首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
Issues of the Journal of Nematology from 1969-2009 were examined to determine trends in authorship and subject matter. Data were collected on authors, affiliations, locations, funding, nematodes, and nematological subject matter, and then compared among the 4 decades involved. Some of the more prominent changes noted included: a decrease (P < 0.05) in the number of papers published in the Journal of Nematology in the 1990s and 2000s from a peak in the 1980s; an increase (P < 0.05) in number of authors per paper in each decade; an increased (P < 0.05) percentage of international authors in the 1990s and 2000s compared to 1970s; and changing roles of the United States Department of Agriculture (USDA) and different states over a period of 4 decades. Plant-parasitic nematodes were the main organisms studied in 73.4% of all papers published the Journal of Nematology from 1969-2009. The greatest changes in subject matter were increases in papers on biological control and resistance in the 1990s and 2000s compared to the 1970s and 1980s. Additional trends and subjects are discussed, and data are provided comparing differences among the 4 decades for various aspects of nematology.  相似文献   

2.
The first written record of pineapple in Hawaii is from 1813. In 1901 commercial pineapple production started, and in 1924 the Experiment Station for pineapple research was established. Nematode-related problems were recognized in the early 1900s by N. A. Cobb. From 1920 to approximately 1945 nematode management in Hawaiian pineapple was based on fallowing and crop rotation. During the 1920s and 1930s G. H. Godfrey conducted research on pineapple nematode management. In the 1930s and 1940s M. B. Linford researched biological control and described several new species of nematodes including Rotylenchulus reniformis. In 1941 nematology and nematode management were advanced by Walter Carter''s discovery of the first economical soil fumigant for nematodes, D-D mixture. Subsequently, DBCP was discovered and developed at the Pineapple Research Institute (PRI). Since 1945 soil fumigation has been the main nematode management strategy in Hawaiian pineapple production. Recent research has focused on the development of the nonvolatile nematicides, their potential as systemic nematicides, and their application via drip irrigation. Current and future research addresses biological and cultural alternatives to nematicide-based nematode management.  相似文献   

3.
Reflections on Plant and Soil Nematode Ecology: Past,Present and Future   总被引:1,自引:0,他引:1  
The purpose of this review is to highlight key developments in nematode ecology from its beginnings to where it stands today as a discipline within nematology. Emerging areas of research appear to be driven by crop production constraints, environmental health concerns, and advances in technology. In contrast to past ecological studies which mainly focused on management of plant-parasitic nematodes, current studies reflect differential sensitivity of nematode faunae. These differences, identified in both aquatic and terrestrial environments include response to stressors, environmental conditions, and management practices. Methodological advances will continue to influence the role nematodes have in addressing the nature of interactions between organisms, and of organisms with their environments. In particular, the C. elegans genetic model, nematode faunal analysis and nematode metagenetic analysis can be used by ecologists generally and not restricted to nematologists.  相似文献   

4.
This is a review of the activities of what rapidly became the leading plant nematology department in the world, based in what was at that time not only the most important but also the most distinguished agricultural research station in the world. We first briefly review the research done in the period under each head of department before recording in more detail some of the long‐term research programmes, including work on potato cyst nematode hatching factors, chemical control and biological control. These strong research activities flourished until the radical funding constraints that were introduced nationally following release of the Rothschild Report in 1973 forced the adoption of various management actions at research stations. The changed pattern of research funding systems, which evolved gradually from 1973 onwards, resulted in a different style of research collaboration and changes in research focus by institutes and their staff. It became fashionable for institutes to have mission statements and these were changed frequently by directors due to the need to respond to funding possibilities. Successive severe and progressive reductions in staffing and, inevitably, outputs culminated in the complete cessation of nematology research at Rothamsted in 2013, even though cutting edge work on biological control and molecular interactions between nematodes and their plant hosts was still being carried out.  相似文献   

5.
Although several attempts have been made to differentiate nematode species with polyclonal antisera, these efforts thus far have met with limited success because of extensive crossreactivities of the sera. Since the hybridoma technique offers the opportunity to develop more specific serological reagents, some research groups have recently started to apply this technology to the problem of species identification in nematology. Monoclonal antibodies (MA) that differentiate the potato-cyst nematodes Globodera rostochiensis and G. pallida, as well as MA specific for Meloidogyne species, have been developed. The possibilities of developing serodiagnostic tools for identification of nematodes recovered from soil samples and the implications of such monitoring of nematode infestations in view of integrated control of plant-parasitic nematodes are discussed.  相似文献   

6.
A review of the development of entomophilic nematology and a commentary on the potential of entomophilic nematodes in controlling insect pests. The paper considers some of the major contributions to our knowledge of entomophilic nematology; factors involved in insect pest management and how they are applicable to the use of nematodes; nematodes which are most promising as biological control agents; and problems to be solved to facilitate the use of entomophilic nematodes in insect management.  相似文献   

7.
Damage caused by plant-parasitic nematodes (PPNs) represents significant losses in agriculture worldwide. Sustainable and non-agrochemical practices have been sought out for the last few years aiming the reduction of PPN outbreaks, as such practices represent less interference in the soil health. In addition, certain soils naturally show high levels of suppressiveness against nematodes. Natural suppressive soils do not allow PPN increment by a balance in soil biotic and abiotic conditions. Such soils must be better understood by which components are responsible for their natural suppressiveness. Hence, keeping, stimulating or and even creating suppressive conditions in agricultural rhizosphere has been studied and applied to reduce PPN populations. There are many aspects that implicate in soil suppressiveness against PPN, such as microbiota activities, organic matter amount, chemical composition and physical constitution. However, any of those conditions is a single driver in suppressive soils against PPN. In this context, we intend to bring up an overview concerning the natural occurrence of suppressive soils against the most devastating PPNs worldwide and discuss the means used to induce suppressiveness in agricultural fields by sustainable management practices.  相似文献   

8.
Nematodes are presumably the most numerous Metazoans in terrestrial habitats. They are represented at all trophic levels and are known to respond to nutrient limitation, prey availability, and microbial resources. Predatory nematodes reside at the highest trophic level, and as such their feeding habits could have a major impact on soil food web functioning. Here, we investigate the effects of gender and developmental stage on the nematode body sizes in coarse and loamy soils. Besides Neodiplogasteridae, our predators are much larger than other soil-dwelling nematodes from their early developmental stage onwards. From juvenile to adult, the predatory Aporcelaimellus (Kruskal-Wallis P < 0.001), Dorylaimoides, and Tripyla (both P < 0.01) show great length increases during their developmental growth, in contrast to their possible prey (almost all P < 0.001). Less than 4% of the prey exceeds the length of the predatory adults, but more than 30% of the prey exceeds the length of the predatory juveniles. Potential body size ratios and some physical problems experienced by small fluid feeders attacking large prey are discussed in an attempt to summarize different prey-searching mechanisms and aggregative predatory responses in the soil system.  相似文献   

9.
土壤线虫多样性是土壤生态学研究的热点之一, 然而对土壤线虫群落组成及多样性的研究通常受到分类学和方法学的限制。当前, 分子生物学技术的快速发展丰富了我们对土壤线虫多样性的认识, 但也存在一定的局限性。本文综述了常用分子生物学技术如变性梯度凝胶电泳(denaturing gradient gel electrophoresis, DGGE)、末端限制性片段长度多态性分析(terminal restriction fragment length polymorphism, T-RFLP)、实时荧光定量PCR (quantitative real-time PCR, qPCR)和高通量测序(high-throughput sequencing, HTS)技术近年来在线虫多样性研究中的应用, 重点从土壤线虫DNA提取方法、引物和数据库的选择、高通量测序技术和形态学鉴定结果的比较等方面阐述了高通量测序技术在线虫多样性研究中的优势与不足, 并提出选择合适的线虫DNA提取方法结合特定引物和数据库进行注释分析, 仍是今后使用高通量测序技术开展线虫多样性研究的重点。当研究目标是土壤线虫多样性时, 优先推荐富集线虫悬液提取DNA的方法, 因此, 研究人员应根据具体目标选择最优组合开展实验研究。  相似文献   

10.
Aboveground, large and higher trophic-level organisms often respond more strongly to environmental changes than small and lower trophic-level organisms. However, whether this trophic or size-dependent sensitivity also applies to the most abundant animals, microscopic soil-borne nematodes, remains largely unknown. Here, we sampled an altitudinal transect across the Tibetan Plateau and applied a community-weighted mean (CWM) approach to test how differences in climatic and edaphic properties affect nematode CWM biomass at the level of community, trophic group and taxon mean biomass within trophic groups. We found that climatic and edaphic properties, particularly soil water-related properties, positively affected nematode CWM biomass, with no overall impact of altitude on nematode CWM biomass. Higher trophic-level omnivorous and predatory nematodes responded more strongly to climatic and edaphic properties, particularly to temperature, soil pH, and soil water content than lower trophic-level bacterivorous and fungivorous nematodes. However, these differences were likely not (only) driven by size, as we did not observe significant interactions between climatic and edaphic properties and mean biomasses within trophic groups. Together, our research implies a stronger, size-independent trophic sensitivity of higher trophic-level nematodes compared with lower trophic-level ones. Therefore, our findings provide new insights into the mechanisms underlying nematode body size structure in alpine grasslands and highlight that traits independent of size need to be found to explain increased sensitivity of higher trophic-level nematodes to climatic and edaphic properties, which might affect soil functioning.  相似文献   

11.
Morphological identification and detailed observation of nematodes usually requires permanent slides, but these are never truly permanent and often prevent the same specimens to be used for other purposes. To efficiently record the morphology of nematodes in a format that allows easy archiving, editing, and distribution, we have assembled two micrographic video capture and editing (VCE) configurations. These assemblies allow production of short video clips that mimic multifocal observation of nematode specimens through a light microscope. Images so obtained can be used for training, management, and online access of "virtual voucher specimens" in taxonomic collections, routine screening of fixed or unfixed specimens, recording of ephemeral staining patterns, or recording of freshly dissected internal organs prior to their decomposition. We provide an overview of the components and operation of both of our systems and evaluate their efficiency and image quality. We conclude that VCE is a highly versatile approach that is likely to become widely used in nematology research and teaching.  相似文献   

12.
Organic matter and its replenishment has become a major component of soil health management programs. Many of the soil''s physical, chemical, and biological properties are a function of organic matter content and quality. Adding organic matter to soil influences diverse and important biological activities. The diversity and number of free-living and plant-parasitic nematodes are altered by rotational crops, cover crops, green manures, and other sources of organic matter. Soil management programs should include the use of the proper organic materials to improve soil chemical, physical, and biological parameters and to suppress plant-parasitic nematodes and soilborne pathogens. It is critical to monitor the effects of organic matter additions on activities of major and minor plant-parasitic nematodes in the production system. This paper presents a general review of information in the literature on the effects of crop rotation, cover crops, and green manures on nematodes and their damage to economic crops.  相似文献   

13.
下辽河平原农田生态系统在管理过程中频繁的耕作、施肥以及农用化学品施用等引发了一系列问题, 如土壤退化、耕地数量减少以及生产力下降等, 不可避免地对土壤生物健康产生影响。为探究农田土壤人工管理对土壤生物群落动态的影响, 本研究在辽宁沈阳农田生态系统国家野外科学观测研究站开展了农田土壤线虫群落组成的季节变化研究, 对4个季节农田和废弃农田(对照)的土壤线虫群落组成、多度以及多样性等进行了比较分析。研究结果表明, 土壤线虫总多度在废弃农田中显著高于农田, 但季节间差异不显著。季节变化主要显著影响了自由生活线虫的多度, 其在9月达到最高; 季节变化也显著影响了属的数量, 其在非生长季的11月最低。与废弃农田相比, 农田管理显著降低了杂食捕食线虫和食真菌线虫的多度, 土壤食物网结构相对稳定; 而废弃的农田更易受到季节波动的影响, 土壤食物网也受到一定的干扰。  相似文献   

14.
陈云峰  胡诚  李双来  乔艳 《生态学报》2011,31(1):286-292
土壤食物网在维持生态系统生产力和健康等方面起着重要作用,但现代农业中,化肥农药等外部投入已经改变或部分替代了土壤食物网的功能,由此也造成一系列的环境问题。为了协调作物高产与环境保护的利益,需要对土壤食物网进行管理,使土壤食物网符合作物生长的需要,即建立健康土壤食物网。管理土壤食物网有两种方式:(1)直接方式,即通过调节食物网各个功能群的组成来管理土壤食物网;(2)间接方式,即根据农田土壤食物网以自下而上调控方式为主、强调低营养阶层的资源限制的原理,通过调节碎屑的数量和质量来管理食物网。在这两种调控方式中,都需要对被管理的食物网进行监测,监测的方式也分两种,一种是直接测定食物网各功能群的数量和生物量,另外一种方式即以线虫为工具来反应土壤食物网的结构。  相似文献   

15.
Literature reporting the development of conservation tillage and the research that has been conducted on nematode control in crops grown in conservation tillage systems is reviewed. Effects of different types of conservation tillage on population densities of various nematode species in monocropping and multicropping systems, effects of tillage on nematode distribution in the soil profile, effects of conservation tillage on nematode control, and the role of nematology in conservation tillage research are discussed.  相似文献   

16.
Nematodes, such as Caenorhabditis elegans, have been instrumental to the study of cancer. Recently, their significance as powerful cancer biodiagnostic tools has emerged, but also for mechanism analysis and drug discovery. It is expected that nematode-applied technology will facilitate research and development on the human tumor microenvironment. In the history of cancer research, which has been spurred by numerous discoveries since the last century, nematodes have been important model organisms for the discovery of cancer microenvironment. First, microRNAs (miRNAs), which are noncoding small RNAs that exert various functions to control cell differentiation, were first discovered in C. elegans and have been actively incorporated into cancer research, especially in the study of cancer genome defects. Second, the excellent sense of smell of nematodes has been applied to the diagnosis of diseases, especially refractory tumors, such as human pancreatic cancer, by sensing complex volatile compounds derived from heterogeneous cancer microenvironment, which are difficult to analyze using ordinary analytical methods. Third, a nematode model system can help evaluate invadosomes, the phenomenon of cell invasion by direct observation, which has provided a new direction for cancer research by contributing to the elucidation of complex cell–cell communications. In this cutting-edge review, we highlight milestones in cancer research history and, from a unique viewpoint, focus on recent information on the contributions of nematodes in cancer research towards precision medicine in humans.  相似文献   

17.
Changes in microclimate, soil physicochemical properties, understory vegetation cover, diversity, and composition as well as soil microbial community resulting from silvicultural practices are expected to alter soil food webs. Here, we investigated whether and how contrasting‐sized canopy openings affect soil nematode community within a 30 year‐aged spruce plantation. The results indicated that the responses of soil nematodes to canopy opening size were dependant on their feeding habit. The abundance of total nematodes and that of free‐living nematodes was negatively correlated with soil bulk density, whereas the abundance of omnivore–predators was negatively correlated with soil bulk density and shrubs cover, respectively. The ratio of the sum abundance of predators and omnivores to the plant parasites’ abundance, Simpson's dominance index, Pielou's evenness index, and sigma maturity index, maturity index (MI), MI2‐5, basal index, enrichment index, and structure index was sensitive to alteration in canopy opening size. Multivariate analysis indicated that thinning‐induced gap size resulted in contrasting nematode assemblages. In conclusion, soil nematodes should be integrated as an indicator to monitor soil multifunctionality change due to thinning.  相似文献   

18.
Climate change is predicted to increase climate variability and frequency of extreme events such as drought, straining water resources in agricultural systems. Thus, limited irrigation strategies and soil amendments are being explored to conserve water in crop production. Biochar is the recalcitrant, carbon‐based coproduct of biomass pyrolysis during bioenergy production. When used as a soil amendment, biochar can increase soil water retention while enhancing soil properties and stimulating food webs. We investigated the effects of coupled biochar amendment and limited irrigation on belowground food web structure and function in an irrigated maize agroecosystem. We hypothesized that soil biota biomass and activity would decrease with limited irrigation and increase with biochar amendment and that biochar amendment would mitigate the impact of limited irrigation on the soil food web. One year after biochar addition, we extracted, identified, and estimated the biomass of taxonomic groups of soil biota (e.g., bacteria, fungi, protozoa, nematodes, and arthropods) from wood‐derived biochar‐amended (30 Mg ha?1) and nonamended soils under maize with limited (two‐thirds of full) and full irrigation. We modeled structural and functional properties of the soil food web. Neither biochar amendment nor limited irrigation had a significant effect on biomass of the soil biota groups. Modeled soil respiration and nitrogen mineralization fluxes were not different between treatments. A comparison of the structure and function of the agroecosystem soil food web and a nearby native grassland revealed that in this temperate system, the negative impact of long‐term conventional agricultural management outweighed the impact of limited irrigation. One year of biochar amendment did not mitigate nor further contribute to the negative effects of historical agricultural management.  相似文献   

19.
The phytohormones ethylene and auxin regulate many important processes in plants, including cell differentiation, cell expansion, and responses to abiotic stresses. These hormones also play important roles in many plant-pathogen interactions, including regulation of plant defense responses and symptom development. Sedentary plant-parasitic nematodes, which require the formation of a complex feeding site within the host root, are among the world’s most destructive plant pathogens. Nematode-induced feeding sites show dramatic changes in host cell morphology and gene expression. These changes are likely mediated, at least in part, by phytohormones. In the present review, current knowledge of the roles of ethylene and auxin will be explored in two main areas: the specific role of phytohormones in mediating feeding site development by plant-parasitic nematodes and the general role of phytohormones in affecting the ability of parasitic nematodes to cause disease. Published in Russian in Fiziologiya Rastenii, 2009, Vol. 56, No. 1, pp. 3–7. This article was presented in original.  相似文献   

20.
Entomopathogenic nematode species respond directionally to various cues including electrical stimuli. For example, in prior research Steinernema carpocapsae was shown to be attracted to an electrical current that was applied to an agar dish. Thus, we hypothesised that these nematodes may use electromagnetic reception to assist in navigating through the soil and finding a host. In this study we discovered that S. carpocapsae also responds to electrical fields (without current) and to magnetic fields; to our knowledge this is the first report of nematode directional movement in response to a magnetic field. Our research expands on the range of known stimuli that entomopathogenic nematodes respond to. The findings may have implications for foraging behavior.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号