首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Spatial and temporal ground-surface dynamics are major factors that affect regeneration and species coexistence in tropical peat swamp forests. We studied the seedling survivorship and morphological features of two tree species that play important roles in maintaining the ground-surface dynamics of a peat swamp forest in Sumatra. Large Swintonia glauca trees form mounds, whereas large Stemonurus scorpioides trees occupy non-mounds. We monitored the demography of naturally dispersed Swintonia and Stemonurus seedlings that germinated in 2000. Survivorship of Swintonia seedlings was high under conditions of late germination, high-light environment, and elevated ground surface, and was negatively affected by distance to the nearest conspecific adult. Survivorship of Stemonurus was high under conditions of early germination and high conspecific seedling density, and was also negatively affected by distance to the nearest conspecific adult. The allometric features of Stemonurus seedlings indicated characteristics of stress tolerance, that is, low growth rate and thick, porous roots. Stemonurus, which has large wingless seeds, regenerated in non-mounds around the parental trees, while winged Swintonia seeds dispersed farther from the parent and established in patchily distributed gaps and mounds. Thus, Swintonia seedlings can survive on non-mound sites within gaps and possibly create mounds, while Stemonurus seedlings tend to maintain non-mounds around the parental trees.  相似文献   

2.
Maximum rooting depth of vegetation types at the global scale   总被引:37,自引:0,他引:37  
The depth at which plants are able to grow roots has important implications for the whole ecosystem hydrological balance, as well as for carbon and nutrient cycling. Here we summarize what we know about the maximum rooting depth of species belonging to the major terrestrial biomes. We found 290 observations of maximum rooting depth in the literature which covered 253 woody and herbaceous species. Maximum rooting depth ranged from 0.3 m for some tundra species to 68 m for Boscia albitrunca in the central Kalahari; 194 species had roots at least 2 m deep, 50 species had roots at a depth of 5 m or more, and 22 species had roots as deep as 10 m or more. The average for the globe was 4.6±0.5 m. Maximum rooting depth by biome was 2.0±0.3 m for boreal forest. 2.1±0.2 m for cropland, 9.5±2.4 m for desert, 5.2±0.8 m for sclerophyllous shrubland and forest, 3.9±0.4 m for temperate coniferous forest, 2.9±0.2 m for temperate deciduous forest, 2.6±0.2 m for temperate grassland, 3.7±0.5 m for tropical deciduous forest, 7.3±2.8 m for tropical evergreen forest, 15.0±5.4 m for tropical grassland/savanna, and 0.5±0.1 m for tundra. Grouping all the species across biomes (except croplands) by three basic functional groups: trees, shrubs, and herbaceous plants, the maximum rooting depth was 7.0±1.2 m for trees, 5.1±0.8 m for shrubs, and 2.6±0.1 m for herbaceous plants. These data show that deep root habits are quite common in woody and herbaceous species across most of the terrestrial biomes, far deeper than the traditional view has held up to now. This finding has important implications for a better understanding of ecosystem function and its application in developing ecosystem models.  相似文献   

3.
We studied the relationship between the coexistence of tree species and the dynamics of organic matter in forests. A tropical peat swamp forest was selected as a model ecosystem, where abiotic factors, such as geological topography or parent rock types, are homogeneous and only biological processes create habitat heterogeneity. The temporal or spatial variation of the ground elevation of peat soils is mainly caused by changes in the balance between organic matter inputs to soils and decomposition, which is affected by the growth and death of influential trees. To clarify the processes of elevation dynamics, we measured the microtopography around some tree groups, estimated organic matter (in the form of litter and roots) in soils under three kinds of microtopographic conditions, measured decomposition rates and detected dominant species' shifting distribution patterns in different stages of growth in relation to the locations of tree groups creating specific microtopographic conditions. We found that growth or death of buttressed trees has the greatest effects on the rising or sinking of ground surfaces through changes in litter supply and root production. We discuss here the possibility of extending our model to other forest types.  相似文献   

4.
《Palaeoworld》2020,29(3):469-475
Cordaitaleans, as close relatives of modern conifers, had a long geological history in the Cathaysia from the Visean (Mississippian, lower Carboniferous) to the end of Permian. They became prominent since the late Pennsylvanian, and best developed during the Cisuralian (early Permian) in North China, serving as the volumetrically dominant to subdominant elements of wetland floras. Architecture and ecology of the Cathaysian cordaitaleans from non-peat-forming environments are poorly known. Here, we report giant cordaitalean trunks and describe their morphology and brief anatomical features from the Cisuralian Taiyuan Formation in Yangquan, Shanxi Province, North China. These trunks are characterized by the Artisia-like pith and pycnoxylic xylem. Absence of growth rings in the logs suggests they grew under non-seasonal humid tropical conditions. They are preserved in sandstone bodies interpreted as deposits of distributary river channels on the delta plain. Several trunks with attached rooting systems indicate that these trees may have been growing on channel levees or delta plains, and brought into the channels by lateral bank erosion. Allometric estimates of tree height suggests that the largest trees were up to approximately 43.5 m tall. Mature cordaitaleans with straight trunks were probably the tallest trees and formed the canopy of the riparian forest in North China during the Cisuralian.  相似文献   

5.
The biodiversity inhabiting tropical peat swamp forests in Southeast Asia is currently threatened by commercial logging and agricultural expansion. The occurrence of mammals in such forests is often poorly known and the factors influencing their occurrence in these ecosystems have rarely been quantified. We aim to determine the key habitat and landscape drivers of mammal species richness in fragmented peat swamp reserves. We conducted camera trap surveys in the North Selangor Peat Swamp Forest (NSPSF), the last remaining area of peat swamp forest on the west coast of Peninsular Malaysia. We also measured vegetation structure and landscape metrics to investigate the relationship between these factors and mammal richness. We recorded a total of 16 mammal species from 45 sampling sites using camera traps located in peat swamp forest reserves. Mammal species richness increased with the abundance of large trees and distance away from roads. Species richness decreased significantly with canopy cover and height, the abundance of fallen trees, the abundance of forest palms and saplings, distance away from rivers, and a measure of landscape compositional heterogeneity. Our findings underscore the high conservation value of logged peat swamp forests and the urgent need to halt further deforestation. We recommend: (1) protecting riparian habitat; (2) avoiding further forest conversion particularly areas supporting large trees into oil palm plantations; and (3) limiting road development within and around the NSPSF.  相似文献   

6.
外生菌根菌与森林树木的相互关系   总被引:23,自引:2,他引:23  
生态系统的每个过程都伴随着各种微生物的活动,其中最重要的功能群之一是菌根真菌(菌根菌)。一般认为,菌根菌是自然界多数植物生存最基本的组成部分,陆地上约90%以上的高等植物都具有菌根菌。这些菌类的菌丝体与植物根系结合形成菌根,使植物生长成为可能,使不同种类植物的根系联在一起。根据菌根菌入侵植物根系的方式及菌根的形态特征,菌根可分为外生菌根、内生菌根和内外生菌根3组共7种类型。外生菌根主要出现在松科、桦木科、壳斗科等树种的森林生态系统中,在根系表面形成菌丝鞘,部分菌丝进入根系皮层细胞间隙形成哈氏网表面。菌根菌剂在森林经营中得到广泛地应用。外生菌根菌对森林树木的作用可归纳为:1)促进造林或育苗成活与生长;2)提高森林生态系统中植物的多样性、稳定性和生产力;3)对森林生态系统的综合效应,主要表现在增加植物一土壤联结,改善土壤结构,促进土壤微生物,增强植物器官的功能;4)抗拮植物根部病害病原菌等。树木与菌根菌相互关系研究主要包括:1)菌根共生的机理;2)菌根菌在退化森林生态系统恢复与改造中的作用;3)菌根菌的分布格局与森林生态系统服务功能的关系;4)菌根菌对森林生态系统的综合效应,如菌根菌与森林植物群落结构、物种多样性以及森林系统稳定性和生产力的研究。  相似文献   

7.
Background and Aims The evolution of complex rooting systems during the Devonian had significant impacts on global terrestrial ecosystems and the evolution of plant body plans. However, detailed understanding of the pathways of root evolution and the architecture of early rooting systems is currently lacking. We describe the architecture and resolve the structural homology of the rooting system of an Early Devonian basal lycophyte. Insights gained from these fossils are used to address lycophyte root evolution and homology.Methods Plant fossils are preserved as carbonaceous compressions at Cottonwood Canyon (Wyoming), in the Lochkovian–Pragian (∼411 Ma; Early Devonian) Beartooth Butte Formation. We analysed 177 rock specimens and documented morphology, cuticular anatomy and structural relationships, as well as stratigraphic position and taphonomic conditions.Key Results The rooting system of the Cottonwood Canyon lycophyte is composed of modified stems that bear fine, dichotomously branching lateral roots. These modified stems, referred to as root-bearing axes, are produced at branching points of the above-ground shoot system. Root-bearing axes preserved in growth position exhibit evidence of positive gravitropism, whereas the lateral roots extend horizontally. Consistent recurrence of these features in successive populations of the plant preserved in situ demonstrates that they represent constitutive structural traits and not opportunistic responses of a flexible developmental programme.Conclusions This is the oldest direct evidence for a rooting system preserved in growth position. These rooting systems, which can be traced to a parent plant, include some of the earliest roots known to date and demonstrate that substantial plant–substrate interactions were under way by Early Devonian time. The morphological relationships between stems, root-bearing axes and roots corroborate evidence that positive gravitropism and root identity were evolutionarily uncoupled in lycophytes, and challenge the hypothesis that roots evolved from branches of the above-ground axial system, suggesting instead that lycophyte roots arose as a novel organ.  相似文献   

8.
Understanding the complex relationship between primates and their habitats is essential for effective conservation plans. Peat‐swamp forest has recently been recognized as an important habitat for the Southern Bornean gibbon (Hylobates albibarbis), but information is scarce on the factors that link gibbon density to characteristics of this unique ecosystem. Our aims in this study were firstly to estimate gibbon density in different forest subtypes in a newly protected, secondary peat‐swamp forest in the Sabangau Catchment, Indonesia, and secondly to identify which vegetation characteristics correlate with gibbon density. Data collection was conducted in a 37.1 km2 area, using auditory sampling methods and vegetation “speed plotting”. Gibbon densities varied between survey sites from 1.39 to 3.92 groups/km2. Canopy cover, tree height, density of large trees and food availability were significantly correlated with gibbon density, identifying the preservation of tall trees and good canopy cover as a conservation priority for the gibbon population in the Sabangau forest. This survey indicates that selective logging, which specifically targets large trees and disrupts canopy cover, is likely to have adverse effects on gibbon populations in peat‐swamp forests, and calls for greater protection of these little studied ecosystems. Am. J. Primatol. 72:607–616, 2010. © 2010 Wiley‐Liss, Inc.  相似文献   

9.
Grass pea (Lathyrus sativus L.) family leguminosae is cultivated as an important food and feed crop all over the world. It is very recalcitrant and difficult to regenerate and root under in vitro conditions. In this cotext, the study was carried out in three steps to find out the effects of three auxins [naphthalene acetic acid, indole 3 butyric acid, indole-3-acetic acid (IAA)], four sucrose concentrations and six types of substrate most suited for plant growth and helpful in acclimatisation of grass pea. The results showed that 2 mg L?1 IAA, 3 % sucrose was most suitable for rooting of grass pea. When different concentrations of sucrose were supplied to optimum concentration of IAA in Murashige and Skoog medium, 4.5 % sucrose concentration induced maximum number of 13.70 roots per explants that had positive impact on root length, fresh and dry weight of roots, plant height and morphology of the growing plants. There was 92.66 % acclimatisation and survival rate of these plants using peat moss compared to five other substrates used in this study. The developing plants were vigorous, flowered and set seed contained in pods under glass house conditions. It is concluded that rooting is affected by type and concentration of plant growth regulators and type of substrate has direct bearing on acclimatisation, flowering, pod and seed set of grass pea. As such this paper reports an efficient rooting and acclimatisation system of grass pea that will be very useful in future genetic transformation and breeding for improved characteristics.  相似文献   

10.

Biotically-mediated weathering helps to shape Earth’s surface. For example, plants expend carbon (C) to mobilize nutrients in forms whose relative abundances vary with depth. It thus is likely that trees’ nutrient acquisition strategies—their investment in rooting systems and exudates—may function differently following disturbance-induced changes in depth of rooting zones and soil nutrient stocks. These changes may persist across centuries. We test the hypothesis that plant C allocation for nutrient acquisition is depth dependent as a function of rooting system development and relative abundances of organic vs. mineral nutrient stocks. We further posit that patterns of belowground C allocation to nutrient acquisition reveal anthropogenic signatures through many decades of forest regeneration. To test this idea, we examined fine root abundances and rooting system C in organic acid exudates and exo-enzymes in tandem with depth distributions of organically- and mineral-bound P stocks. Our design permitted us to estimate C tradeoffs between organic vs. mineral nutrient benefits in paired forests with many similar aboveground traits but different ages: post-agricultural mixed-pine forests and older reference hardwoods. Fine roots were more abundant throughout the upper 2 m in reference forest soils than in regenerating stands. Rooting systems in all forests exhibited depth-dependent C allocations to nutrient acquisition reflecting relative abundances of organic vs. mineral bound P stocks. Further, organic vs. mineral stocks underwent redistribution with historic land use, producing distinct ecosystem nutritional economies. In reference forests, rooting systems are allocating C to relatively deep fine roots and low-C exudation strategies that can increase mobility of mineral-bound P stocks. Regenerating forests exhibit relatively shallower fine root distributions and more diverse exudation strategies reflecting more variable nutrient stocks. We observed these disparities in rooting systems’ depth and nutritional mechanisms even though the regenerating forests have attained aboveground biomass stocks similar to those in reference hardwood forests. These distinctions offer plausible belowground mechanisms for observations of continued C sink strength in relatively old forests, and have implications for soil C fates and soil development on timescales relevant to human lifetimes. As such, depth-dependent nutrient returns on plant C investments represent a subtle but consequential signal of the Anthropocene.

  相似文献   

11.
A method has been devised for the reliable production of plantlets from embryos and seedling shoot tips of Pinus radiata D.Don (radiata pine). Buds were induced on an agar or liquid Schenk and Hildebrandt (SH) medium containing 5.0 mg/l benzylaminopurine (BAP). Except for some abnormal buds, the buds grew into elongated shoots on an agar SH medium without cytokinin. The transfer of shoots from a SH medium to a Gresshoff and Doy (GD) medium was found to be an important pretreatment which increased the survival of the shoots when they were placed in a peat and pumice mix for root formation. Elongated shoots were induced to form roots under non-sterile conditions in a humid environment with occasional misting. An intervening 5-day treatment of shoots in an agar medium containing 2.0 mg/l indolebutyric acid (IBA) and 0.5 mg/l napthaleneacetic acid (NAA) significantly increased the percentage of shoots forming roots and the number of roots formed per shoot over control shoots placed directly in the peat:pumice mix. An enhanced level of CO2 during root formation had no effect on the time of root formation or on the percentage of shoots forming roots. These results concerning the elongation, growth and rooting of adventitious shoots are now being applied to the development of very large numbers of plantlets starting from cotyledons from partially germinated seeds.  相似文献   

12.
The two-layer hypothesis of tree-grass coexistence posits that trees and grasses differ in rooting depth, with grasses exploiting soil moisture in shallow layers while trees have exclusive access to deep water. The lack of clear differences in maximum rooting depth between these two functional groups, however, has caused this model to fall out of favor. The alternative model, the demographic bottleneck hypothesis, suggests that trees and grasses occupy overlapping rooting niches, and that stochastic events such as fires and droughts result in episodic tree mortality at various life stages, thus preventing trees from otherwise displacing grasses, at least in mesic savannas. Two potential problems with this view are: 1) we lack data on functional rooting profiles in trees and grasses, and these profiles are not necessarily reflected by differences in maximum or physical rooting depth, and 2) subtle, difficult-to-detect differences in rooting profiles between the two functional groups may be sufficient to result in coexistence in many situations. To tackle this question, I coupled a plant uptake model with a soil moisture dynamics model to explore the environmental conditions under which functional rooting profiles with equal rooting depth but different depth distributions (i.e., shapes) can coexist when competing for water. I show that, as long as rainfall inputs are stochastic, coexistence based on rooting differences is viable under a wide range of conditions, even when these differences are subtle. The results also indicate that coexistence mechanisms based on rooting niche differentiation are more viable under some climatic and edaphic conditions than others. This suggests that the two-layer model is both viable and stochastic in nature, and that a full understanding of tree-grass coexistence and dynamics may require incorporating fine-scale rooting differences between these functional groups and realistic stochastic climate drivers into future models.  相似文献   

13.
CO(2)-enrichment experiments consistently show that rooting depth increases when trees are grown at elevated CO(2) (eCO(2)), leading in some experiments to increased capture of available soil nitrogen (N) from deeper soil. However, the link between N uptake and root distributions remains poorly represented in forest ecosystem and global land-surface models. Here, this link is modeled and analyzed using a new optimization hypothesis (MaxNup) for root foraging in relation to the spatial variability of soil N, according to which a given total root mass is distributed vertically in order to maximize annual N uptake. MaxNup leads to analytical predictions for the optimal vertical profile of root biomass, maximum rooting depth, and N-uptake fraction (i.e., the proportion of plant-available soil N taken up annually by roots). We use these predictions to gain new insight into the behavior of the N-uptake fraction in trees growing at the Oak Ridge National Laboratory free-air CO(2)-enrichment experiment. We also compare MaxNup with empirical equations previously fitted to root-distribution data from all the world's plant biomes, and find that the empirical equations underestimate the capacity of root systems to take up N.  相似文献   

14.
为了弄清毛竹(Phyllostachys edulis)向针阔林扩张过程中根系的形态可塑性反应,在浙江天目山自然保护区毛竹向针阔林扩张的典型过渡地带,连续区域上设置毛竹纯林、针阔-毛竹混交林(以下简称过渡林)、针阔林3种样地。用根钻法采集样地毛竹根系、针阔树根系并比对其生物量密度、细根比根长、相邻同级侧根节点距等形态特征参数变化。结果表明:随着毛竹的扩张程度增加,林内根系生物量密度增加;且与针阔树竞争过程中毛竹将更多的根系放置于表层;同时在水平方向上随离样株距离的增加未出现明显变化,而针阔树根系则随离样木距离的增加而逐渐减少;毛竹根系比根长明显增加,平均增幅15%;一、二级侧根节点距则均有所下降,毛竹侧根数量增多。这些结果表明毛竹种群可通过根系生物量密度、细根比根长、相邻同级侧根节点距等形态可塑性方式实现向周边森林扩张。  相似文献   

15.
  1. Deep roots have long been thought to allow trees to coexist with shallow‐rooted grasses. However, data demonstrating how root distributions affect water uptake and niche partitioning are uncommon.
  2. We describe tree and grass root distributions using a depth‐specific tracer experiment six times over two years in a subtropical savanna, Kruger National Park, South Africa. These point‐in‐time measurements were then used in a soil water flow model to simulate continuous water uptake by depth and plant growth form (trees and grasses) across two growing seasons. This allowed estimates of the total amount of water a root distribution could absorb as well as the amount of water a root distribution could absorb in excess of the other rooting distribution (i.e., unique hydrological niche).
  3. Most active tree and grass roots were in shallow soils: The mean depth of water uptake was 22 cm for trees and 17 cm for grasses. Slightly deeper rooting distributions provided trees with 5% more soil water than the grasses in a drier season, but 13% less water in a wetter season. Small differences also provided each rooting distribution (tree or grass) with unique hydrological niches of 4 to 13 mm water.
  4. The effect of rooting distributions has long been inferred. By quantifying the depth and timing of water uptake, we demonstrated how even small differences in rooting distributions can provide plants with resource niches that can contribute to species coexistence. Differences in total water uptake and unique hydrological niche sizes were small in this system, but they indicated that tradeoffs in rooting strategies can be expected to contribute to tree and grass coexistence because 1) competitive advantages change over time and 2) plant growth forms always have access to a soil resource pool that is not available to the other plant growth form.
  相似文献   

16.
Vegetative propagation of superior conifer trees can be achieved, e.g., through rooted cuttings or rooted microshoots, the latter predominantly through in vitro tissue culture. Both techniques are used to achieve rapid multiplication of trees with favorable genetic combinations and to capture a large proportion of the genetic diversity in a single generation cycle. However, adventitious rooting of shoots (cuttings) is often not efficient due to various problems, such as scarcity of roots and cessation of their growth, both of which limit the application of vegetative propagation in some conifer species. Many factors are involved in the adventitious rooting of shoots, including physical and chemical ones, such as plant growth regulators, carbohydrates, light quality, temperature and rooting substrates, or media [reviewed by Ragonezi et al. (Trees 24(6):975–992, 2010)]. The focus of this review is on biological factors, such as inoculations with Agrobacterium rhizogenes, plant-growth promoting rhizobacteria and other endophytes, and mycorrhizal fungi, which were found to stimulate adventitious rooting. These microorganisms could contribute not only to adventitious root development but also to help in protecting conifer plants against pathogenic microorganisms, facilitate acclimation and transplanting, and contribute to more sustainable, chemical-free forests.  相似文献   

17.
Large-scale clear-cutting and burning caused the altitude of the natural upper forest line (UFL) in the Northern Ecuadorian Andes to decline to the point that its ‘natural’ position is now uncertain. To obtain a detailed reconstruction of the dynamics of the UFL over the last few thousand years, traditional proxies alone do not suffice. For instance, pollen analysis suffers from a low altitudinal resolution due to the large wind-blown component. In an attempt to find new, additional proxies to study past UFL dynamics in the Ecuadorian Andes, we investigated the occurrence of isoprenoids (diterpenes, phytosterols and pentacyclic triterpenoids) in the roots and leaves of 19 plant species responsible for the dominant biomass input in soil and peat records along altitudinal transects covering approximately 500 m above and below the current UFL in two locations in the Northern Ecuadorian Andes. Isoprenoids can serve as biomarker if they are uniquely present in a relevant plant species and preserved well enough in chronological order in suitable records. Such biomarkers could help establish past vegetation dynamics including the UFL position. For an isoprenoid to be a biomarker in soils normally it must be absent from the roots of a plant species as roots do not enter soils in chronological order. For peat deposits this criteria only needs to be met for the peat species themselves as only roots from peat species will be present. Two diterpenes, four phytosterols and six pentacyclic triterpenoids met the criteria for biomarker in peat records. Of these, one diterpene, two phytosterols and three pentacyclic triterpenoids also met the criteria for biomarker in soils. Samples from a soil under forest, a soil under the adjacent páramo and a nearby peat deposit, 14C dated at approximately 1500 cal. AD and 200 cal. AD, were tested for the presence of isoprenoids that meet the criteria for biomarker. Such isoprenoids were only found in the peat bog samples. However, we found that changes of number and concentrations of isoprenoids with depth might provide additional information related to past vegetation changes. In conclusion, isoprenoids show potential for use in a multi-proxy approach to reconstruct past UFL locations in the Northern Ecuadorian Andes and other ecosystems with similar vegetation and soils.  相似文献   

18.
Root architecture and wind-firmness of mature Pinus pinaster   总被引:2,自引:0,他引:2  
This study aims to link three-dimensional coarse root architecture to tree stability in mature timber trees with an average of 1-m rooting depth. Undamaged and uprooted trees were sampled in a stand damaged by a storm. Root architecture was measured by three-dimensional (3-D) digitizing. The distribution of root volume by root type and in wind-oriented sectors was analysed. Mature Pinus pinaster root systems were organized in a rigid 'cage' composed of a taproot, the zone of rapid taper of horizontal surface roots and numerous sinkers and deep roots, imprisoning a large mass of soil and guyed by long horizontal surface roots. Key compartments for stability exhibited strong selective leeward or windward reinforcement. Uprooted trees showed a lower cage volume, a larger proportion of oblique and intermediate depth horizontal roots and less wind-oriented root reinforcement. Pinus pinaster stability on moderately deep soils is optimized through a typical rooting pattern and a considerable structural adaptation to the prevailing wind and soil profile.  相似文献   

19.
根毛和共生真菌增加了吸收面积,提高了植物获取磷等土壤资源的能力。由于野外原位观测根表微观结构较为困难,吸收细根、根毛、共生真菌如何相互作用并适应土壤资源供应,缺乏相应的数据和理论。该研究以受磷限制的亚热带森林为对象,选取了21种典型树种,定量了根毛存在情况、属性变异,分析了根毛形态特征与共生真菌侵染率、吸收细根功能属性之间的关系,探讨了根表结构对低磷土壤的响应和适应格局。结果表明:1)在亚热带森林根毛不是普遍存在的, 21个树种中仅发现7个树种存有根毛, 4个为丛枝菌根(AM)树种, 3个为外生菌根(ECM)树种。其中,马尾松(Pinus massoniana)根毛出现率最高,为86%;2)菌根类型是理解根-根毛-共生真菌关系的关键,AM树种根毛密度与共生真菌侵染率正相关,但ECM树种根毛直径与共生真菌侵染率负相关; 3) AM树种根毛长度和根毛直径、ECM树种根毛出现率与土壤有效磷含量呈负相关关系。该研究揭示了不同菌根类型树种根毛-共生真菌-根属性的格局及相互作用,为精细理解养分获取策略奠定了基础。  相似文献   

20.
The ecophysiological characteristics of fine roots of mature forest plants are poorly understood because of difficulties of measurement. We explored a root in-growth approach to measure respiration and nitrate uptake of woody plant roots in situ. Roots of seven species were grown into sand-filled chambers. Root-associated respiration was measured as CO 2 emission on four dates and nitrate uptake was quantified using 15N. All the roots were younger than 3 months at the time of measurement. Fine root respiration measured over the temperature range of 14.5–15.5 °C averaged 18.9–36.5 nmol gDM –1 s –1 across species. Nitrate uptake rates by these fine roots (1.3–6.8 nmol gDM –1 s –1) were comparable to other studies of forest trees. The root respiration rates were several times higher than measurements on detached roots of mature trees, concurring with literature observations that young roots respire much more rapidly than older roots. The root in-growth approach appears promising for providing information on the metabolic activity of fine roots of mature forest trees growing in soil.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号