首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
The effects of Dactylella oviparasitica strain 50 applications on sugarbeet cyst nematode (Heterodera schachtii) population densities and plant weights were assessed in four agricultural soils. The fungus was added to methyl iodide-fumigated and nonfumigated portions of each soil. The soils were seeded with Swiss chard. Four weeks later, soils were infested with H. schachtii second-stage juveniles (J2). Approximately 1,487 degree-days after infestation, H. schachtii cyst, egg and J2 numbers and plant weights were assessed. In all four fumigated soils, D. oviparasitica reduced all H. schachtii population densities and increased most of the plant weights compared to the nonamended control soils. In two of the nonfumigated soils (10 and SC), D. oviparasitica reduced H. schachtii population densities and increased most plant weight values compared to the nonamended control soils. For the other two nonfumigated soils (44 and 48), which exhibited pre-existing levels of H. schachtii suppressiveness, fungal applications had relatively little impact on H. schachtii population densities and plant weights. The results from this study combined with those from previous investigations suggest that D. oviparasitica strain 50 could be an effective biological control agent.  相似文献   

2.
A series of experiments were performed to examine the population dynamics of the sugarbeet cyst nematode, Heterodera schachtii, and the nematophagus fungus Dactylella oviparasitica. After two nematode generations, the population densities of H. schachtii were measured in relation to various initial infestation densities of both D. oviparasitica and H. schachtii. In general, higher initial population densities of D. oviparasitica were associated with lower final population densities of H. schachtii. Regression models showed that the initial densities of D. oviparasitica were only significant when predicting the final densities of H. schachtii J2 and eggs as well as fungal egg parasitism, while the initial densities of J2 were significant for all final H. schachtii population density measurements. We also showed that the densities of H. schachtii-associated D. oviparasitica fluctuate greatly, with rRNA gene numbers going from zero in most field-soil-collected cysts to an average of 4.24 x 108 in mature females isolated directly from root surfaces. Finally, phylogenetic analysis of rRNA genes suggested that D. oviparasitica belongs to a clade of nematophagous fungi that includes Arkansas Fungus strain L (ARF-L) and that these fungi are widely distributed. We anticipate that these findings will provide foundational data facilitating the development of more effective decision models for sugar beet planting.  相似文献   

3.
Experiments showed that development of male and female Heterodera schachtii on tomato and sugarbeet are disproportionately influenced by the nematode inoculum level and root size, which together determine the density of invading larvae. Slight overcrowding favored development of males over females, whereas severe overcrowding equally affected development of males and females. Differential population changes of host-selected races on tested cultivars was attributable to selective development of male and female nematodes.  相似文献   

4.
In two glasshouse experiments, relations between sugarbeet root dry weight (y, expressed as a percentage of the maximum dry root weight), and preplanting populations of Heterodera schachtii (Pi) were described by the equation y = 100(Z)Pi-T, in which Z = a constant slightly smaller than 1, and T = the tolerance limit (the value of Pi below which damage was not measureable). T varied with temperature; it was 65 eggs/100 g soil at 23 and 27 C and 430 eggs/100 g soil at 19 C. At 15 and 31 C there was no loss of root dry weight up to the maximum preplanting populations tested. In a field experiment in the Imperial Valley the relation between root yield (y) and Pi was y = 100 (0.99886)Pi - 100, and the tolerance limit was 100 eggs/100 g soil.  相似文献   

5.
Measurements of second-stage juveniles of Heterodera schachtii from California and The Netherlands and a race of H. trifolii from The Netherlands were obtained and compared to determine if these populations can be differentiated by morphometrics. Juvenile lengths of 10 specimens from each of 10 cysts of each population were measured. Dimensions of tail regions of 20 juveniles from individual cysts of H. schachtii (California) and a like number of juveniles of H. trifolii (The Netherlands) were also obtained. The mean lengths of juveniles of H. schachtii from California and The Netherlands were not significantly different, but similar measurements of H. schachtii and H. trifolii were different (P = 0.05). Mean dimensions of tail lengths, tail widths, tail hyaline lengths, and tail length/tail width were significantly greater for H. trifolii than for H. schachtii. Also, dimensions of eggs of H. trifolii were significantly greater than dimensions of H. schachtii eggs. The investigations established that H. schachtii can be readily differentiated from H. trifolii by morphometrics of eggs and juveniles, Minimum sample sizes required for specified confidence intervals for each criterion measured are provided.  相似文献   

6.
Heterodera schachtii, Meloidogyne hapla, and Nacobbus aberrans either alone, or in various combinations with each other, can, when inoculated at a concentration of 12 second-stage juveniles/ cm³ of soil, cause a significant (P = 0.01) suppression of growth of sugarbeet (cv. Tasco AH14) seedlings. M. hapla and H. schachtii decreased growth of sugarbeet more than N. aberrans over a 60-day period. The adverse effect of N. aberrans on the final population/initial population (Pf/Pi) ratio for either M. hapla or H. schachtii was dependent on time, and was more accentuated on that of M. hapla than on that of H. schachtii. Neither M. hapla nor H. schachtii had an adverse effect on the Pf/ Pi ratio of N. aberrans. N. aberrans is considered to be less aggressive on sugarbeet than either H. schachtii or M. hapla. Sections of sugarbeet roots infected simultaneously with H. schachtii and N. aberrans showed scattered vascular elements between the N. aberrans syncytium located in the central part of the root and that of H. schachtii in the peripheral position.  相似文献   

7.
Modified polyacrylamide gel and SDS-polyacrylamide gel electrophoretic systems using a low molarity tris-HCl buffer and equal pH of homogenizing buffer and stacking gel provided improved stacking for separation of soluble proteins from Heterodera schachtii, H. trifolii, H. lespedezae, and H. glycines races 1, 2, 3, and 4, compared with previous studies with cyst nematodes, The four Heterodera species were easily distinguished using the polyacrylamide gel system, but H. trifolii and H. lespedezae had similar protein patterns. H. glycines races were not separable by that system. The SDS-polyacrylamide gel system produced different protein patterns for all four Heterodera species although H. trifolii and H. lespedezae differed by only a single band, suggesting that these two may be subspecifically related. A protein band unique to H. glycines races 3 and 4 was not detected in SDS-polyacrylamide gel profiles from races 1 and 2. Molecular weight determinations were 55,000 for distinctive proteins in profiles of H. trifolii and 75,000 for H. glycines races 3 and 4.  相似文献   

8.
This study assessed the potential impact of various Fusarium strains on the population development of sugarbeet cyst nematodes. Fungi were isolated from cysts or eggs of Heterodera schachtii Schmidt that were obtained from a field suppressive to that nematode. Twenty-six strains of Fusarium spp. were subjected to a phylogenic analysis of their rRNA-ITS nucleotide sequences. Seven genetically distinct Fusarium strains were evaluated for their ability to influence population development of H. schachtii and crop performance in greenhouse trials. Swiss chard (Beta vulgaris) seedlings were transplanted into fumigated field soil amended with a single fungal strain at 1,000 propagules/g soil. One week later, the soil was infested with 250 H. schachtii J2/100 cm3 soil. Parasitized eggs were present in all seven Fusarium treatments at 1,180 degree-days after fungal infestation. The percentage of parasitism ranged from 17 to 34%. Although the most efficacious F. oxysporum strain 471 produced as many parasitized eggs as occurred in the original suppressive soil, none of the Fusarium strains reduced the population density of H. schachtii compared to the conducive check. This supports prior results that Fusarium spp. were not the primary cause of the population suppression of sugarbeet cyst nematodes at this location.  相似文献   

9.
A direct relationship exists between soil temperature and Heterodera schachtii development. The average developmental period of two nematode populations from Lewiston, Utah, and Rupert, Idaho, from J2 to J3, J4, adult, and the next generation J2 at soil temperatures of 18-28 C were 100, 140,225, and 399 degree-days (base 8 C), respectively. There was a positive relationship (P < 0.05) between nematode Pi, nematode generations, and sugarbeet yields. The greatest sugarbeet growth inhibition (87%) occurred when sugarbeets were exposed to a Pi of 12 eggs/cm³ soil for five generations (1,995 degree-days), compared with a 47% inhibition when plants were exposed to the same Pi for two generations. There was a negative correlation (P < 0.05) between the Pi, Pf, and sugarbeet yield for each population threshold. The smaller the Pi, the greater the sugarbeet yields and the greater the Pf. Root yields were 80 and 29 t /ha and Pf were 8.4 and 3.6 eggs/cm³ soil when sugarbeet seeds were planted at Pi of 0.4 and 7.9 eggs/cm³. respectively, at a soil temperature of 8 C. The number of years rotation with a nonhost crop required to reduce the nematode population density below a damage threshold level of 2 eggs/cm³ depends on the Pi. A Pi of 33.8 eggs/cm³ soil required a 5-year crop rotation, whereas a Pi of 8.4 eggs/cm³ soil required a 2-year crop rotation.  相似文献   

10.
The host suitability of diverse races and gene pools of common bean (Phaseolus vulgaris) for multiple isolates of Heterodera glycines was studied. Twenty P. vulgaris genotypes, representing three of the six races within the two major germplasm pools, were tested in greenhouse experiments to determine their host suitability to five H. glycines isolates. Phaseolus vulgaris genotypes differed in their host suitability to different H. glycines isolates. While some common bean lines were excellent hosts for some H. glycines isolates, no common bean line was a good host for all isolates. Some bean lines from races Durango and Mesoamerica, representing the Middle America gene pool, were resistant to all five nematode isolates. Other lines, from both the Andean and Middle America gene pools, had differential responses for host suitability to the different isolates of H. glycines.  相似文献   

11.
High initial population densities of Heterodera schachtii larvae (36 and 108/gm of soil) greatly retarded the seedling emergence of sugar beet ''Monogerm CSF 1971'' in Vineland fine sandy loam. In comparison with controls, initial population densities (Pi''s) of 1.7, 3.0, 6.2, and 14.4 larvae/gm of soil respectively reduced the weight of storage roots by 38, 56, 64, and 92%. Weights of tops also decreased with increases in Pi; weights of tap and small feeder roots tended to be higher at all Pi''s except the highest. Sucrose percentage was not affected by any initial nematode density. The populations were lower at midseason than at seeding, and at harvest had increased greatly, with respective populations of 339, 402, 222, and 140 larvae/gm of soil. At harvest, cysts/gm of soil and cysts/gm of root were respectively 4.4 and 72, 6.1 and 99, 6.1 and 191, and 5.8 and 140. The maximum rate of multiplication was 150-200. and maximum density was 400 larvae/gm of soil. The high pathogenicity and multiplication rate of the nematode was attributed to optimum temperature conditions and soil type.  相似文献   

12.
Foliar applications of ethyl 4-(methylthio)-m-tolyl isopropylphosphoramidate (phenamiphos) or S-methyl 1-(dimethylcarbamoyl)-N-[(methylcarbamoyl)oxy] thioformimidate (oxamyl) retarded infection of sugarbeets by the sugarbeet nematode, Heterodera schachtii under greenhouse conditions. Maximum nematode control was obtained when treatments were applied previous to, or at the time of, inoculation of plants with the nematode. Consecutive foliar applications inhibited nematode development, with four applications giving greatest inhibition of maturation. A treatment with either phenamiphos or oxamyl at 2,000 μg/ml (ppm) resulted in the greatest increase in plant growth, and 4,000 μg/ml gave the best nematode control. A treatment of 4,000 μg/ml of either phenamiphos or oxamyl was phytotoxic. However, this was due to container confinement of the chemical since phytotoxicity at this rate has not been observed under field conditions.  相似文献   

13.
    
The effects of extraction technique, sample size, soil moisture level, and overflow rate on recovery of Globodera rostochiensis and (or) Heterodera schachtii cysts from organic soils were investigated. A modified Fenwick can (MFC) and an underflow elutriator (UE) described in this paper were evaluated and compared for cyst recovery efficiency and amount of organic flotsam collected. The MFC and UE extracted similar numbers of cysts, but the UE collected 50% less flotsam than the MFC. Sample size was negatively correlated with cyst recovery and positively correlated with amount of flotsam. The amount of flotsam recovered with the MFC was correlated with overflow speed. Presoaking air dried samples for 30 minutes halved the amount of flotsam without affecting cyst recovery. Extracting cysts from wet soil without prior drying resulted in negligible recovery with both extraction techniques. There were no significant differences in cyst recovery of the two genera tested.  相似文献   

14.
Restriction fragment patterns of mitochondrial DNA from sibling species of cyst nematodes Heterodera glycines and H. schachtii were examined. Fourteen restriction endonucleases recognizing four, five, and six base-pair sequences yielded a total of 90 scorable fragments of which 10% were shared by both species. Mitochondrial genome sizes for H. glycines and H. schachtii were estimated to be 22.5-23.5 kb and 23.0 kb, respectively. A single wild type mitochondrial genome was identified in all populations of H. glycines examined, although other mitochondrial genomes were present in some populations. The H. schachtii genome exhibited 57 scorable fragments, compared with 33 identified in the H. glycines wild type genome. The estimated nucleotide sequence divergence between the two species was p = 0.145. This estimate suggests these species diverged from a common ancestor 7.3-14.8 million years ago.  相似文献   

15.
The duration of effectiveness of a foliar spray of oxamyl against Heterodera schachtii and the location of the protective effect were determined by applying a foliar spray at 0.04 kg (a.i.)/100 liters of water to cabbage seedlings. Oxamyl, or a metabolite of oxamyl, apparently is translocated to anti becomes prolective in the root within 7 days. Between 7 and 14 days, the location of the protection shifts from within the root In the root surface or rhizosphere. The chemical remains active for at least 21 days unless it is removed from the root or rhizosphere by washing with water.  相似文献   

16.
Invasion of tomato (Lycopersicon esculentum L.) roots by combined and sequential inoculations of Meloidogyne hapla and a tomato population of Heterodera schachtii was affected more by soil temperature than by nematode competition. Maximum invasion of tomato roots, by M. hapla and H. schachtii occurred at 30 and 26 C, respectively. Female development and nematode reproduction (eggs per plant) of M. hapla was adversely affected by H. schachtii in combined inoculations of the two nematode species. Inhibition of M. hapla development and reproduction on tomato roots from combined nematode inoculations was more pronounced as soil temperature was increased over a range of 18-30 C and with prior inoculation of tomato with H. schachtii. M. hapla minimally affected H. schachtii female development, but there was significant reduction in the buildup of H. schachtii when M. hapla inoculation preceded that of H. schachtii by 20 days.  相似文献   

17.
Significant differences (P = 0.05) in nematode reproduction were observed among populations of Heterodera schachtii and weed collections of black nightshade, common lambsquarters, common purslane, redroot-pigweed, shepherdspurse, and wild mustard from Colorado, Idaho, Oregon, and Utah. Colorado weeds supported the greatest nematode development (P = 0.05). Weeds collected from Idaho and Utah were similar with respect to their response to H. schachtii with the exception of shepherdspurse. At increasing soil temperatures, a Utah redroot-pigweed collection showed a higher percent susceptibility to a Utah nematode population than to nematode populations from the other states (P = 0.05). There was a higher percentage of susceptible plants when the weed host population was collected from the same geographical area as the nematode inoculun.  相似文献   

18.
A technique was developed to evaluate Heterodera glycines development in susceptible and resistant soybean. Roots of 3-day-old soybean were exposed to infective juveniles of H. glyci.nes in sand for 8 hours followed by washing and transfer to hydroponic culture. The cotyledons and apical meristem were removed and plants were maintained under constant light, which resulted in a dwarfed plant system. After 15 or 20 days at 27 C, nematodes were rated for development. Emerged males were sieved from the culture water and females were counted directly from the roots. Nematodes remaining in the roots were rated for development after staining and clearing the tissues. The proportion of nematodes at each stage of development and the frequency of completed molts for each stage were calculated from these data. This technique showed that resistance to H. glycines was stage related and did not affect males and females equally in all resistant hosts. The resistance of plant introduction PI 209332 primarily affected development of third and fourth-stage juveniles; ''Pickett'' mainly affected second and third-stage juveniles, whereas PI 89772 affected all stages. Male development was markedly affected in PI 89772 and ''Pickett'' but not in PI 209332.  相似文献   

19.
The first internally transcribed spacer region (ITS1) from cyst nematode species (Heteroderidae) was compared by nucleotide sequencing and PCR-RFLP. European, Asian, and North American isolates of five heterodefid species were examined to assess intraspecific variation. PCR-RFLP patterns of amplified ITS1 DNA from pea cyst nematode, Heterodera goettingiana, from Northern Ireland were identical with patterns from Washington State. Sequencing demonstrated that ITS1 heterogeneity existed within individuals and between isolates, but did not result in different restriction patterns. Three Indian and two U.S. isolates of the corn cyst nematode, Heterodera zeae, were compared. Sequencing detected variation among ITS1 clones from the same individual, between individuals, and between isolates. PCR-RFLP detected several restriction site differences between Indian and U.S. isolates. The basis for the restriction site differences between isolates from India and the U.S. appeared to be the result of additional, variant ITS1 regions amplified from the U.S. isolates, which were not found in the three India isolates. PCR-RFLP from individuals of the U.S. isolates created a composite pattern derived from several ITS1 types. A second primer set was specifically designed to permit discrimination between soybean (H. glycines) and sugar beet (H. schachtii) cyst nematodes. Fok I digestion of amplified product from soybean cyst nematode isolates displayed a uniform pattern, readily discernible from the pattern of sugar beet and clover cyst nematode (H. trifolii).  相似文献   

20.
    
Numbers of cyst and root-knot nematodes and percentage parasitism by the nematophagous fungus Hirsutella rhossiliensis were quantified in microplots over 2 years. The microplots contained either sugarbeets in loam infested with Heterodera schachtii or tomatoes in sand infested with Meloidogyne javanica. The fungus was added to half of the microplots for each crop. Although H. rhossiliensis established in both microplot soils, the percentage of nematodes parasitized did not increase with nematode density and nematode numbers were not affected by the fungus. The results indicate that long-term interactions between populations of the fungus and cyst or root-knot nematodes will not result in biological control.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号