首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Four populations of Pratylenchus penetrans did not differ (P > 0.05) in their virulence or reproductive capability on Lahontan alfalfa. There was a negative relationship (r = -0 .7 9 ) between plant survival and nematode inocula densities at 26 ± 3 C in the greenhouse. All plants survived at an inoculum level (Pi) of 1 nematode/cm³ soil, whereas survival rates were 50 to 55% at 20 nematodes/cm³ soil. Alfalfa shoot and root weights were negatively correlated (r = - 0.87; P < 0.05) with nematode inoculum densities. Plant shoot weight reductions ranged from 13 % at Pi 1 nematode/cm³ soil to 69% for Pi 20 nematodes/cm³ soil, whereas root weight reductions ranged from 17% for Pi 1 nematode/cm³ soil to 75% for Pi 20 nematodes/cm³ soil. Maximum and minimum nematode reproduction (Pf/Pi) for the P. penetrans populations were 26.7 and 6.2 for Pi 1 and 20 nematodes/cm³ soil, respectively. There were negative correlations between nematode inoculum densities and plant survival (r = 0.84), and soil temperature and plant survival (r = -0 .7 8 ). Nematode reproduction was positively correlated to root weight (r = 0.89).  相似文献   

2.
Meloidogyne chitwoodi reduced the growth of winter wheat ''Nugaines'' directly in relation to nematode density in the greenhouse, The relationship between top dry weight and initial nematode density suggests a tolerance limit of Nugaines wheat to M. chitwoodi of between 0.03 and 0.18 eggs/cm³ of soil; the value for relative minimum plant top weight was 0.45 g and 0.75 g, respectively. Growth of wheat in field microplots containing four population densities (0.003, 0.05, 0.75 and 9 eggs/cm³ soil) was not affected significantly at any inoculum level compared to controls during September to July, However, suppression of head weights of ''Fielder'' spring wheat grown May-July occurred in microplots initially infested with 0.75 and 9 eggs/cm³ soil. Reproduction (Pf/Pi) was poorer at these two inoculum levels as compared to the lower densities. In another greenhouse experiment, roots of wheat cultivars Fielder, ''Fieldwin,'' ''Gaines,'' ''Hyslop,'' and Nugaines became infected by M. chitwoodi, but not by M. hapla. Reproduction of M. chitwoodi was less on Gaines and Nugaines than on Fielder, Fieldwin, or Hyslop.  相似文献   

3.
A direct relationship exists between soil temperature and Heterodera schachtii development. The average developmental period of two nematode populations from Lewiston, Utah, and Rupert, Idaho, from J2 to J3, J4, adult, and the next generation J2 at soil temperatures of 18-28 C were 100, 140,225, and 399 degree-days (base 8 C), respectively. There was a positive relationship (P < 0.05) between nematode Pi, nematode generations, and sugarbeet yields. The greatest sugarbeet growth inhibition (87%) occurred when sugarbeets were exposed to a Pi of 12 eggs/cm³ soil for five generations (1,995 degree-days), compared with a 47% inhibition when plants were exposed to the same Pi for two generations. There was a negative correlation (P < 0.05) between the Pi, Pf, and sugarbeet yield for each population threshold. The smaller the Pi, the greater the sugarbeet yields and the greater the Pf. Root yields were 80 and 29 t /ha and Pf were 8.4 and 3.6 eggs/cm³ soil when sugarbeet seeds were planted at Pi of 0.4 and 7.9 eggs/cm³. respectively, at a soil temperature of 8 C. The number of years rotation with a nonhost crop required to reduce the nematode population density below a damage threshold level of 2 eggs/cm³ depends on the Pi. A Pi of 33.8 eggs/cm³ soil required a 5-year crop rotation, whereas a Pi of 8.4 eggs/cm³ soil required a 2-year crop rotation.  相似文献   

4.
The influence of resistant and susceptible potato cultivars on Globodera rostochiensis population density changes was studied at different nematode inoculum levels (Pi) in the greenhouse and field. Soil in which one susceptible and two resistant cultivars were grown and fallow soil in pots was infested with cysts to result in densities of 0.04-75 eggs/cm³ soil. A resistant cultivar was grown in an infested field with Pi of 0.7-16.7 eggs/cm³ soil. Pi was positively correlated with decline of soil population densities due to hatch where resistant potatoes were grown in the greenhouse and in the field but not in fallow soil. However, Pi was not correlated with in vitro hatch of G. rostochiensis cysts in water or potato root diffusate. Under continuous culture o f a resistant cultivar, viable eggs per cyst declined 60-90% per plant growth cycle (4 weeks) and the number of cysts containing viable eggs had decreased by 77% after five cycles. The rate of G. rostochiensis reproduction on both resistant and susceptible cultivars was negatively correlated with Pi. These data were used to predict the effect of resistant and susceptible potato cultivars on G. rostochiensis soil population dynamics.  相似文献   

5.
The effects of aldicarb, oxamyl, 1,3-D, and plastic mulch (solarization) on soil population densities of the golden nematode (GN) Globodera rostochiensis was assessed in field and microplot experiments with different soil types. Oxamyl was evaluated in both soil and foliar treatments, whereas aldicarb, 1,3-D, and solarization were applied only to soil. Soil applications of aldicarb and oxamyl resulted in reduced nematode populations after GN-susceptible potatoes in plots with initial population densities (Pi) of > 20 and 7.5 eggs/cm³ soil, respectively, but nematode populations increased in treated soil when Pi were less than 20 and 7.5 eggs/cm³soil. In clay loam field plots with Pi of 19-76 eggs/cm³ soil, nematode densities increased even with repeated foliar applications of oxamyl, whereas nematode populations at Pi greater than 76 eggs/cm³ soil were reduced by foliar oxamyl. Treatment with 1,3-D or solarization, singly or in combination, reduced GN soil population densities regardless of soil type or Pi. Temperatures lethal to GN were achieved 5 cm deep under clear plastic but not 10 or 15 cm deep.  相似文献   

6.
The effect of a Paratrichodorus sp. (close to P. tunisiensis) on the growth of wheat (Triticum durum Desf.) was investigated in pots containing different nematode densities and maintained in a growth chamber at 20 C for 40 days. The relation between fresh weight of tops and initial nematode density was according to the equation y = m + (1 - m)zP⁻T. This suggests a tolerance limit of 1.4 nematodes/cm³ of soil under the conditions of the experiment; taking into account the effect of the great nematode mortality, it is estimated to be between 0.15 and 0.35 nematodes/cm³ soil. Models of the growth of the plants and the multiplication of the nematodes (assuming a constant mortality of the nematodes in the absence of roots) which explain the relation between initial and tinal nematodes densities at initial densities greater than 1 nematode/cm³ soil are described in an appendix. Sections of nematode infested roots showed disorganization of root structure clue to abnormal proliferation of lateral roots. Nematode feeding on the root cap and apical meristem caused cessation of root elongation and induced abnormal production of lateral root primordia.  相似文献   

7.
Microplot experiments were conducted in 1989 and 1990 to determine the relationship between yield of peanut (Arachis hypogaea) and inoculum density ofMeloidogyne arenaria race 1. Nine inoculum densities were used, ranging from 0-200 eggs/100 cm³ soil (1989) or from 0-100 eggs/100 cm³ (1990), and each density was replicated 10 times. In 1989, higher final densities (mean of 1,171 juveniles [J2]/100 cm³ soil) were obtained in plots inoculated with 0.5 to 50 eggs/100 cm³ soil than in plots inoculated with 100 to 200 eggs/100 cm³ (313 J2/100 cm³ soil). In 1990, final densities of M. arenaria reached high levels (≥ 1,111 J2/100 cm³ soil) in all inoculated plots. Pod yield and dry weight of foliage at harvest were negatively correlated (P ≤ 0.05) with inoculum density in both seasons. In 1989, the relationship between pod weight (y) and initial density (x) was described by Seinhorst''s equation, with y = 0.088 + 0.91(0.90)⁽x⁻¹⁾ and r² = 0.826. In 1990, the relationship was y = 0.22 + 0.78(0.97)⁽x⁻¹⁾ and r² = 0.794. These equations suggest tolerance limits of approximately 1 egg/100 cm³ soil, which may require specialized methods, such as bioassay, for detection.  相似文献   

8.
In greenhouse experiments, the effect of Arthrobotrys conoides on Meloidogyne incognita population densities as affected by soil temperature, inoculum density, and green alfalfa was determined. The effect on M. incognita population densities was greater at a soil temperature of 25 C than at 18 or 32 C. Nematode control by A. conoides was most effective when the fungus was introduced into the soil 2 wk prior to nematode inoculation and planting of corn. Inoculum density of A. conoides was positively correlated with plant shoot weight (r = 0.81) and negatively correlated with numbers of Meloidogyne juveniles (r = -0.96), eggs (-0.89) and galls per gram of root (-0.91). A. conoides was not isolated from green alfalfa, but was isolated from alfalfa-amended soil to which no fungus had been added.  相似文献   

9.
Resistant plant introductions, PI 230977 and PI 200538, and partially resistant Jackson and susceptible CNS were evaluated for seed yield in response to races 1 and 2 of Meloidogyne arenaria. Initial soil population densities (Pi) of the nematode were 0, 31, 125, and 500 eggs/100 cm³ soil. At the highest Pi, yield suppressions of CNS, Jackson, PI 230977, and PI 200538 were 55, 28, 31, and 29%, and 99, 86, 66, and 58% for races 1 and 2 compared with uninfested controls. Numbers of second-stage juveniles (J2) present in roots 14 days after planting increased as Pi increased, but did not differ between the two races. At the highest Pi, fewer race 1 (40-57%) and race 2 (53-68%) J2 were present in roots of the plant introductions than in roots of Jackson. Soil population densities of race 1 J2 at 135 days after planting were 83-89% lower on the resistant genotypes than on CNS. These numbers did not differ for race 2. Reproductive factors were considerably higher for race 2 compared to race 1 for all genotype by Pi combinations, except for CNS at the highest Pi.  相似文献   

10.
Cropping systems in which resistant potato cultivars were grown at different frequencies in rotation with susceptible cultivars and a nonhost (oats) were evaluated at four initial nematode population densities (Pi) for their ability to maintain Globodera rostochiensis at a target level of <0.2 egg/cm³ of soil. At a Pi of 0.1 to 1 egg/cm³ of soil, cropping systems with 2 successive years of a resistant cultivar every 3 years of potato production reduced and maintained G. rostochiensis at <0.2 egg/cm³ of soil. At a Pi of 1 to 4 eggs/cm³ of soil, 2 successive years of a resistant cultivar followed by 1 year of oats for every 4 years of production were necessary to reduce and maintain G. rostochiensis populations at <0.2 egg/cm³ of soil. At a Pi greater than 4 eggs/cm³ of soil, 2 successive years of a resistant cultivar plus 1 year of oats reduced G. rostochiensis densities to <0.2 egg/cm³ of soil, but the population increased above that density after cropping 1 year to a susceptible cultivar. The numbers of cysts and eggs per cyst in the final population (Pf) of G. rostochiensis were influenced by initial density and the frequency of growing a susceptible cultivar in a cropping system. The lowest number of cysts and eggs per cyst in the final G. rostochiensis population occurred with a cropping system consisting of 2 successive years of a resistant cultivar followed by oats with a susceptible cultivar grown the fourth year of production.  相似文献   

11.
The invasion by three different Utah populations of Pratylenchus neglectus (UTI, UT2, UT3) was similar in single and interplantings of ''Lahontan'' alfalfa and ''Fairway'' crested wheatgrass at 24 ñ 3 °C. Population UT3 was more pathogenic than UT1 and UT2 on both alfalfa and crested wheatgrass. Inoculum density was positively correlated with an invasion by P. neglectus. Invasions by UT3 at all initial populations (Pi) exceeded that of UT1 and UT2 for both single and interplanted treatments. The greatest reductions in shoot and root weights of alfalfa and crested wheatgrass were at a Pi of 8 P. neglectus/cm³ soil. Pi was negatively correlated with alfalfa and crested wheatgrass shoot and root growth and nematode reproduction. The reproductive factor (Rf) for UT3 exceeded that of UT1 and UT2 in single and interplantings at all inoculum levels. There were no differences in Rfin the Utah populations in single or interplantings. A nematode invasion increased with temperature and was greatest at 30 °C. Population UT3 was more pathogenic than UT1 and UT2 and reduced shoot and root growth at all soil temperatures. Populations UT1 and UT2 reduced shoot and root growth at 20-30 °C. Soil temperature was negatively correlated with shoot and root growth and positively correlated with nematode reproduction. Reproduction of UT3 exceeded that of UT1 and UT2 at all soil temperatures.  相似文献   

12.
Effects of several population densities ofMeloidogyne incognita on the sweet potato cultivars Centennial (susceptible) and Jasper (moderately resistant) were studied. Field plots were infested with initial levels (Pi) of 0, 10, 100, 1,000, 5,000, and 10,000 eggs and juveniles/500 cm³ soil in 1980 and 0, 100, 1,000, 2,000, 3,000, 4,000, and 5,000 in 1981. M. incognita population development trends were similar on both cultivars; however, at high Pi, more eggs and juveniles were recovered from Centennial than from Jasper. The highest Pi did not result in the highest mid-season (Pm) counts. Pi was negatively correlated with the number of marketable roots and root weight but positively correlated with total cracked roots, percentage of cracked roots, and cracking severity. Jasper tolerated higher Pi with greater yields and better root quality than Centennial. Cracking of fleshy roots occurred with both cultivars at low Pi.  相似文献   

13.
Cotton seedlings were inoculated with a range of initial populations (Pi) of Meloidogyne incognita in greenhouse experiments to test the relationship between nematode population densities and egg viability. In two of three experiments, a significant (P < 0.05) negative linear relationship was detected between percentage of hatch of first generation eggs and log Pi. A similar relationship between hatch and root-gall index was observed. In two experiments numbers of eggs judged to be nonviable based on appearance were significantly greater (P < 0.05) in the highest Pi (60,000 eggs/seedling) treatments than in treatments with lower Pi (600-6,000 eggs/seedling). It was concluded that Pi affects egg viability measured as percentage of hatch and that this relationship may play a role in the density-dependent winter survival rates of Meloidogyne species.  相似文献   

14.
The effects of soil temperature and initial inoculum density (Pi) of Meloidogyne incognito and M. javanica on growth of wheat (Triticum aestivum cv. Anza) and nematode reproduction were studied in controlled temperature baths in the glasshouse. Nematode reproduction was directly proportional to temperature between 14 and 30 C for M. incognita and between 18 and 26 C for M. javanica. Reproduction rates (Pf/Pi, where Pf = final number of eggs) for Pi''s of 3,000, 9,000, and 30,000 eggs/plant were greatest at each temperature when Pi = 3,000. Maximum M. incognita reproduction rate (Pf/Pi = 51.12) was at 30 C. At 26 C, M. javanica reproduction (Pf/Pi = 14.82, 9.02, and 4.23 for Pi = 3,000, 9,000, and 30,000, respectively) was about half that of M. incognita when Pi = 3,000 or 9,000 but similar when Pi = 30,000. Reproduction of both species was depressed between 14 and 18 C. Shoot and root growth and head numbers were inversely related to soil temperature between 14 and 30 C but were not affected by the Pi of M. incognita when 7 d old seedlings were inoculated. When newly germinated seedlings were inoculated with M. incognita or M. javanica, the Pi did not affect shoot and root fresh weights, shoot/root ratio, and tillering, but it did reduce root dry weight (M. javanica at 26 C) and increase shoot dry weight (M. incognita at 18-22 C). The optimum temperature range is lower for wheat growth than for nematode reproduction. Wheat cv. Anza is a good host for M. incognita and M. javanica, but it is tolerant to both species.  相似文献   

15.
Changes in the carbohydrate (glucose, trehalose, and glycogen) and total protein contents of eggs retained within Heterodera glycines cysts were monitored monthly in a field microplot experiment conducted from March 1993 to March 1995. Treatments included two near-isogenic lines of soybean cv. Clark differing for date of maturity, and one corn hybrid. The soybean lines were planted in microplots infested with H. glycines at a high average initial population density (Pi) (23,810 eggs/100 cm³ soil), and the corn was planted in microplots infested at high (24,640) and low (5,485) Pi. Soil temperatures at 15 cm depth and rainfall were monitored. Carbohydrate contents varied in the same pattern, with the highest levels measured before planting (May) and after harvest (October) in both years. Neither Pi nor soybean isoline had an effect on any measured response, but the carbohydrate contents of eggs from corn and soybean microplots differed during the overwinter (October-May) periods (P < 0.0001). Trehalose accumulation was negatively correlated with soil temperature (r = -0.78 and r = -0.84, P = 0.0001, July through November 1993 and 1994, respectively), which reflects its role as a cryoprotectant. In contrast to the pattern for carbohydrates, total protein was lowest before planting and after harvest, and highest (>20 μg/1,000 eggs) June through October. Protein content was unaffected by plant cultivar or species. Protein and carbohydrate levels in H. glycines eggs showed seasonal changes that appeared to be primarily temperature-dependent.  相似文献   

16.
Field microplot experiments were conducted from 1995 to 1998 to determine the relationship between fresh shoot weight of stalk-cut broadleaf and shade-grown cigar wrapper tobacco types (Nicotiana tabacum L.) and initial density of Globodera tabacum tabacum second stage juveniles (J2) per cm³ soil. Total shoot weight was negatively correlated with initial nematode densities of 12.3 to 747.3 J2/cm³ soil (r = -0.53 and -0.70 for broadleaf and shade-grown tobacco, respectively). Nonlinear damage functions were used to relate initial G. t. tabacum densities to shoot weight. The models described shoot weight losses of less than 14% or 39% for broadleaf and shade tobacco, respectively, at G. t. tabacum densities below 50 J2/cm³ soil. Total shoot weights were reduced by 40% and 60% of uninfested plots as preplant nematode densities approached maximum levels (>600 J2/cm³ soil) for broadleaf and shade tobacco, respectively. Globodera t. tabacum population increase over a growing season was described by a linear relation on a log/log plot (R² = 0.07 and 0.61 for broadleaf and shade, respectively). These experiments demonstrate that G. t. tabacum can directly reduce shoot weight of stalk-cut broadleaf tobacco. Broadleaf is more tolerant to nematode infection than shade tobacco, as shade tobacco shoot weight reductions were greater at the same initial nematode densities in the same years.  相似文献   

17.
The probability of spreading cysts of Globodera rostochiensis on farming equipment and potato tubers was investigated in naturally infested field plots. The number of cysts recovered from soil that adhered to equipment differed significantly between different pieces of equipment. These differences were related to initial nematode density and, in most cases, to the volume of soil that adhered to the equipment. At an initial density of 0.04 egg/cm³ of soil, significantly more cysts were recovered from a potato digger than from a potato hiller, cultivator, or plow. At an initial density of 0.90 egg/cm³ of soil, significantly more cysts were recovered from the plow than from the other equipment. Although the population density was 22 times greater, only 10 times more cysts adhered 3 to equipment used in soil with a density of 0.90 egg/cm³ of soil than when used in soil infested at 0.04 egg/cm³. The number of potato tuber samples (4.5 kg) that contained cysts with viable eggs was positively correlated with the initial densities of G. rostochiensis in soil in which they were produced. The percentage of tuber samples with cysts containing viable eggs was 10-12% for tubers harvested from soil with densities less than 1 egg/cm³ and 30-76% for tubers harvested from soil with densities greater than 4 eggs/cm³ of soil.  相似文献   

18.
Field microplot experiments were conducted from 1987 to 1992 to determine the relationship between fresh weight leaf yield of shade tobacco (Nicotiana tabacum) and initial density of Globodera tabacum tabacum (encysted J2 per cm³ soil). Initial nematode densities of 0.1 to 1,097 J2/cm³ soil were negatively correlated with leaf yield, total shoot weight, and normalized plant height 5 to 6 weeks after transplanting (r = -0.73, -0.73, and -0.52, respectively). Nonlinear damage functions were used to relate initial G. t. tabacum densities to the yield and shoot weight data. The model described leaf yield losses of < 5 % for initial nematode densities of less than 100 J2/cm³ soil. Densities above 100 J2 resulted in yields decreasing exponentially to a maximum yield loss of >40% at 500 to 1,000 J2/cm³ soil. A similar initial density tolerance threshold relationship was observed for total shoot weight. No threshold effect was evident for standardized plant height, which was a poor predictor of leaf yield. Globodera tabacum tabacum population increase over a growing season was described by a linear relation on a log/log plot (R² = 0.73).  相似文献   

19.
Wheat (Triticum aestivum L.) varietal resistance to the lesser grain borer, Rhyzopertha dominica (F), was evaluated in hard spring and winter wheat produced 1997, 1998 (Bozeman, Montana). We tested the hypothesis that six Montana-grown spring wheat varieties, 'Ernest', 'Scholar', 'Hi-Line', 'McNeal', 'Newana', and 'Amidon', were equally and strongly resistant to R. dominica at low moisture contents (9-10%). Mortality/Feeding damage occurred in all varieties. In most assays, Ernest had significantly greater feeding damage from R. dominica than other varieties, usually not significantly different from the susceptible control. Mean adult mortality was significantly greater in McNeal (93%) and Hi-Line (92%) than in Ernest (34%) and Montana-grown, soft white spring wheat (Penawawa), the susceptible control (36%). In 9 wk, twice as many adult progeny were produced on Ernest than on McNeal, Hi-Line, or Scholar. We also compared three Montana-grown winter wheat varieties for resistance to R. dominica attack at low moisture contents (9-10%). Significantly more mortality after 6 wk was associated with all winter wheat varieties than the susceptible control. In 'Nuwest', 'Rocky', and 'Vanguard', significantly fewer progeny were produced than in the susceptible control; these varieties appeared more resistant. 'Tiber' and 'Neeley', in contrast, appeared more susceptible than other winter wheat varieties evaluated. Susceptibility decreased significantly with a 1.2% decrease in moisture content. Percentage of total protein was positively correlated with percentage of sound kernels and negatively with total progeny (r2 = -0.69). Kernel hardness was positively correlated with percentage of sound kernels, but negatively correlated with total progeny (r2 = -0.87) and dry weight loss.  相似文献   

20.
The pathogenicity of Pratylenchus penetrans (root-lesion nematode) to Phaseolus vulgaris (navy bean) was evaluated in greenhouse experiments. Shoot and root fresh weight of cv. Sanilac plants were increased 4 and 21%, respectively, by an initial population density (Pi) of 25 P. penetrans per 100 cm³ soil. Leaf area and shoot fresh and dry weights were decreased by a Pi of 50 or more P. penetrans per 100 cm³ soil. A significant positive linear relationship existed between initial soil population densities of P. penetrans and final soil and root population densities of this nematode. Three dry bean cultivars, Sanilac, Seafarer, and Tuscola, were susceptible to P. penetrans, and yields were reduced by 43-76% when plants were exposed to a Pi of 150 P. penetrans per 100 cm³ soil. P. penetrans also reproduced on bean cultivars Saginaw, Gratiot, and Kentwood, but did not decrease bean yields, suggesting that these cultivars were tolerant to this nematode.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号