首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Incidence and severity of root-rot caused by the fungus Macrophomina phaseoli was increased in screenhouse-grown kenaf (Hibiscus cannabinus L.) seedlings simultaneously infected by the nematode Meloidogyne javanica. In seedlings inoculated at 5, 10 and 15 days of age, root rot lesions increased 70.3, 44.1 and 21.8%, and nematode penetration increased 49.0, 36.7, and 12.3% when both fungus and nematode were present.  相似文献   

2.
A disease complex involving Meloidogyne incognita and Rhizoctonia solani was associated with stunting of grapevines in a field nursery. Nematode reproduction was occurring on both susceptible and resistant cultivars, and pot experiments were conducted to determine the virulence of this M. incognita population, and of M. javanica and M. hapla populations, to V. vinifera cv. Colombard (susceptible) and to V. champinii cv. Ramsey (regarded locally as highly resistant). The virulence of R. solani isolates obtained from roots of diseased grapevines also was determined both alone and in combination with M. incognita. Ramsey was susceptible to M. incognita (reproduction ratio 9.8 to 18.4 in a shadehouse and heated glasshouse, respectively) but was resistant to M. javanica and M. hapla. Colombard was susceptible to M. incognita (reproduction ratio 24.3 and 41.3, respectively) and M. javanica. Shoot growth was suppressed (by 35%) by M. incognita and, to a lesser extent, by M. hapla. Colombard roots were more severely galled than Ramsey roots by all three species, and nematode reproduction was higher on Colombard. Isolates of R. solani assigned to putative anastomosis groups 2-1 and 4, and an unidentified isolate, colonized and induced rotting of grapevine roots. Ramsey was more susceptible to root rotting than Colombard. Shoot growth was inhibited by up to 15% by several AG 4 isolates and by 20% by the AG 2-1 isolate. AG 4 isolates varied in their virulence. Root rotting was higher when grapevines were inoculated with both M. incognita and R. solani and was highest when nematode inoculation preceded the fungus. Shoot weights were lower when vines were inoculated with the nematode 13 days before the fungus compared with inoculation with both the nematode and the fungus on the same day. It was concluded that both the M. incognita population and some R. solani isolates were virulent against both Colombard and Ramsey, and that measures to prevent spread in nursery stock were therefore important.  相似文献   

3.
Filtrates from nematode-parasitic fungi have been reported to be toxic to plant-parasitic nematodes. Our objective was to determine the effects of fungal filtrates on second-stage juveniles and eggs of Heterodera glycines. Eleven fungal species that were isolated from cysts extracted from a soybean field in Florida were tested on J2, and five species were tested on eggs in vitro. Each fungal species was grown in Czapek-Dox broth and malt extract broth. No toxic activity was observed for fungi grown in Czapek-Dox broth. Filtrates from Paecilomyces lilacinus, Stagonospora heteroderae, Neocosmospora vasinfecta, and Fusarium solani grown in malt extract broth were toxic to J2, whereas filtrates from Exophiala pisciphila, Fusarium oxysporum, Gliocladium catenulatum, Pyrenochaeta terrestris, Verticillium chlamydosporium, and sterile fungi 1 and 2 were not toxic to J2. Filtrates of P. lilacinus, S. heteroderae, and N. vasinfecta grown in malt extract broth reduced egg viability, whereas F. oxysporum and P. terrestris filtrates had no effect on egg viability.  相似文献   

4.
The efficacy of the nematode parasite Paecilomyces lilacinus, alone and in combination with phenamiphos and ethoprop, for controlling the root-knot nematode Meloidogyne javanica on tobacco and the ability of this fungus to colonize in soil under field conditions were evaluated for 2 years in microplots. Combinations and individual treatments of the fungus grown on autoclaved wheat seed, M. javanica eggs (76,000 per plot), and nematicides were applied to specified microplots at the time of transplanting tobacco the first year. Vetch was planted as a winter cover crop, and the fungus and nematicides were applied again the second year to specified plots at transplanting time. The fungus did not control the nematode in either year of these experiments. The average root-gall index (0 = no visible galls and 5 = > 100 galls per root system) ranged from 2.7 to 3.9 the first year and from 4.3 to 5.0 the second in nematode-infested plots treated with nematicides. Plants with M. javanica alone or in combination with P. lilacinus had galling indices of 5.0 both years; the latter produced lower yields than all other treatments during both years of the study. Nevertheless, the average soil population densities of P. lilacinus remained high, ranging from 1.2 to 1.3 × 106 propagules/g soil 1 week after the initial inoculation and from 1.6 to 2.3 × 104 propagules/g soil at harvest the second year. At harvest the second year the density of fungal propagules was greatest at the depth of inoculation, 15 cm, and rapidly decreased below this level.  相似文献   

5.
Two Hawaiian isolates of Steinernema feltiae MG-14 and Heterohabditis indica MG-13, a French isolate of S. feltiae SN, and a Texan isolate of S. riobrave TX were tested for their efficacy against the root-knot nematode, Meloidogyne javanica, in the laboratory and greenhouse. Experiments were conducted to investigate the effects of treatment application time and dose on M. javanica penetration in soybean, and egg production and plant development in tomato. Two experiments conducted to assess the effects of entomopathogenic nematode application time on M. javanica penetration demonstrated that a single application of 10⁴ S. feltiae MG-14 or SN infective juveniles per 100 cm³ of sterile soil, together with 500 (MG-14) or 1,500 (SN) second-stage juveniles of M. javanica, reduced root penetration 3 days after M. javanica inoculation compared to that of a water treatment. Entomopathogenic nematode infective juveniles applied to assess the effects on M. javanica egg production did not demonstrate a significant reduction compared to that of the water control treatment. There was no dose response effect by Steinernema spp. On M. javanica root penetration or egg production. Steinernema spp. did not affect the growth or development of M. javanica-infected plants, but H. indica MG-13-treated plants had lower biomass than untreated plants infected with M. javanica. Infective juveniles of S. riobrave TX, S. feltiae SN, and MG-14 but not those of H. indica MG-13 were found inside root cortical tissues of M. javanica-infected plants. Entomopathogenic nematode antagonism to M. javanica on soybean or tomato was insufficient in the present study to provide a consistent level of nematode suppression at the concentrations of infective juveniles applied.  相似文献   

6.
The efficacy of four biological nematicides on root-galling, root-knot nematode (Meloidogyne incognita) reproduction, and shoot weight of tomato (Solanum lycopersicum) grown in stone wool substrate or in pots with sandy soil was compared to an oxamyl treatment and a non-treated control. In stone wool grown tomato, Avid® (a.i. abamectin) was highly effective when applied as a drench at time of nematode inoculation. It strongly reduced root-galling and nematode reproduction, and prevented a reduction in tomato shoot weight. However, applying the product one week before, or two weeks after nematode inoculation was largely ineffective. This shows that Avid® has short-lived, non-systemic activity. The effects of Avid® on nematode symptoms and reproduction on soil-grown tomato were only very minor, probably due to the known strong adsorption of the active ingredient abamectin to soil particles. The neem derived product Ornazin® strongly reduced tomato root-galling and nematode reproduction only in stone wool and only when applied as a drench one week prior to nematode inoculation, suggesting a local systemic activity or modification of the root system, rendering them less suitable host for the nematodes. This application however also had some phytotoxic effect, reducing tomato shoot weights. The other two products, Nema-Q™ and DiTera®, did not result in strong or consistent effects on nematode symptoms or reproduction.  相似文献   

7.
Inula viscosa is a perennial plant that is widely distributed in Mediterranean countries. Formulations of I. viscosa extracts were tested for their effectiveness in control of Meloidogyne javanica in laboratory, growth chamber, microplot, and field experiments. Oily pastes were obtained by extraction of dry leaves with a mixture of acetone and n-hexane or n-hexane alone, followed by evaporation of the solvents. Emulsifiable concentrate formulations of the pastes killed M. javanica juveniles in sand at a concentration of 0.01% (paste, w/w) or greater and reduced the galling index of cucumber seedlings as well as the galling index and numbers of nematode eggs on tomato plants in growth chamber experiments. In microplot experiments, the hexane-extract formulation at 26 g paste/m2 reduced nematode infection on tomato plants in one of two experiments. In a field experiment, a reduction of 40% in root galling index by one of two formulations was observed on lettuce plants. The plant extracts have potential as a natural nematicide, although the formulations need improvement.  相似文献   

8.
Chitinolytic microflora may contribute to biological control of plant-parasitic nematodes by causing decreased egg viability through degradation of egg shells. Here, the influence of Lysobacter enzymogenes strain C3 on Caenorhabditis elegans, Heterodera schachtii, Meloidogyne javanica, Pratylenchus penetrans, and Aphelenchoides fragariae is described. Exposure of C. elegans to L. enzymogenes strain C3 on agar resulted in almost complete elimination of egg production and death of 94% of hatched juveniles after 2 d. Hatch of H. schachtii eggs was about 50% on a lawn of L. enzymogenes strain C3 on agar as compared to 80% on a lawn of E. coli. Juveniles that hatched on a lawn of L. enzymogenes strain C3 on agar died due to disintegration of the cuticle and body contents. Meloidogyne javanica juveniles died after 4 d exposure to a 7-d-old chitin broth culture of L. enzymogenes strain C3. Immersion of A. fragariae, M. javanica, and P. penetrans juveniles and adults in a nutrient broth culture of L. enzymogenes strain C3 led to rapid death and disintegration of the nematodes. Upon exposure to L. enzymogenes strain C3 cultures in nutrient broth, H. schachtii juveniles were rapidly immobilized and then lysed after three days. The death and disintegration of the tested nematodes suggests that toxins and enzymes produced by this strain are active against a range of nematode species.  相似文献   

9.
Second-stage juveniles (I2) of Meloidogyne arenaria consumed more oxygen (P ≤ 0.05) than M. incognita J2, which in turn consumed more than M. javanica J2 (4,820, 4,530, and 3,970 μl per hour per g nematode dryweight, respectively). Decrease in oxygen consumption depended on the nematicide used. Except for aldicarb, there was no differential sensitivity among the three nematode species. Meloidogyne javanica had a greater percentage decrease (P ≤ 0.05) in oxygen uptake when treated with aldicarb, relative to the untreated control, than either M. arenaria or M. incognita. Meloidogyne javanica J2 had a greater degree of recovery from fenamiphos or aldicarb intoxication, after subsequent transfer to water, than did M. incognita. This finding may relate to differential sensitivity among Meloidogyne spp. in the field. Degree of respiratory inhibition and loss of nematode motility for M. javanica after exposure to the nematicides were positively correlated (P ≤ 0.05).  相似文献   

10.
Effects of acibenzolar-s-methyl, an inducer of systemic acquired resistance in plants, on Rotylenchulus reniformis and Meloidogyne javanica in vitro and in vivo were determined. A single foliar application of acibenzolar at 50 mg/liter (5 ml of solution per plant) to 7-day-old cowpea or soybean seedlings decreased R. reniformis and M. javanica egg production by 50% 30 days after inoculation. The mechanism of acibenzolar on plant-parasitic nematodes was then investigated. Acibenzolar at 50 to 200 mg/liter did not affect movement of R. reniformis and M. javanica or penetration of second-stage juveniles (J2) of M. javanica on cowpea. However, M. javanica development was slowed and fecundity was reduced in plants treated with acibenzolar. On average, 50% of J2 that penetrated acibenzolar-treated cowpeas developed into mature females with eggs, whereas the other 50% exhibited arrested development. The number of eggs per egg mass was 450 in water-treated cowpeas, whereas the number declined to 250 in acibenzolar-treated plants. Acibenzolar may be responsible for stimulating the plants to express some resistance to the nematodes.  相似文献   

11.
Pasteuria penetrans spore adhesion to Meloidogyne javanica second-stage juveniles (J2) was examined following several different pretreatments of the latter. The detergents sodium dodecyl sulfate and Triton X-100, the carbohydrates fucose and α-methyl-D-mannoside, and the lectins concanavalin A and wheat germ agglutinin reduced spore attachment. Spores exposed to M. javanica surface coat (SC) extract exhibited decreased adherence to the J2 surface. Second-stage juveniles that had been treated with antibodies recognizing a 250-kDa antigen of J2 SC extract had fewer spores attached to their surfaces, as compared to nontreated J2, except in the head region. This inhibition pattern was similar to that of antibody-labelling on M. javanica J2 as observed by electron microscopy. It is suggested that several SC components, such as carbohydrate residues, carbohydrate-recognition domains, and a 250-kDa antigen, are involved in P. penetrans spore attachment to the surface of M. javanica.  相似文献   

12.
Reproduction of Meloidogyne javanica on Crotalaria juncea PI 207657 and cv. Tropic Sun, Sesamum indicum, Dolichos lablab, and Elymus glaucus was assessed using a root-gall index, a reproductive index obtained by dividing the final population of juveniles (J2) in soil by the initial J2 population (Pf/Pi), and the number of J2 per gram of root recovered from roots by mist chamber extraction. Lycopersicon esculentum (cv. UC 204 C) was included as a susceptible host. The root-gall index and soil reproductive index were poor indicators of the host status of our test plants as compared with mist chamber extraction of J2 from roots. Lycopersicon esculentum had a mean root-gall index of 7.8. Some plants of S. indicum and E. glaucus had a few galls and other plants had none, with mean root-gall indices of 1.6 and 0.8, respectively. No galls were observed in C. juncea and D. lablab. Lycopersicon esculentum had the highest mean soil Pf/Pi value (mean = 1.93), while in C. juncea and some replicates of S. indicum no soil J2 were found. Even though some replicates had no galls, all replicates supported nematode reproduction. The mean numbers of J2 per gram root after 5 days of mist extraction were 447.7, 223.3, 165.5, 96.9, 42.3, and 41.9 for D. lablab, L. esculentum, E. glaucus, S. indicum, and C. juncea PI 207657 and cv. Tropic Sun, respectively. Accurate assessment of nematode resistance was influenced by sampling time and the nematode extraction technique used. Individual plants of both C. juncea and S. indicum supported nematode reproduction to some extent; however, both C. juncea and S. indicum have potential as cover crops to reduce M. javanica numbers.  相似文献   

13.
The role of Pasteuria penetrans in suppressing numbers of root-knot nematodes was investigated in a 7-year monocuhure of tobacco in a field naturally infested with a mixed population of Meloidogyne incognita race 1 and M. javanica. The suppressiveness of the soil was tested using four treatments: autoclaving (AC), microwaving (MW), air drying (DR), and untreated. The treated soil bioassays consisted of tobacco cv. Northrup King 326 (resistant to M. incognita but susceptible to M. javanica) and cv. Coker 371 Gold (susceptible to M. incognita and M. javanica) in pots inoculated with 0 or 2,000 second-stage juveniles of M. incognita race 1. Endospores of P. penetrans were killed by AC but were only slightly affected by MW, whereas most fungal propagules were destroyed or inhibited in both treatments. Root galls, egg masses, and numbers of eggs were fewer on Coker 371 Gold in MW, DR, and untreated soil than in AC-treated soil. There were fewer egg masses than root galls on both tobacco cultivars in MW, DR, and untreated soil than in the AC treatment. Because both Meloidogyne spp. were suppressed in MW soil (with few fungi present) as well as in DR and untreated soil, the reduction in root galling, as well as numbers of egg masses and eggs appeared to have resulted from infection of both nematode species by P. penetrans.  相似文献   

14.
Juveniles of five species of nematodes, Caenorhabditis elegans, Panagrellus redivivus, Pratylenchus agilis, Pristionchus pacificus, and Distolabrellus veechi, were added to solutions with (treatment) and without (control) a commercial ice-nucleating activity (INA) agent. Ten-microliter droplets of the solutions containing the juveniles were placed on glass microscope slides and transferred to a temperaturecontrolled freeze plate where the temperature was reduced to -6 to -8 °C. At this temperature, the droplets containing the INA agent froze while those without the agent remained liquid. After 2 minutes, the temperature of the plate was raised to 24 °C, and the slides were examined with a light microscope to determine the viability of the juveniles. The results showed that usually most juveniles (43% to 88%, depending on species) in solutions that did not contain the INA agent (controls) were active, indicating that the juveniles were capable of supercooling and were thereby protected from the subzero temperatures. Alternatively, less than 10% of the juveniles that had frozen for 2 minutes in solutions containing the INA agent remained viable, indicating that inoculative freezing of the solution was lethal to the supercooled juveniles. Our results suggest that, in geographical areas where winter temperatures may not be sufficiently low or sustained to freeze soil, the addition of an INA agent may help induce ice nucleation and thereby reduce the populations of nematode species that are unable to survive when the soil solution is frozen.  相似文献   

15.
The potency of the inducers of systemic acquired resistance (SAR), acibenzolar-s-methyl, DL-α-amino-n-butyric acid (AABA), DL-β-amino-n-butyric acid (BABA), γ-amino-n-butyric acid (GABA), p-aminobenzoic acid (PABA), riboflavin, and salicylic acid (SA), in reducing reproduction of Meloidogyne javanica and Rotylenchulus reniformis in pineapple was investigated. All inducers were applied as foliar sprays to 1-mon-old pineapple plants (20 ml/plant) grown in 22-cm-diam. pots in the greenhouse. Two days after application, 10,000 eggs of M. javanica or R. reniformis were inoculated onto the plants. Six months after inoculation, nematode reproduction was measured. Acibenzolar decreased R. reniformis egg production by 58% compared to the nontreated control (P ≤ 0.05). Acibenzolar, BABA, and riboflavin reduced M. javanica egg production by 60% to 64% compared to the nontreated control (P ≤ 0.05). The point in the pineapple SAR pathway that each compound activates may explain the differing results between M. javanica and its giant cells and R. reniformis and its syncytia. Foliar application of acibenzolar at 100 and 200 mg/liter decreased by 30% and 60%, respectively, the number of M. javanica eggs as compared to the nontreated control. Fresh shoot weight of pineapple treated with 50, 100, 200, and 400 mg/liter acibenzolar was reduced by 1.2%, 3.3%, 9.9%, and 33% compared to the nontreated pineapple, respectively (P ≤ 0.05). Foliar application of acibenzolar may activate intrinsic resistance of pineapple to M. javanica and R. reniformis and may have a role in the sustainable management of nematodes in pineapple.  相似文献   

16.
Interaction of Meloidogyne javanica and Fusarium oxysporum f. sp. ciceri was studied on Fusarium wilt-susceptible (JG 62 and K 850) and resistant (JG 74 and Avrodhi) chickpea cultivars. In greenhouse experiments, inoculation of M. javanica juveniles prior to F. oxysporum f. sp. ciceri caused greater wilt incidence in susceptible cultivars and induced vascular discoloration in roots of resistant cultivars. Nematode reproduction was greatest (P = 0.05) at 25 °C. Number of galls and percentage of root area galled increased when the temperature was increased from 15 °C to 25 °C. Wilt incidence was greater at 20 °C than at 25 °C. Chlorosis of leaves and vascular discoloration of plants did not occur at 15 °C. The nematode enhanced the wilt incidence in wilt-susceptible cultivars only at 25 °C. Interaction between the two pathogens on shoot and root weights was significant only at 20 °C, and F. o. ciceri suppressed the nematode density at this temperature. Wilt incidence was greater in clayey (48% clay) than in loamy sand (85% sand) soils. The nematode caused greater plant damage on loamy sand than on clayey soil. Fusarium wilt resistance in Avrodhi and JG 74 was stable in the presence of M. javanica across temperatures and soil types.  相似文献   

17.
Extracts of Chinese herbal medicines from plants representing 13 families were tested for their ability to suppress plant-parasitic nematodes. Effective concentration (EC50 and EC90) levels for 18 of the extracts were determined in laboratory assays with Meloidogyne javanica juveniles and all stages of Pratylenchus vulnus. Efficacy of 17 extracts was tested against M. javanica in soil. Generally, EC50 and EC90 values determined in the laboratory were useful indicators for application rates in the soil. Extracts tested from plants in the Liliaceae reduced galling of tomato by M. javanica and were not phytotoxic. Similarly, isothiocyanate-yielding plants in the Brassicaceae suppressed root galling without phytotoxicity. Other plant extracts, including those from Azadirachta indica, Nerium oleander, and Hedera helix, suppressed root galling but were phytotoxic at the higher concentrations tested. Many of these plant sources have been tested elsewhere. Inconsistency in results across studies points to the need for identification of active components and for determination of concentration levels of these components when plant residues or extracts are applied to soil.  相似文献   

18.
Penetration of Crotalaria juncea (PI 207657 and cv. Tropic Sun) Dolichos lablab cv. Highworth, and Sesamum indicum by juveniles (J2) of Meloidogyne javanica was assessed to investigate the mechanism by which these plants may reduce nematode numbers in the field. Growth chamber experiments were conducted at 25 C, with vials containing 90 g sand infested with 450 J2; tomato (UC 204 C) was included as a susceptible host. Fifteen days after inoculation, roots were stained and the nematodes within stained roots were counted. Both C. juncea lines were highly resistant to penetration, as they contained significantly fewer nematodes per cm of root and per root system than the other plants. Although containing more nematodes per cm of root than C. juncea, S. indicum and D. lablab had significantly fewer nematodes per root system and per cm of root than tomato. Roots were significantly longer in the plants with the lowest nematode penetration. Although C. juncea, D. lablab, and S. indicum may have potential utility as cover or rotation crops in soil infested with M. javanica, further quantitative information on the reproduction of M. javanica and other nematodes in these plants is needed.  相似文献   

19.
Short-term greenhouse studies with soybean (Glycine max cv. Bragg) were used to examine interactions between the soybean cyst nematode (Heterodera glycines) and two other common pests of soybean, the stem canker fungus (Diaporthe phaseolorum var. caulivora) and the soybean looper (Pseudoplusia includens), a lepidopterous defoliator. Numbers of cyst nematode juveniles in roots and numbers of cysts in soil and roots were reduced on plants with stem cankers. Defoliation by soybean looper larvae had the opposite effect; defoliation levels of 22 and 64% caused stepwise increases in numbers of juveniles and cysts in both roots and soil, whereas numbers of females in roots decreased. In two experiments, stem canker length was reduced 40 and 45% when root systems were colonized by the soybean cyst nematode. The absence of significant interactions among these pests indicates that the effects of soybean cyst nematode, stem canker, and soybean looper on plant growth and each other primarily were additive.  相似文献   

20.
A greater percentage of females than juveniles or males of P. penetrans penetrated celery roots grown in infested soil at 5, 18, or 30 C; the difference was greatest at 5 C. The time of initial penetration of alfalfa seedlings inoculated with single nematodes on water agar varied with temperature. Females penetrated the seedlings earlier and over a wider range of temperatures than did males or juveniles. The rate of penetration was highest for females. After initial penetration, the penetration rate decreased with time. At 13-28 C, approximately 80% of roots were penetrated by females and only 25-30% by males and juveniles by the end of the experiment.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号