首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Selection for ability of soybean cyst nematode (SCN), Heterodera glycines, to reproduce on soybeans with different sources of resistance divides some SCN race 4 field populations into two distinct subpopulations. These subpopulations reproduce well on ''Bedford'' and plant introduction (PI) 88788 or PI 89772 and PI 90763 but not on both pairs of soybean lines. The ability of these subpopulations to reproduce on the four soybean lines was reversed by changing the soybean line used as a host during a second cycle of selection. When SCN populations previously selected for reproduction on Bedford and PI 88788 were selected for their ability to reproduce on D72-8927 and J74-88, the ability of these populations to reproduce on Bedford and PI 88788 decreased significantly and their ability to reproduce on PI 89772 and PI 90763 increased significantly. Conversely, when SCN populations, previously selected for reproduction on P189772 and P190763, were selected for their ability to reproduce on Bedford, the reproduction of these populations on Bedford increased significantly and reproduction on PI 89772 and PI 90763 decreased significantly. Selection for ability of a SCN race 4 field population to reproduce on soybean lines derived from SCN race 4 resistant PIs resulted in the same division of the field population into two distinct subpopulations. These data substantiate earlier proposals to rotate cultivars with different genes for SCN resistance as a means of managing SCN populations.  相似文献   

2.
A lack of diversity and durability of resistant soybean varieties complicates management of the soybean cyst nematode (SCN), Heterodera glycines, exemplified by the current overdependence on the PI 88788 source of resistance. Of interest is the effect of adaptation of a SCN population to a source of resistance on its subsequent ability to develop on others. Female indices (FI) from virulence assays (race, HG Type and SCN Type tests) for SCN field populations and inbred lines were analyzed. Female indices on PI 88788, PI 209332 and PI 548316 were highly correlated, as were those of PI 548402, PI 90763, PI 89772 and PI 438489B. Previous studies on resistant SCN-infected soybean roots indicated that the cellular resistance response was similar within these two groups of soybean genotypes. In field populations, highly significant correlations were also found between FI on PI 88788 and PI 548402 and those on PI 89772 and PI 437654. In inbred lines, FI on PI 437654 were correlated with PI 90763 and PI 438489B. To avoid further adaptation, rotation of cultivars with resistance from these groups should be carefully monitored, including those from the most promising source of resistance, PI 437654, such as CystX. In a separate test, 10 soybean varieties developed from CystX were tested against HG Type 0, HG Type 2.5.7 and HG Type 1–7. Female development occurred in all tests but one. Although identification and deployment of unique resistance is needed, management strategies to prevent and detect adaptation should be emphasized.  相似文献   

3.
Knowledge of the virulence phenotypes of soybean cyst nematode, Heterodera glycines populations is important in choosing appropriate sources for breeding resistant cultivars and managing the nematode. We investigated races of 59 H. glycines populations collected from 1997 to 1998 and races and HG Types of 94 populations collected in 2002 from soybean fields across southern and central Minnesota. In the 1997 to 1998 samples, race 3 was predominant and represented 78% of the populations. The remaining populations were 11.9% race 1, 1.7% race 4, 6.8% race 6, and 1.7% race 14. In the 2002 samples, the populations were classified as 15.3% race 1, 77.6% race 3, 2.4% race 5, 3.5% race 6 and 1.2% race 9. Percentage of 1997 to 1998 populations with female indices (FI) higher than 10 were 10.2% on Pickett 71, 3.4% on Peking, 13.6% on PI 88788, 3.4% on PI 90763, 1.7% on PI 209332, and 1.7% on PI 437654. Percentage of 2002 populations with FI >10 was 1.1% on Peking, 17.0% on PI88788, 14.9% on PI 209332, 33.0% on PI 548316, 11.7% on Pickett 71, and 0% on the other three indicators, PI 90763, PI 437654, and PI 89772. The line PI 548316 was relatively susceptible to the Minnesota H. glycines populations and may not be recommended for breeding resistant cultivars in the state. There was no noticeable change of frequencies of virulence phenotypes in response to the use of resistant cultivars during 1997 to 2002 in Minnesota except that FI increased on the PI 209332.  相似文献   

4.
To determine whether currently used sources of resistance (soybean Plant Introductions [PI] 548402, 88788, 90763, 437654, 209332, 89772, and 548316) influence sex ratios in H. glycines, four inbred lines of the nematode characterized by zero or high numbers of females on resistant soybean were used to observe the number of adult males produced. Nematodes were allowed to infect soybean roots for 5 days in pasteurized sand. Infected plants were washed and transferred to hydroponic culture tubes. Males were collected every 2 to 3 days up to 30 days after infestation (DAI), and females were collected at 30 DAI. Resistance that suppressed adult females also altered adult male numbers. On PI 548402, 90763, and 437654, male numbers were low and close to zero, whereas on PI 88788, male numbers were higher (α = 0.05). In a separate experiment, the same PIs were infected by an inbred line that tested as an HG Type 0 (i.e., the numbers of females that developed on each PI were less than 10% of the number that developed on the standard susceptible soybean cultivar Lee). In this experiment, male numbers were similar to female numbers on PI 548402, 90763, 437654, and 89772, whereas male numbers on PI 88788, 209332, and 548316 were higher than those of females (α = 0.05). In all experiments, the total number of adults that developed to maturity relative to the number of second-stage juveniles that initially penetrated the root was less on resistant than on susceptible soybean (P ≤ 0.05), indicating that resistance influenced H. glycines survival and not sexual development.  相似文献   

5.
Soybeans with genes for resistance select against Heterodera glycines with the corresponding genes for avirulence. There may be a differential effect of sex with some specific gene interactions, which would influence the magnitude of gene frequency changes. No effect on H. glycines males was detected with one selected nematode population and the resistant soybean line PI88788. The selective effect of PI89772 against male nematodes was greater with two inbred nematode populations than with one selected (on PI88788) population, presumably due to differences in H. glycines gene frequencies. ''Peking'' also had few males with the one inbred nematode population, whereas Forrest and ''Pickett 71'' had intermediate numbers. Apparently Forrest and Pickett 71 did not get all the Peking genes for resistance that affect male as well as female nematode development. Other H. glycines-soybean genes stop only females, since there were few or no cysts, except on the susceptible soybean Williams. The number of males'' phenotype will help identify specific genes in both organisms.  相似文献   

6.
Heterodera glycines is a serious pest of soybean in the United States. Plant introductions 90763 and 424595 are reported to be resistant to H. glycines race 5; however their genetic relationship for resistance is unknown. Crosses between these two lines and the susceptible cultivar Essex were studied in the F₁, F₂, and F₃ generations to determine the number of genes involved in inheritance of resistance. The plants were screened using conventional techniques based on the index of parasitism. The data were subjected to analyses using chi-square test to determine goodness of fit between observed and expected genetic ratios. The cross PI 424595 x Essex segregated 1 resistant:63 susceptible in the F₂ generation, which indicated the presence of three recessive genes controlling resistance to race 5. In the cross PI 90763 x Essex, resistance was conditioned by one dominant and two recessive genes. The cross between PI 424595 and PI 90763 segregated into 13 resistant:3 susceptible. The data fit a four-gene model with two recessive and two dominant genes with epistasis. PI 90763 has a dominant gene, whereas PI 424595 has a recessive gene; both share two additional recessive genes for resistance to race 5. This information is important to geneticists and soybean breeders for the development of cultivars resistant to H. glycines.  相似文献   

7.
Soybean cyst nematode (SCN), Heterodera glycines Ichinohe, is a major pest of soybean, Glycine max L. Merr. Soybean cultivars resistant to SCN are commonly grown in nematode-infested fields. The objective of this study was to examine the stability of SCN resistance in soybean genotypes at different soil temperatures and pH levels. Reactions of five SCN-resistant genotypes, Peking, Plant Introduction (PI) 88788, Custer, Bedford, and Forrest, to SCN races 3, 5, and 14 were studied at 20, 26, and 32 C, and at soil pH''s 5.5, 6.5, and 7.5. Soybean cultivar Essex was included as a susceptible check. Temperature, SCN race, soybean genotype, and their interactions significantly affected SCN reproduction. The effect of temperature on reproduction was quadratic with the three races producing significantly greater numbers of cysts at 26 C; however, reproduction on resistant genotypes remained at a low level. Higher numbers of females matured at the soil pH levels of 6.5 and 7.5 than at pH 5.5. Across the ranges of temperature and soil pH studied, resistance to SCN in the soybean genotypes remained stable.  相似文献   

8.
The response of two soybean plant introductions, PI 96354 and PI 417444, highly resistant to Meloidogyne incognita, to increasing initial soil population densities (Pi) (0, 31, 125, and 500 eggs/100 cm³ soil) of M. incognita was studied in field microplots for 2 years. The plant introductions were compared to the cultivars Forrest, moderately resistant, and Bossier, susceptible to M. incognita. Averaged across years, the yield suppressions of Bossier, Forrest, PI 417444, and PI 96354 were 97, 12, 18, and < 1%, respectively, at the highest Pi when compared with uninfested control plots. Penetration of roots by second-stage juveniles (J2) increased linearly with increasing Pi at 14 days after planting. At the highest Pi, 62% fewer J2 were present in roots of PI 96354 than in roots of the other resistant genotypes. Soil population densities of M. incognita were lower on both plant introductions than on Forrest. At 75 and 140 days after planting, PI 96354 had the lowest number of J2 in the soil, with 49% and 56% fewer than Forrest at the highest Pi. The resistance genes in PI 96354 should be useful in a breeding program to improve the level of resistance to M. incognita in soybean cultivars.  相似文献   

9.
A technique was developed to evaluate Heterodera glycines development in susceptible and resistant soybean. Roots of 3-day-old soybean were exposed to infective juveniles of H. glyci.nes in sand for 8 hours followed by washing and transfer to hydroponic culture. The cotyledons and apical meristem were removed and plants were maintained under constant light, which resulted in a dwarfed plant system. After 15 or 20 days at 27 C, nematodes were rated for development. Emerged males were sieved from the culture water and females were counted directly from the roots. Nematodes remaining in the roots were rated for development after staining and clearing the tissues. The proportion of nematodes at each stage of development and the frequency of completed molts for each stage were calculated from these data. This technique showed that resistance to H. glycines was stage related and did not affect males and females equally in all resistant hosts. The resistance of plant introduction PI 209332 primarily affected development of third and fourth-stage juveniles; ''Pickett'' mainly affected second and third-stage juveniles, whereas PI 89772 affected all stages. Male development was markedly affected in PI 89772 and ''Pickett'' but not in PI 209332.  相似文献   

10.
Identification of resistance to reniform nematode (Rotylenchulus reniformis) is the first step in developing resistant soybean (Glycine max) cultivars that will benefit growers in the mid-South region of the United States. This study was conducted to identify soybean (G. max and G. soja) lines with resistance to this pathogen. Sixty-one wild and domestic soybean lines were evaluated in replicated growth chamber tests. Six previously untested soybean lines with useful levels of resistance to reniform nematode were identified in both initial screening and subsequent confirmation tests: released germplasm lines DS4-SCN05 (PI 656647) and DS-880 (PI 659348); accession PI 567516 C; and breeding lines DS97-84-1, 02011-126-1-1-2-1 and 02011-126-1-1-5-1. Eleven previously untested moderately susceptible or susceptible lines were also identified: released germplasm lines D68-0099 (PI 573285) and LG01-5087-5; accessions PI 200538, PI 416937, PI 423941, PI 437697, PI 467312, PI 468916, PI 594692, and PI 603751 A; and cultivar Stafford (PI 508269). Results of previously tested lines evaluated in the current study agreed with published reports 69.6% of the time for resistant lines and 87.5% of the time for susceptible lines. Soybean breeders may benefit from incorporating the newly identified resistant lines into their breeding programs.  相似文献   

11.
An 11-year field study was initiated in 1979 to monitor population development of Heterodera glycines. Fifty cysts of a race 5 population were introduced into plots in a field with no history of soybean production and that had been in sod for 20 years. Soybean cultivars either susceptible or resistant to H. glycines were grown either in monoculture or rotated with maize in a 2-year rotation. During the first 5 years, resistant cultivars with the Peking source of resistance were planted. After year 5, monocuhure of Peking resistance resulted in 18 cysts/250 cm³ of soil, whereas populations resulting from the continuous cropping of susceptible soybean resulted in 45 cysts/250 cm³. Some plots in all treatments, including control plots, were contaminated at the end of year 5. Crop rotation delayed population development of H. glycines. During years 6 through 11 cv. Fayette (PI88.788 source of resistance) was planted. In year 6 numbers of cysts declined to 1/250 cm³ of soil in the treatment consisting of monocultured Fayette. At the end of year 10, cysts were below the detection level in all treatments in which Fayette was planted. Yield of susceptible soybean in monoculture with or without H. glycines infestation was lower beginning in year 6 when compared to yield of soybean grown in rotation and remained lower throughout the duration of the experiment except for 1987 (year 9). Yields of susceptible and resistant soybean were different each year except for drought years in 1980 and 1988. From 1979 to 1982 differences in yield were due to lower yield potential of resistant cultivars. Except for the drought year, yield of cv. Fayette was greater than susceptible Williams 82 during years 6 through 11.  相似文献   

12.
A method of selecting soybean cyst nematode (Heterodera glycines Ichinohe) on segregating soybean progeny was evaluated for developing a population capable of reproducing on PI 437654. Direct selection on PI 437654 was not possible, since no cysts developed on it. Cysts were selected for 12 nematode generations on F₃ and F₄ plants of Forrest x PI 437654. No cysts of the selected population were produced on PI 437654, but more males were produced on it by the selected population than by the base population. The number of cysts on Forrest and other soybean lines considered to have some of the same genes for resistance increased with selection as expected. The increase in number of males on these other lines with some of the same genes for resistance as Forrest was greater than anticipated, indicating that these lines may have some of the same genes as PI 437654.  相似文献   

13.
Alternate planting dates and periodic destruction of the previous year''s soybean crop as well as 1-year bare fallow were used to establish a range of population densities ofHeterodera glycines for the subsequent year. Soybean cultivar Coker 156 (susceptible, moderately tolerant) was compared to cultivars Essex (susceptible, intolerant) and Bedford (resistant) to evaluate tolerance at different H. glycines population densities established through the previous year''s treatments. Yield of Coker 156 was consistently intermediate between yields of Bedford and Essex in 1986 and 1987. Yield of Essex was negatively correlated (P = 0.05) with preplant egg numbers of H. glycines in 1987, whereas yield of Bedford and Coker 156 were not related to nematode density. Reproduction of H. glycines was greater (P = 0.05) on the moderately tolerant Coker 156 than on either of the other cultivars.  相似文献   

14.
The reproductive potentials of Heterodera glycines (mixture of races 3 and 4 and unidentified races) and a tobacco cyst nematode Globodera tabacum solanacearum were studied in the field. The experiments involved four cultivars of soybean Glycine max and four cultivars of Nicotiana tabacum. The reproductive potential of the H. glycines population was high on Essex and Lee 74 soybean but low on Forrest and Bedford over the 3 years (1982-84) of continuous cropping. The reproductive potential of H. glycines was 12% on Forrest and 6% on Bedford in 1982 but increased to 37 and 35% in 1983 and to 71 and 41% in 1984, respectively, on these two cultivars. The reproductive potential of G. tabacum solanacearum was high on McNair 944 and Coker 319 tobacco cultivars and low on VA 81 and PD 4 over the 3 years of cropping. The reproductive potential of G. tabacum solanacearum on VA 81 and PD 4 was 18 and 17% in 1982, 7 and 16% in 1983, and 5 and 5% in 1984, respectively. The changes in reproductive potentials of H. glycines and G. tabacum solanacearum may be related to inherent genetic variability in the systems that control reproduction of the two cyst nematodes and nature of resistance incorporated in the soybean and tobacco cultivars.  相似文献   

15.
Survival of biotypes of Heterodera glycines was studied in microplots and in the field. The field population was subjected to various cropping sequences. Viability of eggs overwintered in microplots was determined each spring by percentage hatch, percentage of hatched eggs penetrating roots, and numbers of females developing on Peking and PI 88788 soybeans. Eggs from the field were collected in the spring and fall and assayed for ability to develop on Peking and PI 88788. Hatch of isolates overwintered in the microplots averaged 13% in May 1989 and 19% in 1990. No differences in hatch were detected among the isolates in 1989. Numbers of juveniles penetrating susceptible roots averaged less than 20% of the hatched eggs each year. An isolate of a biotype parasitic on susceptible soybeans and the resistant soybean PI 88788 penetrated roots more successfully than other biotypes. A second isolate from North Carolina, parasitic on susceptible soybeans, PI 88788, and the resistant soybean Peking experienced selection against development on Peking during two winters. Only 17 % of the expected numbers of females developed on Peking from this isolate. In the microplot experiment, parasitism of PI 88788 and Peking had a selective disadvantage (selection coefficient) of s = 0.29 and 0.62 over all isolates, respectively. In the field experiment, the relative numbers of cysts on Peking and PI 88788 increased between the spring and fall on soybean, then decreased over the winter and under corn. Selection coefficients against parasitism of PI 88788 and Peking averaged 0,19 and 0.3 in the field population. In neither experiment did juveniles lose their ability to parasitize susceptible soybeans.  相似文献   

16.
Reproduction of reniform nematode Rotylenchulus reniformis on 139 soybean lines was evaluated in a greenhouse in the summer of 2001. Cultivars and lines (119 total) were new in the Arkansas and Mississippi Soybean Testing Programs, and an additional 20 were submitted by C. Overstreet, Louisiana State Extension Nematologist. A second test of 32 breeding lines and 2 cultivars from the Clemson University soybean breeding program was performed at the same time under the same conditions. Controls were the resistant cultivars Forrest and Hartwig, susceptible Braxton, and fallow infested soil. Five treatment replications were planted in sandy loam soil infested with 1,744 eggs and vermiform reniform nematodes, grown for 10 weeks in 10 cm-diam.- pots. Total reniform nematodes extracted from soil and roots was determined, and a reproductive factor (final population (Pf)/ initial inoculum level (Pi)) was calculated for each genotype. Reproduction on each genotype was compared to the reproduction on the resistant cultivar Forrest (RF), and the log ratio [log₁₀(RF + 1) is reported. Cultivars with reproduction not significantly different from Forrest (log ratio) were not suitable hosts, whereas those with greater reproductive indices were considered suitable hosts. These data will be useful in the selection of soybean cultivars to use in rotation with cotton or other susceptible crops to help control the reniform nematode and to select useful breeding lines as parent material for future development of reniform nematode resistant cultivars and lines.  相似文献   

17.
Subcellular responses to infection by Race 3 of Heterodera glycines in susceptible (''Lee'') and resistant (''Forrest'' and ''Bedford'') soybean cultivars were compared. Syncytial formation, initiated in susceptible as well as resistant soybean cultivars, was characterized by wall perforations, dense cytoplasm, and increased endoplasmic reticulum, In susceptible plants, syncytia developed continuously until nematode maturity. This included hypertrophy of nuclei, increase of rough endoplasmic reticulum in early stages of infection, and formation of wall ingrowths at a late stage of infection. In the resistant reaction in Forrest, a necrotic layer surrounded syncytium component cells demarcating them from surrounding normal cells and leading to syncytial necrosis. Wall appositions were prominently formed near the necrotic layer, and the cytoplasm of the syncytium component cells was extremely condensed. The whole syncytium became necrotic at a late stage of infection. Bedford had nuclear degeneration prior to cytoplasmic degradation. Chromatin was often scattered throughout the syncytial cytoplasm. Finally the whole syncytium became degenerated with plasmalemma completely detached from the syncytial cell walls. The differences in resistant responses reflect a difference in genetic composition of the soybean cultivars tested.  相似文献   

18.
Meloidogyne incognita penetration and development were studied in roots of highly resistant (PI 96354, PI 417444), resistant (Forrest), and susceptible (Bossier) soybean genotypes. Although more second-stage juveniles (J2) had penetrated roots of PI 96354 and PI 417444 than roots of Forrest and Bossier by 2 days after inoculation, fewer J2 were present in roots of PI 96354 at 4 days after inoculation. Juvenile development in all genotypes was evident by 6 days after inoculation, with the highest number of swollen J2 present in roots of Bossier. At 16 days after inoculation, roots of PI 96354 had 87%, 74%, and 53% fewer J2 than were present in roots of Bossier, Forrest, and PI 417444, respectively. Differential emigration of J2, not fewer invasion sites, was responsible for the low number of nematodes in roots of the highly resistant PI 96354. Some 72% of the J2 penetrating the roots of this genotype emerged within 5 days after inoculation, whereas 4%, 54%, and 83% emerged from roots of Bossier, Forrest, and PI 417444, respectively. Penetration of roots of PI 96354 decreased the ability of J2 emerging from these roots to infect other soybean roots.  相似文献   

19.
Populations of Heterodera glycines identifiable as race 1 reproduced on the race 1 resistant ''Bedford'' soybean. A Beaufort County, North Carolina, population had an index of parasitism of 112% on Bedford in greenhouse tests. Indices of parasitism for this population on race 1 resistant cultivars Pickett 71, Centennial, and Forrest were less than 10%. The Beaufort County population had significantly greater reproduction on Bedford in microplots than did populations of race 3 or race 4. In field tests, a race 1 population suppressed yields of Bedford but not yields of Centennial. Based on these data, Bedford is no longer recommended in North Carolina as a race 1 resistant cultivar.  相似文献   

20.
The white soybean cyst nematode Heterodera sojae, isolated from the roots of soybean in Korea, is widespread in most provinces of the country and has the potential to be as harmful to soybean as H. glycines. Determining the virulence phenotypes of H. sojae is essential to devising management strategies that use resistant cultivars. Consequently, virulence phenotypes of 15 H. sojae populations from Korea were determined on seven soybean lines and one susceptible check variety. Two different HS types were found to be present in Korea; the more common HS type 2.5.7, comprising 73.3% of the H. sojae populations and the less common HS type 0, constituting only 26.7% of the tested populations. Considering the high frequency of H. sojae adaptation to soybean indicator lines, the PI 88788 group may not be a possible source of resistance while PI 548402, PI 90763, PI 437654, and PI 89772 can be used as resistance sources for soybean breeding programs aimed at developing H. sojae-resistant soybean cultivars in Korea.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号