of recovered eggs increased before declining. Effects of soil matrix potential on numbers of eggs per egg mass and percentage hatch of recovered eggs were consistent with previous reports that low soil moisture inhibits egg hatch before affecting egg development. Estimations of egg population densities during winter survival periods will be affected by ability to recover infected root fragments from the soil without dislodging associated egg masses. There is a need for procedures for extraction of egg masses not attached to roots from the soil.  相似文献   

4.
Cotton seedlings were inoculated with a range of initial populations (Pi) of Meloidogyne incognita in greenhouse experiments to test the relationship between nematode population densities and egg viability. In two of three experiments, a significant (P < 0.05) negative linear relationship was detected between percentage of hatch of first generation eggs and log Pi. A similar relationship between hatch and root-gall index was observed. In two experiments numbers of eggs judged to be nonviable based on appearance were significantly greater (P < 0.05) in the highest Pi (60,000 eggs/seedling) treatments than in treatments with lower Pi (600-6,000 eggs/seedling). It was concluded that Pi affects egg viability measured as percentage of hatch and that this relationship may play a role in the density-dependent winter survival rates of Meloidogyne species.  相似文献   

5.
The root-knot nematode Meloidogyne incognita was monoxenically cultured on excised roots of soybean cv. Pickett and tomato cv. Rutgers in agar media containing either 0 to 1,600 μg/ml ammonium nitrate or 0 to 100 μg/ml urea. Observations with scanning and transmission electron microscopy indicated that an elevated concentration of ammonium nitrate or urea inhibited giant cell formation and suppressed nematode development in the infected soybean roots. In the tomato roots, concentrations of ammonium nitrate above 400 μg/ml or urea above 25 μg/ml inhibited giant cell formation and nematode development. Coincident with the nitrogen concentrations that suppressed giant cell formation was the appearance of electron-dense spherical bodies in the cortical parenchyma cells of both the soybean and tomato roots. These bodies, which were 1-4 μm in diameter, appeared to form in the cytoplasm and migrate to the cell vacuole.  相似文献   

6.
Proteinaceous components of freshly formed gelatinous matrix (GM) of the root-knot nematode Metoidogyne javanica were analyzed. Under reducing conditions, the prominent protein fragments had molecular weights of 26 to 66 kDa and 150 to >200 kDa, and most were glycosylated. Most of the fragments were digested by proteinase K, and fewer by trypsin. The lectins soybean agglutinin (SBA), Ulex europaeus agglutinin, and wheat germ agglutinin labeled the higher molecular weight bands (i.e., >200 kDa). SBA labeled additional protein fractions between 26 and 66 kDa. Although Bandeiraea simplicifolia lectin and Concanavalin A did not label bands on the Western blot, they did label the GM in the dot blot technique. Analysis of amino acids and amino sugars in the GM revealed an unusually high amount of ammonia and galactosamine moieties.  相似文献   

7.
Ultrastructural cytochemical tests for several enzymes, proteins, carbohydrates, and nucleic acids were conducted on secretory granules o£ dorsal and subventral esophageal glands of preparasitic second-stage juveniles and the dorsal gland of adult females of Meloidogyne incognita. Secretory granules in the subventral glands of juveniles stained positive for acid phosphatase. Peroxidase, DNase, RNase, cellulase, and nucleic acids were not detected in these granules. Secretory granules in the dorsal gland of adult females stained positive for peroxidase (pH 7.6) in < 50% of the tests, Acid phosphatase, β-glucuronidase, DNase, RNase, polyphenoloxidase, cellulase, and carbohydrates were not detected in dorsal gland granules in adult females. Positive staining with cobalt thiocyanate, a stain for amino groups of basic proteins, occurred in secretory granules in the dorsal gland, ribosomes, and chromatin in adult females. Ribosomes, nuclei, and secretory granules of the dorsal gland of adult females intensely stained when incubated in three reagents specific for nucleic acid.  相似文献   

8.
The effect of soybean genotype on competition between Meloidogyne incognita race 2 (Mi) and Rotylenchulus reniformis (Rr) was evaluated in greenhouse and microplot replacement series experiments. Soil in pots containing seedlings of ''Davis'' (susceptible to Mi) or ''Buckshot 66'' (resistant to Mi) was infested with 1,000 vermiform individuals in the following Mi:Rr ratios: 0:0, 100:0, 75:25, 50:50, 25:75, or 0:100. After 91 days, the relative nematode yields (number of nematodes in mixed culture divided by the number in nonmixed culture) of each species were calculated based on soil and root nematode populations expressed as nematodes per gram of dry root tissue. To define the relationship between the two species, calculated relative nematode yields were compared with a theoretical noncompetition model using lack-of-fit regression. In the greenhouse, Mi populations on ''Davis'' were stimulated in the presence of Rr. In microplots, low Mi and Rr population densities likely resulted from severe galling and destruction of feeder roots that probably occurred early in the season. Enhanced susceptibility to Mi was not observed on ''Buckshot 66'', which remained resistant to Mi even when colonized by Rr. Host resistance is a key factor in determining the nature of the relationship between Mi and Rr.  相似文献   

9.
Eggs of the root-knot nematode Meloidogyne incognita were acclimated to 23 C. Newly hatched second-stage juveniles migrated toward higher temperatures when placed in shallow thermal gradients averaging 23 C. The threshold gradient for this response was below 0.001 C/cm, with a best estimate of 4 x 10⁻⁴ C/cm. Calculations of physical limitations on thermotaxis indicate that this sensitivity is well within the limits of what is physically possible.  相似文献   

10.
Eggs, either dispersed or in masses, and second-stage juveniles (J2) of Meloidogyne incognita were exposed to different concentrations of ammonium ions in a nutrient agar medium upon which excised tomato roots were growing. Egg hatch and J2 penetration of the roots was slowed or inhibited at high (54 and 324 mg/liter) but not at low (1.5 and 9 mg/liter) concentrations of ammonium nitrate. The effect of ammonium on J2 appeared to be temporary and reversible. High potassium nitrate concentration (1,116 mg/liter) did not modify egg hatch or J2 penetration. There was no adverse effect from the high ammonium nitrate concentrations or an equivalent potassium nitrate concentration on root dry weight. Ammonium ions influence nematodes both directly and via plant roots and do so independently of microbial organisms.  相似文献   

11.
The effects of Meloidogyne incognita on the Big Jim, Jalapeno, and New Mexico No. 6 chile (Capsicum annuum) cultivars were investigated in microplots for two growing seasons. All three cultivars were susceptible to M. incognita and reacted similarly to different initial populations of this nematode. Severe stunting and yield suppressions occurred at all initial M. incognita densities tested ranging from 385 to 4,230 eggs and larvae/500 cm³ soil. Regression analysis of the microplot data from a sandy loam soil showed yield losses of 31% for the 1978 season and 25% for the 1979 season for the three cultivars for each 10-fold increase in the initial population of M. incognita.  相似文献   

12.
The surface coat (SC) of plant nematodes is thought to originate either from the living hypodermis or from secretory glands associated with the excretory system or nervous system. In this study, we investigated the origin of the SC of Meloidogyne incognita by immunolocalization with a monoclonal antibody raised against the surface coat of the preparasitic juveniles (J2). Under the electron microscope, strong labeling was found on the cuticular surface and in the rectal dilation of the J2, while labeling was absent in other parts of the nematode, including the hypodermis, excretory system, nervous system, and digestive system. Because the rectal glands are known to be the origin of the gelatinous egg matrix produced by adult females of Meloidogyne, we also examined sections of mature females from monoxenic cultures of Arabidopsis thaliana. Labeling of the female occurred in the rectal glands and in the gelatinous matrix exuded from the anus. At the ultrastructural level, gold particles were mainly deposited in multivesicular bodies that appeared to be associated with the Golgi bodies of the rectal glands. Our results suggest that at least one component of the J2 SC originates from the rectal gland cells and that the SC of the J2 shares common epitopes with the gelatinous egg matrix of mature females.  相似文献   

13.
Food (energy) consumption rates ofMeloidogyne incognita were calculated on Vitis vinifera cv. French Colombard (highly susceptible) and cv. Thompson Seedless (moderately resistant). One-month-old grape seedlings in styrofoam cups were inoculated with 2,000 or 8,000 M. incognita second-stage juveniles (J2) and maintained at 17.5 degree days (DD - base 10 C)/day until maximum adult female growth and (or) the end of oviposition. At 70 DD intervals, nematode fresh biomass was calculated on the basis of volumes of 15-20 nematodes per plant obtained with a digitizer and computer algorithm. Egg production was measured at 50-80 DD intervals by weighing 7-10 egg masses and counting the number of eggs. Nematode growth and food (energy) consumption rates were calculated up to 1,000 DD based on biomass increase, respiratory requirements, and an assumption of 60 % assimilation efficiency. The growth rate of a single root-knot nematode, excluding egg production, was similar in both cultivars and had a logistic form. The maximum fresh weight of a mature female nematode was ca. 29-32 μg. The total biomass increase, including egg production, also had a logistic form. Maximum biomass (mature adult female and egg mass) was 211 μg on French Colombard and 127 μg on Thompson Seedless. The calculated total cost to the host for the development of a single J2 from root penetration to the end of oviposition for body growth and total biomass was 0.535 and 0.486 calories with a total energy demand of 1.176 and 0.834 calories in French Colombard and Thompson Seedless, respectively.  相似文献   

14.
A series of controlled-environment experiments were conducted to elucidate the effects of Meloidogyne incognita on host physiology and plant-water relations of two cotton (Gossypium hirsutum) cultivars that differed in their susceptibility to nematode infection. Inoculation of M. incognita-resistant cultivar Auburn 634 did not affect growth, stomatal resistance, or components of plant-water potential relative to uninoculated controls. However, nematode infection of the susceptible cultivar Stoneville 506 greatly suppressed water flow through intact roots. This inhibition exceeded 28% on a root-length basis and was similar to that observed as a consequence of severe water stress in a high evaporative demand environment. Nematodes did not affect the components of leaf water potential, stomatal resistance, transpiration, or leaf temperature. However, these factors were affected by the interaction of M. incognita and water stress. Our results indicate that M. incognita infection may alter host-plant water balance and may be a significant factor in early-season stress on cotton seedlings.  相似文献   

15.
Field experiments in 1992 and 1994 were conducted to determine the effect of Rotylenchulus reniformis, reniform nematode, on lint yield and fiber quality of 10 experimental breeding lines of cotton (Gossypium hirsutum) in untreated plots or plots fumigated with 1,3-dichloropropene. Controls were La. RN 1032, a germplasm line possessing some resistance to R. reniformis, and Stoneville 453, a cultivar that is susceptible to reniform nematode. Several breeding lines produced greater lint yields than Stoneville 453 or La. RN 1032 in both fumigated and untreated plots. Average lint yield suppression due to R. reniformis for six of the 10 breeding lines was less than half of the 52% yield reduction sustained by Stoneville 453. In growth chamber experiments, R. reniformis multiplication factors for La. RN 1032 and breeding lines N222-1-91, N320-2-91, and N419-1-91 were significantly lower than on Deltapine 16 and Stoneville 453 at 6 weeks after inoculation. R. reniformis populations increased by more than 50-fold on all entries within 10 weeks. In growth chambers, the breeding lines N220-1-92, N222-1-91, and N320-2-91 were resistant to Meloidoglyne incognita race 3; multiplication factors were ≤1.0 at both 6 weeks and 10 weeks after inoculation compared with 25.8 and 26.5 for Deltapine 16 at 6 and 10 weeks after inoculation, respectively, and 9.1 and 2.6 for Stoneville 453. Thus, the results indicate that significant advances have been made in developing improved cotton germplasm lines with the potential to produce higher yields in soils infested with R. reniformis or M. incogaita. In addition to good yield potential, germplasm lines N222-1-91 and N320-2-91 appear to possess low levels of resistance to R. reniformis and a high level of resistance to M. incognita. This germplasm combines high yield potential with significant levels of resistance to both R. reniformis and M. incognita.  相似文献   

16.
Greenhouse and field microplot studies were conducted to compare soybean shoot and root growth responses to root penetration by Heterodera glycines (Hg) and Meloidogyne incognita (Mi) individually and in combination. Soybean cultivars Centennial (resistant to Hg and Mi), Braxton (resistant to Mi, susceptible to Hg), and Coker 237 (susceptible to Hg and Mi) were selected for study. In the greenhouse, pot size and number of plants per pot had no effect on Hg or Mi penetration of Coker 237 roots; root weight was higher in the presence of either nematode species compared with the noninoculated controls. In greenhouse studies using a sand or soil medium, and in field microplot studies, each cultivar was grown with increasing initial population densities (Pi) of Hg or Mi. Interactions between Hg and Mi did not affect early plant growth or number of nematodes penetrating roots. Root penetration was the only response related to Pi. Mi penetration was higher in sand than in soil, and higher in the greenhouse than in the field, whereas Hg penetration was similar under all conditions. At 14 days after planting, more second-stage juveniles were present in roots of susceptible than in roots of resistant plants. Roots continued to lengthen in the greenhouse in the presence of either Mi or Hg regardless of host genotype, but only in the presence of Mi in microplots; otherwise, responses in field and greenhouse studies were similar and differed only in magnitude and variability.  相似文献   

17.
The survival of eggs of the root-knot nematode Meloidogyne javanica was studied in a series of experiments comparing the infectivity of egg masses (EM) to that of separated eggs (SE). The EM or SE were placed in the centers of pots containing citrus orchard soil and incubated for 24 hours, 10 days, or 20 days. Following each incubation time, 10-day-old tomato plants were planted in each pot, and 3 to 4 weeks later the plants were harvested and the galling indices determined. In the EM treatments, galling indices of ca. 4.0 to 5.0 were recorded after all three incubation periods; in the SE treatments, the infectivity gradually declined to trace amounts by 20 days. Incubating EM and SE for 2 weeks in four different soil types showed the same pattern in all the soil types: EM caused heavy infection of the test plants while the infection rate from the SE was extremely low. Incubating EM and SE in soil disinfested with formaldehyde resulted in comparable galling indices in most treatments. In petri dish experiments, 100 mg of natural soil was spread at the perimeter of a Phytagel surface and EM or SE of M. incognita were placed in the center. Light microscopy revealed that within 5 to 10 days the SE were attacked by a broad spectrum of microorganisms and were obliterated while the eggs within the EM remained intact. Separated eggs placed within sections of gelatinous matrix (GM) were not attacked by the soil microorganisms. When selected microbes were placed on Phytagel surfaces with EM of M. incognita, electron microscopy demonstrated that at least some microbes colonized the GM. As the major difference between the EM and the SE was the presence of the GM, the GM may serve as a barrier to the invasion of some microorganisms.  相似文献   

18.
Cuticles isolated from second-stage juveniles and adult females of Meloidogyne incognita were purified by treatment with 1% sodium dodecyl sulfate (SDS). The juvenile cuticle was composed of three zones differing in their solubility in β-mercaptoethanol (BME). Proteins in the cortical and median zones were partially soluble in BME, whereas the basal zone was the least soluble. The BME-soluble proteins from the juvenile cuticle were separated into 12 bands by SDS-polyacrylamide gel electrophoresis and characterized as collagenous proteins based on their sensitivity to collagenase and amino acid composition. The adult cuticle consisted of two zones which were dissolved extensively by BME. The basal zone was completely solubilized, leaving behind a network of fibers corresponding to the cortical zone. The BME-soluble proteins from the adult cuticle were separated by electrophoresis into nine bands one of which constituted > 55% of the total BME-soluble proteins. All bands were characterized as collagenous proteins. Collagenous proteins from juvenile cuticles also contained glycoproteins which were absent from the adult cuticles.  相似文献   

19.
The influence of the vesicular-arbuscular mycorrhizal fungus Glomus intraradices (Gi) and superphosphate (P) on penetration, development, and reproduction of Meloidogyne incognita (Mi) was studied on the Mi-susceptible cotton cultivar Stoneville 213 in an environmental chamber at 28 C. Plants were inoculated with Mi eggs at planting or after 28 days and destructively sampled 7, 14, 21, and 28 days after nematode inoculation. Mi penetration after 7 days was similar in all treatments at either inoculation interval. At 28 days, however, nematode numbers were least in mycorrhizal root systems and greatest in root systems grown with supplemental P. The rate of development of second-stage juveniles to ovipositing females was unaffected by Gi or P when Mi was added at planting, but was delayed in mycorrhizal root systems when Mi was added 28 days after planting. Nematode reproduction was lower in mycorrhizal than in nonmycorrhizal root systems at both Mi inoculation intervals. Nematode reproduction was stimulated by P when Mi was added at planting, but was similar to reproduction in the low P nonmycorrhizal treatment when Mi was added 28 days after planting. Eggs per female were increased by P fertility when Mi was added at planting.  相似文献   

20.
The effects of host genotype and initial nematode population densities (Pi) on yield of soybean and soil population densities of Heterodera glycines (Hg) race 3 and Meloidogyne incognita (Mi) race 3 were studied in a greenhouse and field microplots in 1983 and 1984. Centennial (resistant to Hg and Mi), Braxton (resistant to Mi, susceptible to Hg), and Coker 237 (susceptible to Hg and Mi) were planted in soil infested with 0, 31, or 124 eggs of Hg and Mi, individually and in all combinations, per 100 cm³ soil. Yield responses of the soybean cultivars to individual and combined infestations of Hg and Mi were primarily dependent on soybean resistance or susceptibility to each species separately. Yield of Centennial was stimulated or unaffected by nematode treatments, yield of Braxton was suppressed by Hg only, and yield suppressions caused by Hg and Mi were additive and dependent on Pi for Coker 237. Other plant responses to nematodes were also dependent on host resistance or susceptibility. Population densities of Mi second-stage juveniles (J2) in soil were related to Mi Pi and remained constant in the presence of Hg for all three cultivars. Population densities of Hg J2 on the two Hg-susceptible Cultivars, Braxton and Coker 237, were suppressed in the presence of Mi at low Hg Pi.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号