首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Pratylenchus neglectus reduced the growth of alfalfa cultivars in greenhouse and growth chamber studies. Inocula (1,000, 5,000 and 10,000 nematodes per plant) reduced shoot dry weights of Ranger by 16, 27, and 40%, of Lahontan by 16, 32, and 40%, and of Nevada Synthetic XX (Nev Syn XX) by 18, 26, and 37%, respectively, at 26 ñ 2 C. Pratylenchus neglectus at 1,000 nematodes per plant reduced Ranger shoot dry weights by 5, 12, 18, and 27%, at 15, 20, 25, and 30 C, respectively, whereas 5,000 nematodes per plant reduced shoot dry weights by 12, 17, 26, and 38%, respectively, at similar temperatures. Reductions in dry root weights were directly related to reductions in shoot growth. At 1,000 nematodes per plant, Ranger root dry weights were reduced by 3, 14, 40, and 40%, whereas 5,000 nematodes per plant reduced root dry weight by 25, 31, 59, and 63%, respectively, at similar temperatures. Similar results were observed on Lahontan and Nev Syn XX at the same inoculum levels and soil temperatures. Nematode reproductive indices (final nematode population per plant divided by initial nematode inoculum per plant) were higher at 1,000 nematodes per plant than at 5,000 nematodes per plant, were positively correlated with temperature, and were unaffected by cultivar.  相似文献   

2.
Four populations of Pratylenchus penetrans did not differ (P > 0.05) in their virulence or reproductive capability on Lahontan alfalfa. There was a negative relationship (r = -0 .7 9 ) between plant survival and nematode inocula densities at 26 ± 3 C in the greenhouse. All plants survived at an inoculum level (Pi) of 1 nematode/cm³ soil, whereas survival rates were 50 to 55% at 20 nematodes/cm³ soil. Alfalfa shoot and root weights were negatively correlated (r = - 0.87; P < 0.05) with nematode inoculum densities. Plant shoot weight reductions ranged from 13 % at Pi 1 nematode/cm³ soil to 69% for Pi 20 nematodes/cm³ soil, whereas root weight reductions ranged from 17% for Pi 1 nematode/cm³ soil to 75% for Pi 20 nematodes/cm³ soil. Maximum and minimum nematode reproduction (Pf/Pi) for the P. penetrans populations were 26.7 and 6.2 for Pi 1 and 20 nematodes/cm³ soil, respectively. There were negative correlations between nematode inoculum densities and plant survival (r = 0.84), and soil temperature and plant survival (r = -0 .7 8 ). Nematode reproduction was positively correlated to root weight (r = 0.89).  相似文献   

3.
The invasion by three different Utah populations of Pratylenchus neglectus (UTI, UT2, UT3) was similar in single and interplantings of ''Lahontan'' alfalfa and ''Fairway'' crested wheatgrass at 24 ñ 3 °C. Population UT3 was more pathogenic than UT1 and UT2 on both alfalfa and crested wheatgrass. Inoculum density was positively correlated with an invasion by P. neglectus. Invasions by UT3 at all initial populations (Pi) exceeded that of UT1 and UT2 for both single and interplanted treatments. The greatest reductions in shoot and root weights of alfalfa and crested wheatgrass were at a Pi of 8 P. neglectus/cm³ soil. Pi was negatively correlated with alfalfa and crested wheatgrass shoot and root growth and nematode reproduction. The reproductive factor (Rf) for UT3 exceeded that of UT1 and UT2 in single and interplantings at all inoculum levels. There were no differences in Rfin the Utah populations in single or interplantings. A nematode invasion increased with temperature and was greatest at 30 °C. Population UT3 was more pathogenic than UT1 and UT2 and reduced shoot and root growth at all soil temperatures. Populations UT1 and UT2 reduced shoot and root growth at 20-30 °C. Soil temperature was negatively correlated with shoot and root growth and positively correlated with nematode reproduction. Reproduction of UT3 exceeded that of UT1 and UT2 at all soil temperatures.  相似文献   

4.
Alfalfa is a host of Pratylenchus penetrans and P. neglectus, whereas crested wheatgrass is a host of P. neglectus but not of P. penetrans. In a 120-day greenhouse experiment at 24 ñ 3 C, P. neglectus inhibited the growth of ''Lahontan'' alfalfa and ''Fairway'' crested wheatgrass. There were no differences in persistence and plant growth of alfalfa and crested wheatgrass, or reproduction of P. neglectus, in single plantings of alfalfa (AO) or crested wheatgrass (CWO), or in interplanted alfalfa and crested wheatgrass (ACW) treatments. On alfalfa, P. penetrans inhibited growth and reproduced more than did P. neglectus. Inhibition of plant growth and reproduction of P. penetrans was greater on alfalfa in AO than in ACW treatments. Pratylenchus penetrans did not reproduce on crested wheatgrass, but inhibited growth of crested wheatgrass in interplanted treatments and was avirulent in single planted treatments. Results were similar in a controlled growth chamber experiment at 15, 20, 25, and 30 C. Both nematode species inhibited alfalfa growth at all temperatures, and P. penetrans was more virulent than was P. neglectus to alfalfa at all temperatures and treatments. Plant growth inhibition and reproduction of P. penetrans on alfalfa in single and interplanted treatments were similar at 15-20 C, but were greater in single than in interplanted treatments at 25-30 C. Pratylenchus penetrans was avirulent to crested wheatgrass in the single planted treatments at all temperatures, but inhibited growth of crested wheatgrass in interplanted treatments at 20-30 C. Plant growth and reproduction of P. neglectus on crested wheatgrass was similar in single and interplanted treatments at 20-30 C and 15-30 C, respectively.  相似文献   

5.
Cortical parenchyma cells penetrated and fed upon by Pratylenchus penetrans for 48 hours contained only cytoplasmic debris. Proximal cells had an increase in tannin deposits, degenerated mitochondria, increased numbers of ribosomes, and no internal membrane structure. Often the endodermis was collapsed and contained massive tannin deposits on the inner cell wall and cell lumen. Similar observations were made in the stele, except tannin deposits were not as prominent. Multivesicnlate structures were observed both in the endodermis and in the stele.  相似文献   

6.
In experiments on competition between Pratylenchus neglectus and Meloidogyne chitwoodi in barley, the species that parasitized the roots first inhibited penetration by the latter species. Prior presence of P. neglectus impeded the development of M. chitwoodi. Pratylenchus neglectus reduced egg production, final population levels, and reproductive index of M. chitwoodi. The reduction was linearly related to initial population densities of P. neglectus. Initial population densities of M. chitwoodi had no effect on final population levels of P. neglectus. Carbon assimilation by barley plants was reduced when either nematode species was present alone, but not when both were present together. Both nematode species assimilated lower amounts of carbon when present together than when present alone. A split-root experiment demonstrated that translocatable chemicals were not involved in the competition between the two species.  相似文献   

7.
An initial density (Pi) of 1,540 Pratylenchus neglectus/kg soil suppressed shoot growth of potato, Solanum tuberosum cv. Russet Burbank, in a greenhouse test at 3 weeks. After 6 weeks, shoot weights were reduced by Pi of 662 and 1,540 nematodes/kg soil, the final soil densities of P. neglectus were twice the respective Pi, and the numbers of nematodes per gram dry root were 5,363 and 7,981. In 1986-88 field microplot experiments with the Norchip cultivar, neither shoot nor root weight was suppressed by P. neglectus. In 1986 a Pi of 115 nematodes/kg soil suppressed the total number and weight of tubers per plant. In 1987 a Pi of 186 nematodes/kg soil suppressed the marketable and total number of tubers by 19 and 25 %, respectively. In 1988 a Pi of 1,884 nematodes/ kg soil reduced total and marketable weight by 18 and 19%, respectively. In 1986 and 1987 nematode population densities in the soil increased 34-fold and 27-fold, respectively. In 1988 the Pi of 1,884 nematodes/kg soil rose to 21,890/kg at midseason, then dropped to 4,370/kg at harvest. These studies show for the first time that P. neglectus reproduces well on potato and can cause yield losses. Because of its distribution and abundance, P. neglectus may be considered an economically important parasite of potato in Ontario.  相似文献   

8.
In a petri-dish study, development of the nematode Pratylenchus neglectus was observed every 4 days, and stage-specific development times were estimated, using a parameter estimation algorithm for a distributed-delay population model. The lower threshold temperature for development of a population of P. neglectus was 7.75 C. Temperatures above 25 C were unfavorable for this population on barley. Total numbers of P. neglectus in barley roots and associated soil in pots were greatest at 25 C and lower at temperatures above and below that level. There was no change in nematode numbers per gram of root as temperature increased between 24 C and 32 C because root weights decreased at higher temperatures. Restricted root mass may contribute to the lower total nematode population levels at higher temperature. Maximum number of nematodes moved through a 2-cm layer of sand on a Baermann funnel at about 20 C; lowest number of nematodes moved at 10 C and 30 C.  相似文献   

9.
Fifty-two alfalfa (Medicago sativa L.) clones, randomly selected from the cultivar Baker and the experimental line MNGRN-4, were evaluated for resistance (based on nematode reproduction) to Pratylenchus penetrans in growth chamber tests (25 C). Twenty-five clones, representing the range of nematodes and eggs per plant, were selected and retested. Four moderately resistant and two susceptible alfalfa clones were identified. Inheritance of resistance to P. penetrans was studied in these six clones using a diallel mating design. The S₁, Fl, and reciprocal progenies differed for numbers of nematodes and eggs per g dry root and for shoot and root weights (P < 0.05). Resistance, measured as numbers of nematodes in roots, was correlated between parental clones and their S₁ families (r = 0.94), parental clones and their half-sib families (r = 0.81), and S₁ and half-sib families (r = 0.88). General combining ability (GCA) effects were significant for nematode resistance traits. Both GCA and specific combining ability (SCA) effects were significant for plant size traits, but SCA was more important than GCA in predicting progeny plant size. Reciprocal effects were significant for both nematode resistance and plant size traits, which may slow selection progress in long-term selection programs. However, the GCA effects are large enough that breeding procedures that capitalize on additive effects should be effective in developing alfalfa cultivars with resistance to P. penetrans.  相似文献   

10.
Alfalfa (Medicago sativa L. cv. Saranac) seed were soaked for 20 minutes in water, acetone, or methanol containing 10 or 50 mg/ml of oxamyl (Vydate L) or coated with a 2% aqueous cellulose solution containing the same amounts of oxamyl. Seed were analyzed for oxamyl by HPLC immediately after treatment and after 9 and 26 months of storage. Oxamyl content of alfalfa seed did not decline after 26 months of storage. The effects of seed treatment on growth of alfalfa and nematode control were examined using soils infested with Pratylenchus penetrans and Meloidogyne hapla. Germination was not affected by any of the seed treatments. Twenty-one days after sowing, the total growth of alfalfa seedlings grown from seed treated with 50 mg/ml of oxamyl in P. penetrans-infested soils had increased by 62% over controls. Nodulation per pot increased by as much as 267%, and the densities of P. penetrans per gram of root were reduced by as much as 73% compared to control plants. In M. hapla-infested soils, increases in plant growth (32%) and nodulation (71%) also occurred with oxamyl-treated seeds. Root gall reduction (86%) was also substantial due to oxamyl seed treatment.  相似文献   

11.
The interaction between Pratylenchus neglectus (Pn) and Meloidogyne chitwoodi (Mc) was investigated at soil temperatures of 15, 20, and 25 C on barley and potato. Maximum numbers of Pn and Mc penetrated barley roots at 20 C, whereas a minimum number penetrated at 15 C. Pratylenchus neglectus restricted root penetration by Mc over time and vice-versa. Population densities of each species increased with increasing temperature. Concomitant inoculation of the two species resulted in lower numbers of Pn at 15 and 25 C in both barley and potato, whereas the numbers of Mc were lower at 15 C in barley and at 25 C in potato. Root weights of potato and barley at 15 and 20 C, respectively, were lowered by the presence of both nematodes singly or concomitantly. At 25 C, barley plants inoculated with Mc alone had lower shoot weight than uninoculated controls, but the damage was restricted when Pn also was present. The two species interact competitively, and the outcome varies with soil temperature and host plant. Pn has the potential to suppress Mc population levels and reduce the damage it causes to potato and barley.  相似文献   

12.
A greater percentage of females than juveniles or males of P. penetrans penetrated celery roots grown in infested soil at 5, 18, or 30 C; the difference was greatest at 5 C. The time of initial penetration of alfalfa seedlings inoculated with single nematodes on water agar varied with temperature. Females penetrated the seedlings earlier and over a wider range of temperatures than did males or juveniles. The rate of penetration was highest for females. After initial penetration, the penetration rate decreased with time. At 13-28 C, approximately 80% of roots were penetrated by females and only 25-30% by males and juveniles by the end of the experiment.  相似文献   

13.
In a long-term field experiment, differential population densities of Heterodera avenae were produced by frequent cropping with resistant (cv. Panema) or susceptible (cv. Peniarth) oat. The two oat cultivars were equally good hosts of Pratylenchus neglectus in a glass house experiment with field soil. On wheat crops grown after oats in field experiments, P. neglectus population densities in roots were higher in plots where H. avenae had been controlled than in plots with moderate infestations (40 H. avenae eggs/g soil). The field observations indicated that the reduction in population densities of P. neglectus coincided with the development in roots of sedentary stages of the cyst nematode. Evidence for an indirect effect of H. avenae on P. neglectus was found in vitro in a split-root experiment. In the same field, grain yields of two wheat cultivars susceptible or resistant to H. avenae, but both susceptible to P. neglectus, was not reduced by P. neglectus. Alternation of H. avenae resistant and susceptible cultivars is a possible way of exploiting the inverse relationship between these nematodes, whilst controlling cyst nematode -populations in intensive cereal production systems.  相似文献   

14.
Meloidogyne hapla reproduced and suppressed growth (P < 0.05) of susceptible Lahontan and Moapa alfalfa at 15, 20, and 25 C. At 30 C, resistant Nevada Syn XX lost resistance to M. hapla. M. hapla invaded and reproduced on Rhizobium meliloti nodules of Lahontan and Moapa, inducing giant cell formation and structural disorder of vascular bundles of nodules without disrupting bacteroids. At 15, 20, and 25 C a M. chitwoodi population from Utah reproduced on Lahontan, Moapa, and Nevada Syn XX alfalfa, suppressing growth (P < 0.05). Final densities of the Utah M. chitwoodi population were greater (P < 0.05) than those of Idaho and Washington State populations on Lahontan at 15 and 25 C and on Nevada Syn XX at 15 C, but were less consistent and smaller (P < 0.05) than those of M. hapla on Lahontan and Moapa at 20 and 25 C. Inconsistent reproduction of the Utah M. chitwoodi population on alfalfa suggests the possible existence of nematode strains revealed by variability in alfalfa resistance. No reproduction or inconsistent final nematode population densities with no damage were observed on Lahontan, Moapa, and Nevada Syn XX plants grown in soil infested with Idaho and Washington State M. chitwoodi populations.  相似文献   

15.
The pathogenicity of two populations of the northern root-knot nematode, Meloidogyne hapla Chitwood, population 1 (P1) from alfalfa and population 2 (P2) from sainfoin, was studied on both alfalfa and sainfoin for 25 weeks. Alfalfa and sainfoin plants inoculated with P2 had significantly (P ≤ 0.05) higher mortality than plants inoculated with P1. Plant stands over all weeks for the uninoculated control, P1, and P2 were 90.5, 78.5, and 64.0% for alfalfa and 84.5, 51.0, and 41.0% for sainfoin, respectively. The increased virulence of P2 was again shown when means of plant species were combined (inoculation × week of count interaction). Plants inoculated with P2 had significantly higher mortality than either those inoculated with P1 or the uninoculated control beginning at week 7 and continuing through week 25. Plant stands over species at 25 weeks for the uninoculated control, P1, and P2 were 82.5, 29.0, and 18.0%, respectively. Sainfoin was significantly more susceptible to either population than alfalfa (plant species × week of count interaction). Separation between species first occurred after week 7 and continued until week 25. Percentages of plants remaining for alfalfa and sainfoin were 61.5 and 25.0 after 25 weeks. Significantly higher reproduction occurred in the alfalfa plants remaining after 25 weeks in P2 than in P1. Mean number of eggs per root system were 60,371 for P1 and 104,438 for P2, a difference of 42%. The results of this study indicate a need for breeders to adequately sample nematode populations present in the intended area of cultivar use and to design screening procedures to account for population pathogenicity variability.  相似文献   

16.
Verticillium albo-atrum wilt symptoms appeared faster and were significantly more severe in the presence of Ditylenchus dipsaci in Vernal, a wilt-susceptible cultivar, than in Marls Kabul, a wilt-resistant cultivar. Winter kill in the field was not affected by the nematode during the first winter, but 50% of plants were killed in the second winter. Forage yield from nematode-infected plants was significantly reduced the second year. Interaction with V. albo-atrum did not significantly reduce forage yields below that of D. dipsaci alone. Pratylenchus penetrans did not increase the severity of wilt symptoms in the presence of V. albo-atrum, nor did it affect forage yield in the greenhouse. It did, however, reduce alfalfa yields in presence of V. albo-atrum under field conditions. D. dipsaci and P. penetrans reproduced faster in Vernal than in Maris Kabul when the fungus was present.  相似文献   

17.
''Vernal'' alfalfa was grown for 30 weeks in nematode-free soil and in soil infested with Pratylenchus penetrans. Charlottetown fine sandy loam soil was used at its pH of 4.4 and at adjusted reactions of 5.2, 6.4 and 7.3. Nematode reproduction was significantly greater at pit 5.2 and 6.4 and was not related to alfalfa root production over the full pH range studied. A significant nematode infestation X soil pit interaction on forage yield was recorded. Nematode infestation significantly decreased forage yields at ptt 5.2 and 6.4 but not at pH 4.4 and 7.3.  相似文献   

18.
A polymer sticker was used as a coating in which oxamyl was applied to seeds of alfalfa cultivar Saranac for the control of Pratylenchus penetrans and Meloidogyne hapla. The sticker, diluted 1:1 (sticker:water) to 1:5, delayed seedling emergence during the first 4 days after planting. By day 13, however, emergence from all sticker treatments was comparable to the control. Shoot growth of seedlings at day 21 was less than that of the control only from seeds coated with a 1:1 dilution; root growth and nodulation were not affected. Sticker-coated seeds absorbed 30-58% as much water in 3.5 hours as was absorbed by uncoated seeds. Oxamyl concentrations of 40-160 mg/ml in a 1:5 sticker : water mixture had no adverse affect on seedling emergence, growth, and nodulation over 3 weeks. Oxamyl at 160 mg/ml was more effective against P. penetrans than M. hapla. Growth of alfalfa in P. penetrans-infested soil was greater than that of the control in each sampling for 11 weeks. The reduction of number of P. penetrans in soil and roots moderated slowly over 11 weeks from 90% to 60%. Shoot and root growth of alfalfa from oxamyl-coated seed in M. hapla-infested soil were greater than those of the control for 7 and 11 weeks, respectively. The reduction in the number of M. hapla in the soil and roots changed from 80% at 7 weeks to 15% at 11 weeks.  相似文献   

19.
Growth of alfalfa (Medicago sativa cv. Vernal) seedlings was compared after inoculation with combinations of either Pratylenchus penetrans and Fusarium soloni or P. penetrans and F. oxysporum f. sp. medicaginis. A synergistic disease interaction occurred in alfalfa when F. oxysporum and P. penetrans were added simultaneously to the soil. Alfalfa growth was suppressed at all inoculum levels of P. penetrans and F. oxysporum, but not with F. solani. Seedlings inoculated with the nematode alone gave lower yields than when inoculated with either Fusarium species alone. Fusarium oxysporum, but not F. solani, was pathogenic to alfalfa under similar experimental conditions. Fusarium oxysporum did not alter the populations of P. penetrans in alfalfa roots, whereas the presence of F. solani was associated with a diminished number of P. penetrans in the roots.  相似文献   

20.
Red clover and alfalfa were inoculated with Pratylenchus penetrans and grown in an Alberry sandy loam soil to which potassium (K⁺) was added at seeding at 0, 41.5, 83, and 166 μg/g. In one experiment with alfalfa, additional K⁺ was added after each forage cut to replace that which was removed. Nematode populations were not consistently affected by K⁺ fertilization. Nematode infection stunted red clover and alfalfa and resulted in lower yields at all K⁺ levels, except for alfalfa at the lowest K⁺ level. Nematode infection had no effect on taproot yields. However, it resulted in lower rootlet yields from red clover at all K⁺ levels, lower rootlet yields from alfalfa only at the highest K⁺ level in one experiment, and lower rootlet yields at all but the lowest K⁺ level in a second experiment, potassium fertilization enhanced yield of red clover and alfalfa. Yield increases were smaller from increased K⁺ fertilization in nematode-infested soil than in noninfested soil. Pralylenchus penetrans had little effect on the K⁺ content of red clover or alfalfa. The stunting of plants from nematode infection resulted in less K⁺ being removed from the soil.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号