首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
强电针穴位对背角神经元镇痛效应广泛性的中枢机制   总被引:18,自引:0,他引:18  
何晓玲  刘乡 《生理学报》1995,47(6):605-609
实验用雄性大鼠,玻璃微电极细胞外记录T12-L1脊髓背角会聚神经元对后爪伤害性刺激的反应,观察到低强度(2V)电针作用于与痛源接近的“足三里”穴对背角神经元的伤害性反应有明显的抑制作用,而远隔穴位“下关”穴则无效。而当采用超过C类纤维阈值18V电针时,则远隔穴位“下关”也有明显的镇痛作用。表现为强电针穴位镇痛作用的广泛性。而损毁NRM后,强电针(18V)远节段“下关”穴的镇痛作用消失,而近节段“足  相似文献   

2.
Zhang YQ  Wu GC 《生理科学进展》2000,31(3):211-216
内源性下行抑制系统在痛传递与调制中具有重要作用。近年来,与这一系统相对的下行易化系统开始引起人们的关注。中枢神经系统通过下行抑制易化系统对外周伤害性信息进行双向调制。5-羟色胺(5-HT)是痛上行调制系统的主要神经递质,电刺激或微量注射兴奋性氨基酸于中缝大核(NMR)或巨细胞网状核(NGC)内,既可兴奋也可抑制脊髓伤害性反应。这种相互矛盾遥效应可能与脊髓内的多种5-HT受体亚型有关。  相似文献   

3.
Pharmacology of descending control systems   总被引:1,自引:0,他引:1  
In the cat there is no convincing evidence that a particular compound mediates a supraspinal control of spinal transmission of nociceptive information. There is good evidence that opioid peptides are released segmentally in response to nociceptive input to the spinal cord and that this acts to inhibit motoneurons and to reduce transmission of nociceptive information to supraspinal areas. In the cat there is no evidence that stimulation at supraspinal sites producing analgesia results in a spinal release of opioid peptides. In the rat evidence for the latter has been obtained but there are no data from other species. Tonically present supraspinal inhibition of spinal transmission of nociceptive information in the cat does not involve opioid peptides. Indirect evidence favours a role for 5-hydroxytryptamine and noradrenaline in supraspinal control of spinal processing of nociceptive transmission. Peripheral antagonists of 5-HT have reduced spinal inhibition from stimulation at supraspinal sites but the site of action is unknown. Progress with noradrenaline involvement has been hindered by lack of a suitable antagonist. Although the amino acids, glycine and GABA are involved in segmental inhibition of transmission of nociceptive information, no convincing evidence has indicated their involvement in supraspinal controls.  相似文献   

4.
Glutamate is the predominant excitatory transmitter used by primary afferent synapses and intrinsic neurons in the spinal cord dorsal horn. Accordingly, ionotropic glutamate receptors mediate basal spinal transmission of sensory, including nociceptive, information that is relayed to supraspinal centers. However, it has become gradually more evident that these receptors are also crucially involved in short- and long-term plasticity of spinal nociceptive transmission, and that such plasticity have an important role in the pain hypersensitivity that may result from tissue or nerve injury. This review will cover recent findings on pre- and postsynaptic regulation of synaptic function by ionotropic glutamate receptors in the dorsal horn and how such mechanisms contribute to acute and chronic pain.  相似文献   

5.
We will focus on spinal cord dorsal horn lamina I projection neurones, their supraspinal targets and involvement in pain processing. These spinal cord neurons respond to tonic peripheral inputs by wind-up and other intrinsic mechanisms that cause central hyper-excitability, which in turn can further enhance afferent inputs. We describe here another hierarchy of excitation - as inputs arrive in lamina I, neurones rapidly inform the parabrachial area (PBA) and periaqueductal grey (PAG), areas associated with the affective and autonomic responses to pain. In addition, PBA can connect to areas of the brainstem that send descending projections down to the spinal cord - establishing a loop. The serotonin receptor, 5HT3, in the spinal cord mediates excitatory descending inputs from the brainstem. These descending excitatory inputs are needed for the full coding of polymodal peripheral inputs from spinal neurons and are enhanced after nerve injury. Furthermore, activity in this serotonergic system can determine the actions of gabapentin (GBP) that is widely used in the treatment of neuropathic pain. Thus, a hierarchy of separate, but interacting excitatory systems exist at peripheral, spinal and supraspinal sites that all converge on spinal neurones. The reciprocal relations between pain, fear, anxiety and autonomic responses are likely to be subserved by these spinal-brainstem-spinal pathways we describe here. Understanding these pain pathways is a first step toward elucidating the complex links between pain and emotions.  相似文献   

6.
7.
The antinociceptive effect of the benzomorphan class of opioid analgesics have been difficult to measure utilizing some of the standard animal pain models. This may be due, in part, to the sedative and/or motor effects associated with these drugs. In addition, it has been proposed that the major site of action for drugs with agonist activity at the kappa opiate receptor is exclusively at the spinal level opposed to both spinal and supraspinal as with the mu receptor agonists such as morphine. The present study examines the antinociceptive effect of the mixed agonist-antagonists cyclazocine and pentazocine utilizing electrical stimulation of the midbrain reticular formation (MRF) as the aversive stimulus in the rat. Animals were trained to escape MRF stimulation by turning a cylindrical manipulandum. An escape threshold was determined by varying the current intensity according to a modification of the psychophysical method of limits. In addition to the determination of the escape threshold the response latency and strength of response was also measured. Both cyclazocine (0.25-1.0 mg/kg) and pentazocine (2.5-12.5 mg/kg) raised the escape threshold in a dose-dependent manner without any concomitant change in the response latency or strength of response. These data suggest that the observed threshold elevation is due to a specific antinociceptive effect. Since the aversive stimulation was delivered supraspinally, the data also suggest that there are supraspinal mechanisms mediated by kappa receptors responsible for this analgesic effect.  相似文献   

8.
孤啡肽受体是继经典的mu阿片受体、kappa阿片受体和delta阿片受体之后发现的又一类新型阿片受体,不仅在结构上具有同上述阿片受体相类似的特征,而且可介导相同或相似的细胞内生物学反应.孤啡肽受体对痛觉反应具有独特的调控模式.一方面,在背根神经节以及脊髓水平,孤啡肽受体主要介导镇痛效应,并且在脊髓水平还与其他阿片受体有协同效应以增强镇痛效果.另一方面,在脊髓上水平,孤啡肽受体往往产生痛敏而拮抗了其他阿片受体的镇痛效应.此外孤啡肽受体对痛觉的调控在不同物种间也表现一定的差异性.这为进一步阐明内源性阿片系统的痛觉调控作用提供一定的理论依据.  相似文献   

9.
Neuronal plasticity along the pathway for sensory transmission including the spinal cord and cortex plays an important role in chronic pain, including inflammatory and neuropathic pain. While recent studies indicate that microglia in the spinal cord are involved in neuropathic pain, a systematic study has not been performed in other regions of the central nervous system (CNS). In the present study, we used heterozygous Cx3cr1 GFP/+mice to characterize the morphological phenotypes of microglia following common peroneal nerve (CPN) ligation. We found that microglia showed a uniform distribution throughout the CNS, and peripheral nerve injury selectively activated microglia in the spinal cord dorsal horn and related ventral horn. In contrast, microglia was not activated in supraspinal regions of the CNS, including the anterior cingulate cortex (ACC), prefrontal cortex (PFC), primary and secondary somatosensory cortex (S1 and S2), insular cortex (IC), amygdala, hippocampus, periaqueductal gray (PAG) and rostral ventromedial medulla (RVM). Our results provide strong evidence that nerve injury primarily activates microglia in the spinal cord of adult mice, and pain-related cortical plasticity is likely mediated by neurons.  相似文献   

10.
Many years preclinical and clinical anatomic, pharmacologic, and physiologic studies suggest that SP- and opioid-expressing neurons produce opposite biological effects at the spinal level, i.e., nociception and antinociception, respectively. However, in certain circumstances intrathecally administered SP is capable of reinforcing of spinal morphine analgesia and may therefore function as an opioid adjuvant in vivo. The SP dose-response curve of spinally administered SP follows a bell-shaped or inverted-U configuration, permitting pharmacological dissociation of opioid-potentiating and analgesic properties of SP from traditional hyperalgesic effects seen at significantly higher concentrations. This analgesic effect is blocked by naloxone but unaffected by transection of the spinal cord, thus demonstrating the lack of supraspinal modulation. The present report briefly describes both reinforcing and opposing interactions between multiple opioid systems and substance P at the spinal level. We propose that a likely mechanism underlying SP-mediated enhancement of opioid analgesia is the ability of SP to release endogenous opioid peptides within the local spinal cord environment.  相似文献   

11.
Summary Many years preclinical and clinical anatomic, pharmacologic, and physiologic studies suggest that SP- and opioid-expressing neurons produce opposite biological effects at the spinal level, i.e., nociception and antinociception, respectively. However, in certain circumstances intrathecally administered SP is capable of reinforcing of spinal morphine analgesia and may therefore function as an opioid adjuvantin vivo. The SP dose-response curve of spinally administered SP follows a bell-shaped or inverted-U configuration, permitting pharmacological dissociation of opioid-potentiating and analgesic properties of SP from traditional hyperalgesic effects seen at significantly higher concentrations. This analgesic effect is blocked by naloxone but unaffected by transection of the spinal cord, thus demonstrating the lack of supraspinal modulation. The present report briefly describes both reinforcing and opposing interactions between multiple opioid systems and substance P at the spinal level. We propose that a likely mechanism underlying SP-mediated enhancement of opioid analgesia is the ability of SP to release endogenous opioid peptides within the local spinal cord environment.  相似文献   

12.
13.
Olivier Rampin 《Andrologie》2004,14(4):428-437
The brain control of the genital tract and sexual behaviour remains poorly understood. Clinical results and basic research indicate that the neural control of ejaculation depends on three levels of organization. The first level consists of peripheral autonomic and somatic nerves. Leaving the spinal cord, these nerves control the motility, secretions and blood supply of the genital tract, and contractions of perineal striated muscles. Their path in the abdominal cavity and the effects of their neuro-transmitters on peripheral tissues have been established. These nerves also convey sensory information from the genital tract to the spinal cord. The second level is represented by the spinal cord. The thoracolumbar (sympathetic), and sacral (parasympathetic and pudendal) segments of the cord contain the somata of autonomic and somatic motoneurons, whose axons run in the above nerves. These motoneurons are part of a spinal network that likely organizes the activity of the whole genital tract in a given context such as copulation. The role of the different spinal cord segments in the control of ejaculation is mainly inferred from observations of the deleterious effects of spinal cord injury in human patients. A small population of galaninergic positive neurons has recently been identified in the lumbar segments of the rat spinal cord that plays a major role in ejaculation (Truitt and Coolen, 2003). Selective lesion of this population abolishes in copula ejaculations, but spares erection. Finally, the third level of organization is represented by supraspinal nervous structures. The spinal cord receives direct excitatory and inhibitory information from the brainstem, pons and hypothalamus. In turn, these structures receive sensory information from the genital tract. However, their role in the control of ejaculation remains poorly investigated. Again, it is mainly inferred from the observation of the deleterious effects of pharmacological treatments on brain neurotransmission. Positron emission tomography has recently been used to observe brain areas whose activity is enhanced during ejaculation in humans (Holstege et al., 2003). In this study, several areas of the right side of the cortex and the cerebellum were activated. The targets of future clinical and basic research include: the neural basis of the required coordination between spinal autonomic and somatic nuclei that innervate the genital tract, the role of sensory information from the genital tract in the recruitment and coordination of spinal and supraspinal nuclei, and finally the integration of descending excitatory and inhibitory influences onto the spinal cord. Both the organization during development and the activation at puberty of the spinal neural network that controls the genital tract are dependent on androgens. Future research should identify the regulatory factors that, in response to the action of androgens, provide neurons with the possibility of building their connexions and selecting their neurotransmitters and receptors.  相似文献   

14.

Introduction

Morphine is the most effective pain-relieving drug, but it can cause unwanted side effects. Direct neuraxial administration of morphine to spinal cord not only can provide effective, reliable pain relief but also can prevent the development of supraspinal side effects. However, repeated neuraxial administration of morphine may still lead to morphine tolerance.

Methods

To better understand the mechanism that causes morphine tolerance, we induced tolerance in rats at the spinal cord level by giving them twice-daily injections of morphine (20 µg/10 µL) for 4 days. We confirmed tolerance by measuring paw withdrawal latencies and maximal possible analgesic effect of morphine on day 5. We then carried out phosphoproteomic analysis to investigate the global phosphorylation of spinal proteins associated with morphine tolerance. Finally, pull-down assays were used to identify phosphorylated types and sites of 14-3-3 proteins, and bioinformatics was applied to predict biological networks impacted by the morphine-regulated proteins.

Results

Our proteomics data showed that repeated morphine treatment altered phosphorylation of 10 proteins in the spinal cord. Pull-down assays identified 2 serine/threonine phosphorylated sites in 14-3-3 proteins. Bioinformatics further revealed that morphine impacted on cytoskeletal reorganization, neuroplasticity, protein folding and modulation, signal transduction and biomolecular metabolism.

Conclusions

Repeated morphine administration may affect multiple biological networks by altering protein phosphorylation. These data may provide insight into the mechanism that underlies the development of morphine tolerance.  相似文献   

15.
The effect of electrostimulation of the mesencephalic grey matter and of the dorsal nucleus raphe on physiological pain produced by nociceptive stimulation (compression of the tail or the skin on the limb by a clamp) and on pathological pain (the pain syndrome of spinal origin) were studied in experiments on albino rats. Pathological pain was induced by creating a generator of pathologically enhanced excitation in the dorsal horn of the spinal cord by local disturbance of the inhibitory mechanisms with the aid of tetanus toxin. It was shown that electrostimulation of the indicated areas abolished both physiological and pathological pain. A conclusion was drawn that analgesia produced by electrostimulation of certain structure of the brain was connected not only with augmentation of the descending inhibition in the spinal cord as in the case of physiological pain caused by peripheral nociceptive stimulation (as shown by several authors), but also with the block of excitation at the supraspinal level. This mechanism should play a decisive role in analgesia realization in the pain syndrome of central origin, both under experimental and natural conditions.  相似文献   

16.
Yang HY  Iadarola MJ 《Peptides》2006,27(5):943-952
The possible roles of the NPFF system in pain processing are summarized from the viewpoints of (1) biological activities of NPFF, (2) anatomical distribution of NPFF and its receptor(s) and (3) the regulation of NPFF and receptor(s) in animal models of pain. NPFF and NPFF analogues were found to have analgesic, pronociceptive and morphine modulating activities. Since the isolation of NPFF, several other RF-NH2 peptides have been identified and some of them were found to have nociceptive or morphine modulating activity. Depending on the pharmacological doses and locations of administration, NPFF may exhibit the biological activities of other structurally related RF-NH2 peptides thus complicating NPFF bioactivity studies and their interpretation. Acid sensing ion channels were found to respond to RF-NH2 peptides including NPFF, raising the possibility that interaction of NPFF and acid sensing ion channels can modulate nociceptive activity. NPFF and NPFF receptor mRNAs are highly expressed and localized in the superficial layers of the dorsal cord, the two genes are also in dorsal root ganglia though at much lower level. The spinal NPFF system is up-regulated by peripheral inflammation in the rat. Furthermore, immunohistochemically, NPFF receptor 2-protein was demonstrated to be increased in the primary afferents in the spinal cord of rats with peripheral inflammation. Regulation and localization of spinal NPFF systems, taken together with the analgesic bioactivity of intrathecally administered NPFF, strongly suggest involvement of spinal NPFF system in pain processing.  相似文献   

17.
Experiments have been performed in order to study the effects of percutaneous peripheral stimulation (PCPS) both on the transmission of messages elicited by recruiting sensory units of the tooth pulp at the thalamic Centrum Medianum Level and on the jaw opening reflex (JOR). Both evoked potentials and JOR were inhibited by stimuli applied to the limbs by means of percutaneous (needle) electrodes. Observed inhibitory effects were not immediate: there was a latency period and progressive induction of these phenomena. The site of the inhibition is still unknown, nevertheless, the demonstration that PCPS was able to inhibit both evoked potentials in Centrum Medianum and JOR support the hypothesis that the analgesic effects may be due to descending inhibition blocking transmission of nociceptive information through the spinal cord.  相似文献   

18.
GPR103 is one of the orphan G protein-coupled receptors. Recently, an endogenous ligand for GPR103, 26RFa, was identified. Many 26RFa binding sites have been observed in various nuclei of the brain involved in the processing of pain such as the parafascicular thalamic nucleus, the locus coeruleus, the dorsal raphe nucleus, and the parabrachial nucleus. In the present study, the effects of intracerebroventricular injection of 26RFa were tested in the rat. Intracerebroventricular injection of 26RFa significantly decreased the number of both phase 1 and phase 2 agitation behaviors induced by paw formalin injection. This analgesic effect of 26RFa on the phase 1 response, but not phase 2 response, was antagonized by BIBP3226, a mixed antagonist of neuropeptide Y Y1 and neuropeptide FF receptors. Intracerebroventricular injection of 26RFa has no effect in the 52.5 °C hot plate test. Intracerebroventricular injection of 26RFa had no effect on the expression of Fos-like immunoreactivity induced by paw formalin injection in the superficial layers of the spinal dorsal horn. These data suggest that (1) 26RFa modulates nociceptive transmission at the supraspinal site during a formalin test, (2) the mechanism 26RFa uses to produce an analgesic effect on the phase 1 response is different from that on the phase 2 response, and (3) intracerebroventricularly injected 26RFa dose not directly inhibit the nociceptive input to the spinal cord.  相似文献   

19.
Xu X  Grass S  Hao J  Xu IS  Wiesenfeld-Hallin Z 《Peptides》2000,21(7):1031-1036
Nociceptin and its receptor are present in dorsal spinal cord, indicating a possible role for this peptide in pain transmission. The majority of functional studies using behavioral and electrophysiological studies have shown that nociceptin applied at spinal level produces antinociception through pre- and post-synaptic mechanisms. The spinal inhibitory effect of nociceptin is not sensitive to antagonists of opioid receptors such as naloxone. Thus, nociceptin-induced antinociception is mediated by a novel mechanism independent of activation of classic opioid receptors. This has raised the possibility that agonists of the nociceptin receptor may represent a novel class of analgesics. Supporting this hypothesis, several groups have shown that intrathecal nociceptin alleviated hyperalgesic and allodynic responses in rats after inflammation or partial peripheral nerve injury. Electrophysiological studies have also indicated that the antinociceptive potency of spinal nociceptin is maintained or enhanced after nerve injury. It is concluded that the predominant action of nociceptin in the spinal cord appears to be inhibitory. The physiological role of nociceptin in spinal nociceptive mechanisms remains to be defined. Moreover, further evaluation of nociceptin as a new analgesic calls the development of non-peptide brain penetrating agents.  相似文献   

20.
In addition to investigating the anatomy,neurochemistry and neurophysiology of pain pathways,Chinese researchers have extended their work into the molecular and cellular mechanisms of sensory afferent transmission at the spinal cord level as well as cognitive processing in the brain.The mechanism underlying acupuncture analgesia remains a subject of special interest for Chinese pain researchers,with the aim of combining clinical practice with the understanding of pain transmission and analgesic mechanism.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号