首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Biodegradable polymers such as poly(L-lactic acid) (PLLA), poly(glycolic acid) (PGA) and PGA coated with PLLA are being employed for cell transplantation and for in vivo regeneration of vascular tissue. Ingrowth and organization of fibrovascular tissue inside polymer scaffolds lead to the occlusion of the regenerated blood vessel. In order to provide regulatory mechanisms to control the development of an inner capsule, endothelialization of these materials is necessary. To achieve this, we employed a novel ammonia plasma technique to surface modified PLLA substrates. Human endothelial cell (HUVEC) and rabbit microvascular endothelial cell (RbMVEC) growth was studied on modified PLLA and control PLLA. Our studies show that modified PLLA and fibronectin (Fn)-coated modified PLLA exhibited statistically significant improvement in HUVEC and RbMVEC growth (P<0.001) when compared to PLLA and Fn-coated PLLA. Therefore, ammonia plasma treatment gives us the unique capability of modifying prosthetic biomaterials of various constructs with the eventual transplantation of mammalian cells to be used in tissue engineering or as biological implants.  相似文献   

2.
The higher patency rates of cardiovascular implants, including vascular bypass grafts, stents, and heart valves are related to their ability to inhibit thrombosis, intimal hyperplasia, and calcification. In native tissue, the endothelium plays a major role in inhibiting these processes. Various bioengineering research strategies thereby aspire to induce endothelialization of graft surfaces either prior to implantation or by accelerating in situ graft endothelialization. This article reviews potential bioresponsive molecular components that can be incorporated into (and/or released from) biomaterial surfaces to obtain accelerated in situ endothelialization of vascular grafts. These molecules could promote in situ endothelialization by the mobilization of endothelial progenitor cells (EPC) from the bone marrow, encouraging cell-specific adhesion (endothelial cells (EC) and/or EPC) to the graft and, once attached, by controlling the proliferation and differentiation of these cells. EC and EPC interactions with the extracellular matrix continue to be a principal source of inspiration for material biofunctionalization, and therefore, the latest developments in understanding these interactions will be discussed.  相似文献   

3.
Valve endothelial cells (VEC) have unique phenotypic responses relative to other types of vascular endothelial cells and have highly sensitive hemostatic functions affected by changes in valve tissues. Furthermore, effects of environmental factors on VEC hemostatic function has not been characterized. This work used a poly(ethylene glycol) diacrylate (PEGDA) hydrogel platform to evaluate the effects of substrate stiffness and cell adhesive ligands on VEC phenotype and expression of hemostatic genes. Hydrogels of molecular weights (MWs) 3.4, 8, and 20 kDa were polymerized into platforms of different rigidities and thiol-modified cell adhesive peptides were covalently bound to acrylate groups on the hydrogel surfaces. The peptide RKRLQVQLSIRT (RKR) is a syndecan-1 binding ligand derived from laminin, a trimeric protein and a basement membrane matrix component. Conversely, RGDS is an integrin binding peptide found in many extracellular matrix (ECM) proteins including fibronectin, fibrinogen, and von Willebrand factor (VWF). VECs adhered to and formed a stable monolayer on all RKR-coated hydrogel-MW combinations. RGDS-coated platforms supported VEC adhesion and growth on RGDS-3.4 kDa and RGDS-8 kDa hydrogels. VECs cultured on the softer RKR-8 kDa and RKR-20 kDa hydrogel platforms had significantly higher gene expression for all anti-thrombotic (ADAMTS-13, tissue factor pathway inhibitor, and tissue plasminogen activator) and thrombotic (VWF, tissue factor, and P-selectin) proteins than VECs cultured on RGDS-coated hydrogels and tissue culture polystyrene controls. Stimulated VECs promoted greater platelet adhesion than non-stimulated VECs on their respective culture condition; yet stimulated VECs on RGDS-3.4 kDa gels were not as responsive to stimulation relative to the RKR-gel groups. Thus, the syndecan binding, laminin-derived peptide promoted stable VEC adhesion on the softer hydrogels and maintained VEC phenotype and natural hemostatic function. In conclusion, utilization of non-integrin adhesive peptide sequences derived from basement membrane ECM may recapitulate balanced VEC function and may benefit endothelialization of valve implants.  相似文献   

4.
Cell adhesion to extracellular matrix (ECM) components through cell-surface integrin receptors is essential to the formation, maintenance and repair of numerous tissues, and therefore represents a central theme in the design of bioactive materials that successfully interface with the body. While the adhesive responses associated with a single ligand have been extensively analyzed, the effects of multiple integrin subtypes binding to multivalent ECM signals remain poorly understood. In the present study, we generated a high throughput platform of non-adhesive surfaces presenting well-defined, independent densities of two integrin-specific engineered ligands for the type I collagen (COL-I) receptor alpha(2)beta(1) and the fibronectin (FN) receptor alpha(5)beta(1) to evaluate the effects of integrin cross-talk on adhesive responses. Engineered surfaces displayed ligand density-dependent adhesive effects, and mixed ligand surfaces significantly enhanced cell adhesion strength and focal adhesion assembly compared to single FN and COL-I ligand surfaces. Moreover, surfaces presenting mixed COL-I/FN ligands synergistically enhanced FAK activation compared to the single ligand substrates. The enhanced adhesive activities of the mixed ligand surfaces also promoted elevated proliferation rates. Our results demonstrate interplay between multivalent ECM ligands in adhesive responses and downstream cellular signaling.  相似文献   

5.
The ultimate goal in the design of biomimetic materials for use in tissue engineering as permanent or resorbable tissue implants is to generate biocompatible scaffolds with appropriate biomechanical and chemical properties to allow the adhesion, ingrowth, and survival of cells. Recent efforts have therefore focused on the construction and modification of biomimetic surfaces targeted to support tissue-specific cell functions including adhesion, growth, differentiation, motility, and the expression of tissue-specific genes. Four decades of extensive research on the structure and biological influence of the extracellular matrix (ECM) on cell behavior and cell fate have shown that three types of information from the ECM are relevant for the design of biomimetic surfaces: (1) physical properties (elasticity, stiffness, resilience of the cellular environment), (2) specific chemical signals from peptide epitopes contained in a wide variety of extracelluar matrix molecules, and (3) the nanoscale topography of microenvironmental adhesive sites. Initial physical and chemical approaches aimed at improving the adhesiveness of biomaterial surfaces by sandblasting, particle coating, or etching have been supplemented by attempts to increase the bioactivity of biomaterials by coating them with ECM macromolecules, such as fibronectin, elastin, laminin, and collagens, or their integrin-binding epitopes including RGD, YIGSR, and GFOGER. Recently, the development of new nanotechnologies such as photo- or electron-beam nanolithography, polymer demixing, nano-imprinting, compression molding, or the generation of TiO2 nanotubes of defined diameters (15–200 nm), has opened up the possibility of constructing biomimetic surfaces with a defined nanopattern, eliciting tissue-specific cellular responses by stimulating integrin clustering. This development has provided new input into the design of novel biomaterials. The new technologies allowing the construction of a geometrically defined microenvironment for cells at the nanoscale should facilitate the investigation of nanotopography-dependent mechanisms of integrin-mediated cell signaling.  相似文献   

6.
Li G  Yang P  Liao Y  Huang N 《Biomacromolecules》2011,12(4):1155-1168
To improve the blood compatibility and endothelialization simultaneously and to ensure the long-term effectiveness of the cardiovascular implants, we developed a surface modification method, enabling the coimmobilization of biomolecules to metal surfaces. In the present study, a heparin and fibronectin mixture (Hep/Fn) covalently immobilized on a titanium (Ti) substrate for biocompatibility was investigated. Different systems [N-(3-dimethylaminopropyl)-N'-ethylcarbodiimide and N-hydroxysuccinimide, electrostatic] were used for the formation of Hep/Fn layers. Atomic force microscopy (AFM) showed that the roughness of the silanized Ti surface decreased after the immobilization of Hep/Fn. Fourier transform infrared spectroscopy (FTIR), Toluidine Blue O (TBO) test, and immunochemistry assay showed that Hep/Fn mixture was successfully immobilized on Ti surface. Blood compatibility tests (hemolysis rate, APTT, platelet adhesion, fibrinogen conformational change) showed that the coimmobilized films of Hep/Fn mixture reduced blood hemolysis rate, prolonged blood coagulation time, reduced platelets activation and aggregation, and induced less fibrinogen conformational change compared with a bare Ti surface. Endothelial cell (EC) seeding showed more EC with better morphology on pH 4 samples than on pH 7 and EDC/NHS samples, which showed rounded and aggregated cells. Systematic evaluation showed that the pH 4 samples also had much better blood compatibility. All results suggest that the coimmobilized films of Hep/Fn can confer excellent antithrombotic properties and with good endothelialization. We envisage that this method will provide a potential and effective solution for the surface modification of cardiovascular implant materials.  相似文献   

7.
Staphylococcus aureus is known to cause biomaterial-associated infections of implants and devices once it has breached the skin and mucosal barriers. Adhesion is the initial step in the development of a biomaterial-associated infection, and strategies to prevent staphylococcal adhesion and thus biomaterial-associated infections require understanding of the adhesive bond. The aim of this study was to compare the adhesive bond stiffnesses of two S. aureus strains with and without fibronectin-binding proteins (FnBPs) adhering to a fibronectin-coated quartz crystal microbalance (QCM) sensor surface on the basis of a coupled- resonance model. Both fibronectin adsorption and staphylococcal adhesion were accompanied by negative frequency shifts, regardless of the absence or presence of FnBPs on the staphylococcal cell surfaces. This is the opposite of the positive frequency shifts often observed for other bacterial strains adhering to bare sensor surfaces. Most likely, adhering staphylococci sink into and deform the adsorbed protein layer, creating stiff binding with the sensor surface due to an increased bacterium-substratum contact area. S. aureus 8325-4 possesses FnBPs and yields less negative frequency shifts (Δf) that are further away from the zero-crossing frequency than S. aureus DU5883. This suggests that FnBPs on S. aureus 8325-4 create a stiffer bond to the fibronectin coating than has been observed for S. aureus DU5883. Due to a limited window of observation, as defined by the available resonance frequencies in QCM, we could not determine exact stiffness values.  相似文献   

8.
Designing of implant surfaces using a suitable ligand for cell adhesion to stimulate specific biological responses of stem cells will boost the application of regenerative implants. For example, materials that facilitate rapid and guided migration of stem cells would promote tissue regeneration. When seeded on fibronectin (FN) that was homogeneously immmobilized to NCO-sP(EO-stat-PO), which otherwise prevents protein binding and cell adhesion, human mesenchymal stem cells (MSC) revealed a faster migration, increased spreading and a more rapid organization of different cellular components for cell adhesion on fibronectin than on a glass surface. To further explore, how a structural organization of FN controls the behavior of MSC, adhesive lines of FN with varying width between 10 µm and 80 µm and spacings between 5 µm and 20 µm that did not allow cell adhesion were generated. In dependance on both line width and gaps, cells formed adjacent cell contacts, were individually organized in lines, or bridged the lines. With decreasing sizes of FN lines, speed and directionality of cell migration increased, which correlated with organization of the actin cytoskeleton, size and shape of the nuclei as well as of focal adhesions. Together, defined FN lines and gaps enabled a fine tuning of the structural organization of cellular components and migration. Microstructured adhesive substrates can mimic the extracellular matrix in vivo and stimulate cellular mechanisms which play a role in tissue regeneration.  相似文献   

9.
Metallic materials are commonly used for load-bearing implants and as internal fixation devices. It is customary to use austenitic stainless steel, especially surgical grade type 316L SS as temporary and Ti alloys as permanent implants. However, long-term, poor bonding with bone, corrosion, and release of metal ions, such as chromium and nickel occur. These ions are powerful allergens and carcinogens and their uncontrolled leaching may be avoided by surface coatings. Therefore, bioactive glasses (BGs) became a vital biomedical material, which can form a biologically active phase of hydroxycarbonate apatite on their surface when in contact with physiological fluids. To reduce the high coefficient of friction and the brittle nature of BGs, polymers are normally incorporated to avoid the high-temperature sintering/densification of ceramic-only coatings. For medical application, electrophoretic deposition (EPD) is now used for polymer (organic) and ceramic (inorganic) components at room temperature due to its simplicity, control of coating thickness and uniformity, low cost of equipment, ability to coat substrates of intricate shape and to supply thick films in composite form, high purity of deposits as well as no phase transformation during coating. Although extensive research has been conducted on polymer/inorganic composite coatings, only some studies have reported multifunctional properties, such as biological antibacterial activity, enhanced cell adhesion, controlled drug release ability, and mechanical properties. This review will focus on biodegradable coatings, including zien, chitosan, gelatin, cellulose loaded with antibacterial drugs/metallic ions/natural herbs on biostable substrates (PEEK/PMMA/PCL/PLLA layers), which have the potential of multifunctional coating for metallic implants.  相似文献   

10.
Cell migration is central to physiological responses to injury and infection and in the design of biomaterial implants. The ability to tune the properties of adhesive materials and relate those properties in a quantitative way to the dynamics of intracellular processes remains a definite challenge in the manipulation of cell migration. Here, we propose the use of poly(vinylmethylsiloxane) (PVMS) networks as novel substrata for cell adhesion and migration. These materials offer the ability to tune independently chemical functionality and elastic modulus. Importantly, PVMS networks are compatible with total internal reflection fluorescence (TIRF) microscopy, which is ideal for interrogating the cell-substratum interface; this latter characteristic presents a distinct advantage over polyacrylamide gels and other materials that swell with water. To demonstrate these capabilities, adhesive peptides containing the arginyl-glycyl-aspartic acid (RGD) tripeptide motif were successfully grafted to the surface of PVMS network using a carboxyl-terminated thiol as a linker. Peptide-specific adhesion, spreading, and random migration of NIH 3T3 mouse fibroblasts were characterized. These experiments show that a peptide containing the synergy sequence of fibronectin (PHSRN) in addition to RGD promotes more productive cell migration without markedly enhancing cell adhesion strength. Using TIRF microscopy, the dynamics of signal transduction through the phosphoinositide 3-kinase pathway were monitored in cells as they migrated on peptide-grafted PVMS surfaces. This approach offers a promising avenue for studies of directed migration and mechanotransduction at the level of intracellular processes.  相似文献   

11.
Endothelialization of vascular implants is limited by the inability of cells to retain adhesion when exposed to flow. Extracellular matrix proteins, including fibronectin and collagen, enhance cell adherence on materials. This study investigated the behaviour of Human Umbilical Vein Endothelial Cells (HUVEC) on extracellular matrix coated polystyrene. Collagen and fibronectin were coated as single and double layers to analyse differences in cell proliferation, morphology, and cell-protein interactions. Significantly higher endothelial cell proliferation and migration rates were observed on the collagen and collagen+fibronectin coating compared to the uncoated or fibronectin-coated sample. Immmunofluorescent microscopy showed evidence of extracellular matrix remodelling in the double, collagen+fibronectin coating. These results strongly suggest that a double coating of collagen+fibronectin provides a better support structure for endothelial cell growth and contributes to improve the ability of vascular implants to become and remain endothelialized.  相似文献   

12.
《IRBM》2007,28(1):42-48
Dental implant-associated infections as peri-implantitis represent one of the major causes of osteointegration failures of oral implants. Adhesion of Porphyromonas gingivalis, one of the bacterial strains mainly involved in such infections, is tightly dependent on the topographical and/or physico-chemical properties of the implant surfaces. As a matter of fact, we showed that the grafting of one bioactive polymer such as poly(sodium styrene sulfonate) onto titanium implant surfaces allowed a sensitive decrease of Staphylococcus aureus adhesion (> 40%). The aim of the study consists in evaluating the adhesion of P. gingivalis onto titanium surfaces grafted with poly(sodium stryrene sulfonate) in order to elaborate implants exhibiting appropriate inhibiting properties towards the adhesion of periodontal pathogens. The grafting of poly(sodium stryrene sulfonate) onto titanium surfaces is carried out in two steps: chemical oxydation of titanium to initiate radical species then grafting of poly(sodium stryrene sulfonate) by radical polymerization. Chemical characterization of the surfaces is achieved by Fourier transformed infrared spectroscopy (FTIR). Bacterial adhesion was studied on grafted and non grafted (control) titanium surfaces, preadsorbed or not by plasmatic proteins. Protein adsorption as well as bacteria adhesion is followed by fluorescence spectroscopy by using proteins or bacteria previously labelled with fluorescence probes; the quantification of adsorption and bacteria adhesion are performed by image analysis. Results showed that protein adsorption is more important (~3 times) and that P. gingivalis adhesion is strongly inhibited (~73%) onto poly(sodium styrene sulfonate) grafted surfaces when compared to titanium control. Moreover, the inhibition of bacterial adhesion on grafted surfaces preadsorbed with plasma proteins is comparable to that observed on grafted surfaces preadsorbed with fibronectin. In conclusion, the obtained results evidenced that the grafting of titanium surface by poly(sodium styrene sulfonate) led to significant inhibition of P. gingivalis adhesion and that this inhibitory activity involved adsorbed proteins. Poly(sodium styrene sulfonate) grafted titanium surfaces present a high interest for the elaboration of oral implants in various clinical dental applications.  相似文献   

13.
Both polyvalent and hybridoma-produced antibodies to fibronectin (Fn) were used to ‘map’ the immunoaccessible subsets of cell surface fibronectin on virus-transformed murine fibroblast SVT2 and rat neuroblastoma B104 cells. As one approach to this end, attachment and spreading responses of cells were measured on tissue culture substrata coated with antibody or with plasma fibronectin to compare their adhesive responses. Both SVT2 and B104 cells adhere poorly to polyvalent anti-Fn-coated substrata over short time intervals, but within several hours changes occur which permit cells to attach and spread as well on anti-Fn as on Fn (post-adsorption of the anti-Fn with Fn also generates a maximal response). This adhesive response could be completely prevented by predigesting the cells with Flavobacterium heparanase, but not with chondroitinase ABC, indicating that the cell surface Fn responsible for antibody-mediated adhesion is associated with heparan sulfate proteoglycans on the cell surface. The compositions of the substratum-attached material (left bound after EGTA-mediated detachment of cells) from cells attaching to anti-Fn or Fn were analysed by SDS-PAGE and found to be identical within the same cell type for the two different substrata. Three hybridoma-produced antibodies, which recognize different determinants on Fn, generated different adhesive responses for SVT2 or B104 cells when adsorbed to the substratum. SVT2 cells adhered well to antibody no. 32-coated substrata but poorly to antibodies 92 or 136; on the other hand, B104 cells responded similarly to all three antibodies over short times of attachment but much better to no. 32 after a several hour incubation. These experiments indicate that (1) much of the cell surface fibronectin is complexed with heparan sulfate proteoglycan and is initially inaccessible to bind to polyvalent antibody on the substratum to promote adhesion; (2) the surface of neuroblastoma cells contains a fibronectin-like molecule which is important in their substratum adhesion; and (3) monoclonal antibodies are valuable tools in ‘mapping’ the orientation of cell surface molecules like fibronectin by measuring adhesive responses to antibody-coated substrata.  相似文献   

14.
Previously, we showed that macroporous titanium implants, colonized in vivo together with an epithelial graft, are viable options for tracheal replacement in sheep. To decrease the number of operating steps, biomaterial-based replacements for epithelial graft and intramuscular implantation were developed in the present study. Hybrid microporous PLLA/titanium tracheal implants were designed to decrease initial stenosis and provide a surface for epithelialization. They have been implanted in New Zealand white rabbits as tracheal substitutes and compared to intramuscular implantation samples. Moreover, a basement membrane like coating of the implant surface was also designed by Layer-by-Layer (LbL) method with collagen and alginate. The results showed that the commencement of stenosis can be prevented by the microporous PLLA. For determination of the optimum time point of epithelialization after implantation, HPLC analysis of blood samples, C-reactive protein (CRP), and Chromogranin A (CGA) analyses and histology were carried out. Following 3 weeks the implant would be ready for epithelialization with respect to the amount of tissue integration. Calcein-AM labeled epithelial cell seeding showed that after 3 weeks implant surfaces were suitable for their attachment. CRP readings were steady after an initial rise in the first week. Cross-linked collagen/alginate structures show nanofibrillarity and they form uniform films over the implant surfaces without damaging the microporosity of the PLLA body. Human respiratory epithelial cells proliferated and migrated on these surfaces which provided a better alternative to PLLA film surface. In conclusion, collagen/alginate LbL coated hybrid PLLA/titanium implants are viable options for tracheal replacement, together with in situ epithelialization.  相似文献   

15.
In this study, mouse mesoangioblasts were seeded onto bidimensional matrices within three-dimensional porous scaffolds of poly (L-lactic acid) (PLLA), in the presence or absence of a type I collagen coating. The cells were observed under a scanning electron microscope and tested for their adhesion, survival and proliferation. Immunolocalization of heat shock protein (Hsp) 70, an abundant and ubiquitous intracellular protein in these cells, was also performed in sectioned cell-containing scaffolds under a confocal fluorescence microscope to determine if in situ analysis of intracellular constituents was feasible. The data show that PLLA films allow direct cell adhesion and represent an optimal support for cell growth, and that the internal surfaces of PLLA polymeric sponges can be colonized by mesoangioblasts, which can be submitted for in situ confocal microscopic analyses for possible monitoring of time-dependent expression of differentiation markers.  相似文献   

16.
Thrombin, in addition to its central role in hemostasis, possesses diverse cellular bioregulatory functions implicated in wound healing, inflammation, and atherosclerosis. In the present study we demonstrate that thrombin molecules modified either at the procoagulant or catalytic sites induce endothelial cell (EC) adhesion, spreading, and cytoskeletal reorganization. The most potent adhesive thrombin analogue (NO2-alpha-thrombin) was obtained by nitration of tyrosine residues. The cell adhesion promoting activity of NO2-alpha-thrombin was blocked upon the formation of thrombin-antithrombin III (ATIII) complexes and by antiprothrombin antibodies, but was unaffected by hirudin. Arg-Gly-Asp-containing peptides, fully inhibited EC adhesion to NO2-alpha-thrombin, while synthetic peptides corresponding to thrombin "Loop B" mitogenic site and the thrombin-derived chemotactic fragment "CB67-129", were uneffective. Immunofluorescence studies indicated that EC adhesion to NO2-alpha-thrombin was followed by cell spreading, actin microfilament assembly, and formation of focal contacts. By the use of specific antibodies, the vitronectin (vn) receptor (alpha v beta 3) was found to be localized in clusters upon cell adhesion to NO2-alpha-thrombin. An anti alpha v beta 3 antibody blocked EC adhesion and spreading while antifibronectin (fn) receptor (alpha 5 beta 1) antibodies were uneffective. While native thrombin exhibited a very low cell attachment activity, thrombin that was incubated at 37 degrees C before coating of plastic surfaces induced EC attachment and spreading. We propose that under certain conditions the naturally hindered RGD domain within thrombin is exposed for interaction with alpha v beta 3 on EC. This in turn promotes cell adhesion, spreading, and reorganization of cytoskeletal elements, which may altogether contribute to repair mechanisms in the disturbed vessel wall. This study defines a new biological role of thrombin and characterizes a new recognition mechanism on EC for this molecule.  相似文献   

17.
Effective surface modification with biocompatible molecules is known to be effective in reducing the life‐threatening risks related to artificial cardiovascular implants. In recent strategies in regenerative medicine, the enhancement and support of natural repair systems at the site of injury by designed biocompatible molecules have succeeded in rapid and effective injury repair. Therefore, such a strategy could also be effective for rapid endothelialization of cardiovascular implants to lower the risk of thrombosis and stenosis. To achieve this enhancement of the natural repair system, a biomimetic molecule that mimics proper cellular organization at the implant location is required. In spite of the fact that many reported peptides have cell‐attracting properties on material surfaces, there have been few peptides that could control cell‐specific adhesion. For the advanced cardiovascular implants, peptides that can mimic the natural mechanism that controls cell‐specific organization have been strongly anticipated. To obtain such peptides, we hypothesized the cellular bias toward certain varieties of amino acids and examined the cell preference (in terms of adhesion, proliferation, and protein attraction) of varieties and of repeat length on SPOT peptide arrays. To investigate the role of specific peptides in controlling the organization of various cardiovascular‐related cells, we compared endothelial cells (ECs), smooth muscle cells (SMCs), and fibroblasts (FBs). A clear, cell‐specific preference was found for amino acids (longer than 5‐mer) using three types of cells, and the combinational effect of the physicochemical properties of the residues was analyzed to interpret the mechanism. Copyright © 2011 European Peptide Society and John Wiley & Sons, Ltd.  相似文献   

18.
Fluorometric cell attachment assays together with competitive inhibitors of adhesion were used to probe for the presence of integrins, a diverse family of heterodimeric cell-surface glycoproteins involved in cell-cell and cell-extracellular matrix adhesion, in the fibroblastic rainbow trout cell line, RTG-2. The adhesive properties of this cell line were evaluated. RTG-2 cells adhered poorly to TC plastic in the absence of serum but as little as 2.5% fetal bovine serum allowed over 75% of the cells to attach after 5 h. Surfaces coated with the extracellular matrix proteins collagen I, collagen IV, fibrin, fibrinogen, or fibronectin were able to support attachment of RTG-2 cells. Adhesion of RTG-2 cells to fibronectin varied linearly with fibronectin coating densities in the range 0 to 65 ng/mm(2). Oligopeptides containing the sequence Arg-Gly-Asp (RGD) caused dose-dependent inhibition of adhesion to microtiter plates coated with fibrin, fibrinogen, and fibronectin, whereas attachment to collagen I and collagen IV was less severely affected. In all cases, peptides containing Arg-Gly-Glu (RGE) or Asp-Gly-Arg (DGR) sequences caused no reduction of cell attachment. Since many integrins mediate adhesion by binding to RGD sequences in their target ligands, these results suggest the presence of integrin-like adhesion molecules on the surface of RTG-2 cells.  相似文献   

19.
Von Willebrand factor (vWF) is a constitutive and specific component of endothelial cell (EC) matrix. In this paper we show that, in vitro, vWF can induce EC adhesion and promote organization of microfilaments and adhesion plaques. In contrast, human vascular smooth muscle cells and MG63 osteosarcoma cells did not adhere and spread on vWF. Using antibodies to the beta chains of fibronectin (beta 1) and vitronectin (beta 3) receptors it was found that ECs adherent to vWF show clustering of both receptors. The beta 1 receptor antibodies are arranged along stress fibers at sites of extracellular matrix contact while the beta 3 receptor antibodies were sharply confined at adhesion plaques. ECs release and organize endogenous fibronectin early during adhesion to vWF. Upon blocking protein synthesis and secretion, ECs can equally adhere and spread on vWF but, while the beta 3 receptors are regularly organized, the beta 1 receptors remain diffuse. This suggests that the organization of the beta 1 receptors depend on the release of fibronectin and/or other matrix proteins operated by the same cell. Antibodies to the beta 3 receptors fully block EC adhesion to vWF and detach ECs seeded on this substratum. In contrast, antibodies to the beta 1 receptors are poorly active. Overall these results fit with an accessory role of beta 1 receptors and indicate a leading role for the beta 3 receptors in EC interaction with vWF. To identify the EC binding domain on vWF we used monoclonal antibodies produced against a peptide representing the residues Glu1737-Ser1750 of the mature vWF and thought to be important in mediating its binding to the platelet receptor glycoprotein IIb-IIIa. We found that the antibody that recognizes the residues 1,744-1,746, containing the Arg-Gly-Asp sequence, completely inhibit EC adhesion to vWF whereas a second antibody recognizing the adjacent residues 1,740-1,742 (Arg-Gly-Asp-free) is inactive. Both antibodies do not interfere with EC adhesion to vitronectin. This defines the molecular domain on vWF that is specifically recognized by ECs and reaffirms the direct role of the Arg-Gly-Asp sequence as the integrin receptor recognition site also in the vWF molecule.  相似文献   

20.
We recently experimented with collagen coating on the surface of quercetin loaded polycaprolactone microspheres by simple adsorption technique to mimic extra cellular matrix and reduce immune or inflammatory responses at the site of implants. The collagen immobilization on polymeric scaffold surfaces through various surface modification techniques was the current scenario to improve bio-integration of the polymers with the in vivo system. Nevertheless, it requires other chemicals or processing methods to modify the surface of polymers to immobilize the collagen covalently. Here protein adsorption principle is used for the coating of collagen onto the surface of solid microspheres and characterized. Optical, ATR-FTIR, SEM analysis confirm collagen coating. The reduction in burst release of the quercetin from the PCL microspheres further confirms its presence and role in the controlled release. The results indicate that the adsorption technique can be the simple strategy to coat collagen on the surface of polyester implants to develop stealth implant in shorter time with low cost technology.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号