首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 296 毫秒
1.
The regulation of Schwann cell (SC) proliferation and morphology is critical to nerve homeostasis. We have previously reported that endothelins (ETs) regulate the activity of different effectors in SC including adenylyl cyclase, phospholipases C and A2 and mitogen-activated protein kinases (MAPKs). These effects imply a possible participation of ETs in the regulation of SC phenotype. We have now investigated the effects of endothelins on the proliferation and morphology of SC, and compared them with the responses to platelet-derived growth factor (PDGF), a known mitogen in these cells. Both endothelin-1 (ET-1) and PDGF increased the incorporation of [3H]thymidine and the proportion of SC in S and G2/M, with a concomitant decrease in the G0/G1 stage cells. Treatment with ET-1 produced rapid changes in the morphology of the SC, characterized by the appearance of cell spreading with shorter processes. The response to ET-1 was considered to represent a proliferative phenotype, in contrast to the effects of forskolin, which decreased [3H]thymidine incorporation in immortalized SC (iSC) and lead to a differentiated morphology with longer extensions. While both ET-1 and PDGF displayed a proliferative effect on SC, treatment with PDGF did not affect the morphology of these cells to a significant extent. A role for p38 MAPK and Ca(2+)-independent phospholipase A2 in the changes in morphology and proliferation of iSC driven by ET-1 was suggested by the effects of selective inhibitors of these pathways [SB202190 and HELSS, respectively]. The unique pattern of signaling pathways recruited by ET-1 and its combined effects on regulation of phenotype and proliferation of SC suggest an important role for this peptide during nerve degeneration/regeneration.  相似文献   

2.
Peripheral neuropathy is a serious diabetic complication. Delayed nerve regeneration in diabetic animal models suggests abnormalities in proliferation/differentiation of Schwann cells (SC). We recently reported that endothelins (ETs) regulate proliferation and phenotype in primary and immortalized SC (iSC). We now investigated changes in the effects of ETs on SC proliferation and signaling in nerve segments from streptozotocin-induced diabetic rats and in iSC exposed to high glucose. Cultured explants from diabetic rats displayed a delay in the time-course of [3H]-thymidine incorporation as well as enhanced sensitivity to endothelin-1 (ET-1) or insulin. iSC cultured in high (25 mM) glucose-containing media also exhibited higher [3H]-thymidine incorporation, along with an enhanced activation of p38 mitogen-activated protein kinase and phospholipase C in response to ET-1 or platelet-derived growth factor as compared to controls (5.5 mM glucose). These studies support an extra-vascular role of ETs in peripheral nerves and SC. The increased sensitivity to ET-1 in nerves and iSC exposed to high glucose may contribute to abnormal SC proliferation characterizing diabetic neuropathy.  相似文献   

3.
Synaptoneurosomes obtained from the cortex of rat brain prelabeled with [14C]arachidonic acid [( 14C]AA) were used as a source of substrate and enzyme in studies on the regulation of AA release. A significant amount of AA is liberated in the presence of 2 mM EGTA, independently of Ca2+, primarily from phosphatidic acid and polyphosphoinositides (poly-PI). Quinacrine, an inhibitor of phospholipase A2 (PLA2), suppressed AA release by about 60% and neomycin, a putative inhibitor of phospholipase C (PLC), reduced AA release by about 30%. An additive effect was exhibited when both inhibitors were given together. Ca2+ activated AA release. The level of Ca2+ present in the synaptoneurosomal preparation (endogenous level) and 5 microM CaCl2 enhance AA liberation by approximately 25%, whereas 2 mM CaCl2 resulted in a 50% increase in AA release relative to EGTA. The source for Ca(2+)-dependent AA release is predominantly phosphatidylinositol (PI); however, a small pool may also be liberated from neutral lipids. Carbachol, an agonist of the cholinergic receptor, stimulated Ca(2+)-dependent AA release by about 17%. Bradykinin enhanced the effect of carbachol by about 10-15%. This agonist-mediated AA release occurs specifically from phosphoinositides (PI + poly-PI). Quinacrine almost completely suppresses calcium-and carbachol-mediated AA release. Neomycin inhibits this process by about 30% and totally suppresses the effect of bradykinin. Our results indicate that both phospholipases PLA2 and PLC with subsequent action of DAG lipase are responsible for Ca(2+)-independent AA release. Ca(2+)-dependent and carbachol-mediated AA liberation occurs mainly as the result of PLA2 action. A small pool of AA is probably also released by PLC, which seems to be exclusively responsible for the effect of bradykinin.  相似文献   

4.
In addition to causing overt nociception, intraplantar (ipl) endothelin (ET)-1 injection into the rat hind paw induces hyperalgesia to mechanical stimuli, mediated via local ET(B) receptors coupled to protein kinase (PK) C, but not PKA. The present study further examines the intracellular signaling mechanisms underlying this effect of ET-1. ET-1 (30 pmol) or phospate-buffered saline (PBS) was injected ipl in rats and the threshold of responsiveness to mechanical stimulation was assessed repeatedly each hour up to 8 hrs and 24 hrs, using the dynamic plantar aesthesiometer test, which detects the minimal pressure required to evoke paw withdrawal. Different groups were treated, 15 mins before ET-1 administration, with ipsilateral injection of selective inhibitors of either phospholipase (PL) A2 (1 nmol PACOCF3), PLC (30 pmol U73122), PKC (1 nmol GF109203X), p38 mitogen-activated protein kinase (MAPK; 30 nmol SB203580), extracellular signal-regulated kinase (ERK1/2; 30 nmol PD98059), c-Jun N-terminal kinase (JNK; 30 nmol SP600125), or vehicle, to assess their influence on the hyperalgesic response. The mechanical hyperalgesia caused by ET-1 started 2 hrs after injection, peaked at 5 hrs (PBS, 29 +/- 0.5 g; ET-1, 17 +/- 1.3 g) and lasted up to 8 hrs. The inhibitors of PLC, PKC, p38 MAPK, ERK1/2, and JNK caused long-lasting reductions of the mechanical hyperalgesia (inhibitions at 4 hrs of 100%, 90%, 97%, 90%, and 100%, respectively), but the PLA2 inhibitor reduced hyperalgesia only at 4 hrs (by 58%). Thus, mechanical hyperalgesia triggered by ET-1 in the rat hind paw depends importantly on signaling pathways involving PLC, PKC, p38 MAPK, ERK1/2, and JNK, whereas the contribution of PLA2 is relatively minor.  相似文献   

5.
6.
We employed confocal laser-scanning microscopy to monitor cholecystokinin (CCK)-evoked Ca(2+) signals in fluo-3-loaded mouse pancreatic acinar cells. CCK-8-induced Ca(2+) signals start at the luminal cell pole and subsequently spread toward the basolateral membrane. Ca(2+) waves elicited by stimulation of high-affinity CCK receptors (h.a.CCK-R) with 20 pM CCK-8 spread with a slower rate than those induced by activation of low-affinity CCK receptors (l.a. CCK-R) with 10 nM CCK-8. However, the magnitude of the initial Ca(2+) release was the same at both CCK-8 concentrations, suggesting that the secondary Ca(2+) release from intracellular stores is modulated by activation of different intracellular pathways in response to low and high CCK-8 concentrations. Our experiments suggest that the propagation of Ca(2+) waves is modulated by protein kinase C (PKC) and arachidonic acid (AA). The data indicate that h.a. CCK-R are linked to phospholipase C (PLC) and phospholipase A(2) (PLA(2)) cascades, whereas l.a.CCK-R are coupled to PLC and phospholipase D (PLD) cascades. The products of PLA(2) and PLD activation, AA and diacylglycerol (DAG), cause inhibition of Ca(2+) wave propagation by yet unknown mechanisms.  相似文献   

7.
The objective of this investigation was to determine the role of secretory and cytosolic isoforms of phospholipase A(2) (PLA(2)) in the induction of arachidonic acid (AA) and leukotriene synthesis in human eosinophils and the mechanism of PLA(2) activation by mitogen-activated protein kinase (MAPK) isoforms in this process. Pharmacological activation of eosinophils with fMLP caused increased AA release in a concentration (EC(50) = 8.5 nM)- and time-dependent (t(1/2) = 3.5 min) manner. Both fMLP-induced AA release and leukotriene C(4) (LTC(4)) secretion were inhibited concentration dependently by arachidonic trifluoromethyl ketone, a cytosolic PLA(2) (cPLA(2)) inhibitor; however, inhibition of neither the 14-kDa secretory phospholipase A(2) by 3-(3-acetamide-1-benzyl-2-ethylindolyl-5-oxy)propanephosphonic acid nor cytosolic Ca(2+)-independent phospholipase A(2) inhibition by bromoenol lactone blocked hydrolysis of AA or subsequent leukotriene synthesis. Pretreatment of eosinophils with a mitogen-activated protein/extracellular signal-regulated protein kinase (ERK) kinase inhibitor, U0126, or a p38 MAPK inhibitor, SB203580, suppressed both AA production and LTC(4) release. fMLP induced phosphorylation of MAPK isoforms, ERK1/2 and p38, which were evident after 30 s, maximal at 1-5 min, and declined thereafter. fMLP stimulation also increased cPLA(2) activity in eosinophils, which was inhibited completely by 30 microM arachidonic trifluoromethyl ketone. Preincubation of eosinophils with U0126 or SB203580 blocked fMLP-enhanced cPLA(2) activity. Furthermore, inhibition of Ras, an upstream GTP-binding protein of ERK, also suppressed fMLP-stimulated AA release. These findings demonstrate that cPLA(2) activation causes AA hydrolysis and LTC(4) secretion. We also find that cPLA(2) activation caused by fMLP occurs subsequent to and is dependent upon ERK1/2 and p38 MAPK activation. Other PLA(2) isoforms native to human eosinophils possess no significant activity in the stimulated production of AA or LTC(4).  相似文献   

8.
Lin WW  Hsu YW 《Cellular signalling》2000,12(7):457-461
Extracellular signal-regulated kinase (ERK)-dependent phosphorylation is an important regulator for cytosolic phospholipase A(2) (cPLA(2)). In this study, we found that the protein synthesis inhibitor cycloheximide can potentiate thapsigargin-induced arachidonic acid (AA) release concomitant with ERK phosphorylation from murine RAW 264.7 macrophages. The cycloheximide effect is not due to the activation of p38 mitogen-activated protein kinase (MAPK) nor c-Jun NH(2)-terminal kinase (JNK), because the activator of both MAPKs anisomycin does not elicit AA release. Cycloheximide effect is additive to the tyrosine phosphatase inhibitor orthovanadate since these two stimuli induced sustained ERK activation respectively through inhibition of the translation and activity of MAPK phosphatase-1 (MKP-1).  相似文献   

9.
10.
We investigated the mechanism of phospholipase A(2) (PLA(2)) activation in response to the P2 receptor agonist ATP in rat thyroid FRTL-5 cells. The PLA(2) activity was determined by measuring the release of [(3)H]-arachidonic acid (AA) from prelabeled cells. ATP evoked a dose- and time-dependent AA release. This release was totally inhibited by pertussis toxin (PTX) treatment, indicating the involvement of a G(i)/G(o) protein. The AA release was also diminished by chelating extracellular Ca(2+) with EGTA or by inhibiting influx of Ca(2+) using Ni(2+). Although the activation of protein kinase C (PKC) by 12-phorbol 13-myristate acetate (PMA) alone did not induce any AA release, the ATP-evoked AA release was significantly reduced when PKC was inhibited by GF109203X or by a long incubation with PMA to downregulate PKC. Both the ATP-evoked AA release and the mitogen-activated protein kinase (MAP kinase) phosphorylation were decreased by the MAP kinase kinase (MEK) inhibitor PD98059. Furthermore, the ATP-evoked MAP kinase phosphorylation was also inhibited by GF109203X and by downregulation of PKC, suggesting a PKC-mediated activation of MAP kinase. Inhibiting Src-like kinases by PP1 attenuated both the MAP kinase phosphorylation and the AA release. These results suggest that these kinases are involved in the regulation of MAP kinase and PLA(2) activation. Elevation of intracellular cAMP by TSH or by dBucAMP did not induce a phosphorylation of MAP kinase. Furthermore, neither the ATP-evoked AA release nor the MAP kinase phosphorylation were attenuated by TSH or dBucAMP. Taken together, our results suggest that ATP regulates the activation of PLA(2) by a G(i)/G(o) protein-dependent mechanism. Moreover, Ca(2+), PKC, MAP kinase, and Src-like kinases are also involved in this regulatory process.  相似文献   

11.
In inflammatory cells, agonist-stimulated arachidonic acid (AA) release is thought to be induced by activation of group IV Ca(2+)-dependent cytosolic phospholipase A(2) (cPLA(2)) through mitogen-activated protein kinase (MAP kinase)- and/or protein kinase C (PKC)-mediated phosphorylation and Ca(2+)-dependent translocation of the enzyme to the membrane. Here we investigated the role of phospholipases in N-formylmethionyl-l-leucyl-l-phenylalanine (fMLP; 1 nM-10 microM)-induced AA release from neutrophil-like db-cAMP-differentiated HL-60 cells. U 73122 (1 microM), an inhibitor of phosphatidyl-inositol-4,5-biphosphate-specific phospholipase C, or the membrane-permeant Ca(2+)-chelator 1, 2-bis?2-aminophenoxy?thane-N,N,N',N'-tetraacetic acid (10 microM) abolished fMLP-mediated Ca(2+) signaling, but had no effect on fMLP-induced AA release. The protein kinase C-inhibitor Ro 318220 (5 microM) or the inhibitor of cPLA(2) arachidonyl trifluoromethyl ketone (AACOCF(3); 10-30 microM) did not inhibit fMLP-induced AA release. In contrast, AA release was stimulated by the Ca(2+) ionophore A23187 (10 microM) plus the PKC activator phorbol myristate acetate (PMA) (0.2 microM). This effect was inhibited by either Ro 318220 or AACOCF(3). Accordingly, a translocation of cPLA(2) from the cytosol to the membrane fraction was observed with A23187 + PMA, but not with fMLP. fMLP-mediated AA release therefore appeared to be independent of Ca(2+) signaling and PKC and MAP kinase activation. However, fMLP-mediated AA release was reduced by approximately 45% by Clostridium difficile toxin B (10 ng/ml) or by 1-butanol; both block phospholipase D (PLD) activity. The inhibitor of phosphatidylcholine-specific phospholipase C (PC-PLC), D609 (100 microM), decreased fMLP-mediated AA release by approximately 35%. The effect of D609 + 1-butanol on fMLP-induced AA release was additive and of a magnitude similar to that of propranolol (0.2 mM), an inhibitor of phosphatidic acid phosphohydrolase. This suggests that the bulk of AA generated by fMLP stimulation of db-cAMP-differentiated HL-60 cells is independent of the cPLA(2) pathway, but may originate from activation of PC-PLC and PLD.  相似文献   

12.
A physiological concentration of extracellular ATP stimulated biphasic Ca(2+) signal, and the Ca(2+) transient was decreased and the Ca(2+) sustain was eliminated immediately after removal of ATP and Ca(2+) in RBA-2 astrocytes. Reintroduction of Ca(2+) induced Ca(2+) sustain. Stimulation of P2Y(1) receptors with 2-methylthioadenosine 5'-diphosphate (2MeSADP) also induced a biphasic Ca(2+) signaling and the Ca(2+) sustains were eliminated using Ca(2+)-free buffer. The 2MeSADP-mediated biphasic Ca(2+) signals were inhibited by phospholipase C (PLC) inhibitor U73122, and completely blocked by P2Y(1) selective antagonist MRS2179 and protein kinase C (PKC) activator phorbol 12-myristate 13-acetate (PMA) whereas enhanced by PKC inhibitors GF109203X and Go6979. Inhibition of capacitative Ca(2+) entry (CCE) decreased the Ca(2+)-induced Ca(2+) entry; nevertheless, ATP further enhanced the Ca(2+)-induced Ca(2+) entry in the intracellular Ca(2+) store-emptied and CCE-inhibited cells indicating that ATP stimulated Ca(2+) entry via CCE and ionotropic P2X receptors. Furthermore, the 2MeSADP-induced Ca(2+) sustain was eliminated by apyrase but potentiated by P2X(4) allosteric effector ivermectin (IVM). The agonist ADPbetaS stimulated a lesser P2Y(1)-mediated Ca(2+) signal and caused a two-fold increase in ATP release but that were not affected by IVM whereas inhibited by PMA, PLC inhibitor ET-18-OCH(3) and phospholipase D (PLD) inhibitor D609, and enhanced by removal of intra- or extracellular Ca(2+). Taken together, the P2Y(1)-mediated Ca(2+) sustain was at least in part via P2X receptors activated by the P2Y(1)-induced ATP release, and PKC played a pivotal role in desensitization of P2Y(1) receptors in RBA-2 astrocytes.  相似文献   

13.
We studied the regulation of arachidonic acid (AA) release by guanosine 5'-O-(3-thiotriphosphate (GTP gamma S) and Ca2+ in electropermeabilized HL60 granulocytes. Stimulation of AA release by GTP gamma S and Ca2+ was mediated by phospholipase A2 (PLA2) and required the presence of MgATP (EC50: 100-250 microM). The nucleotide effects were Ca(2+)-dependent (maximal effects detected at 1 microM free cation). UTP and ATP gamma S, which stimulate AA release in intact HL60 granulocytes with potencies and efficacies similar to those of ATP, were ineffective in supporting the effects of GTP gamma S in electropermeabilized cells. Pretreatment with pertussis toxin affected stimulation of AA release by ATP in intact cell, without altering the nucleotide effects in permeabilized cells. We observed the protein kinase C-dependent phosphorylation of PLA2 in permeabilized HL60 granulocytes, together with a correlation between the effects of phorbol esters and staurosporine on this reaction and on AA release. ATP-independent activation of PLA2 by GTP gamma S and/or Ca2+ was measured in subcellular fractions prepared from HL60 granulocytes. These data appear consistent with a model in which PLA2 activity in resting HL60 granulocytes is subjected to an inhibitory constraint that prevents its activation by Ca2+ and G-proteins. Removal of this constraint, either by the protein kinase C-dependent phosphorylation of the enzyme in vivo or physical disruption of the regulatory assembly (e.g. by N2 cavitation), allows its activation by Ca2+ and G-proteins.  相似文献   

14.
15.
16.
Brain cortex membranes labeled with [14C]arachidonic acid were used as the source of substrate and enzyme for the assay of arachidonic acid (AA) liberation. A significant amount of AA was released Ca2(+)-independently, mainly from phosphatidic acid, polyphosphoinositides and phosphatidylserine. Quinacrine, inhibitor of phospholipase A2 (PLA2), suppressed AA release by 60% and neomycin, inhibitor of phospholipase C (PLC) by about 30%. Both inhibitors applied together have an additive effect. Physiological calcium level elevated AA liberation by 50%, whereas 2 mM calcium enhanced this process by a further 30%. Carbachol, exclusively in the presence of calcium, activated AA release selectively from phosphatidylinositol and diglycerides. We suggest that Ca2(+)-independent PLA2 and PLC play an important role in AA liberation, and that physiological increments of calcium may have serious implications.  相似文献   

17.
Hong SJ 《Cellular signalling》2002,14(10):811-817
The effect of endothelin-1 (ET-1) on the intracellular free Ca(2+) ([Ca(2+)](i)) mobility in cultured H9c2 myocardiac ventricular cells was studied after loading with fura-2-AM. In Ca(2+)-containing buffer, ET-1 induced [Ca(2+)](i) rise from 10(-7) to 10(-9) M. ET-1 induced [Ca(2+)](i), which was composed of a first small peak and a secondary persistent plateau. In Ca(2+)-free buffer, pretreatment with 10(-7) M ET-1 inhibited the thapsigargin and carbonylcyanide m-chlorophenylhydrazone (CCCP)-induced [Ca(2+)](i) increase. Meanwhile, pretreatment with thapsigargin and CCCP also inhibited ET-1-induced [Ca(2+)](i) rise. In Ca(2+)-containing buffer, the ET(A) receptor antagonist (BQ123) completely abolished the secondary rising peak and plateau. Conversely, the ET(B) receptor antagonist (BQ788) completely inhibited the first small peak and secondary peak plateau. Nifedipine and La(3+) also abolished the 10(-7) M ET-1-induced [Ca(2+)](i) in the first rising peak. The internal Ca(2+) release induced by ET-1 was inhibited by U73122 (phospholipase C inhibitor), propranolol (phospholipase D inhibitor) and aristolochic acid (phospholipase A2 inhibitor). After incubation of 10(-7) M ET-1 in Ca(2+)-free buffer, the addition of 5 mM CaCl(2) increased Ca(2+) influx, implying that release of Ca(2+) from internal stores further induces capacitative Ca(2+) entry. Taken together, these results suggest that both ET(A) and ET(B) receptors are involved in ET-1-induced [Ca(2+)](i) rise in H9c2 myocardiac ventricular cells. Whereas ET(B) receptor seems to mediate the initial Ca(2+) influx via L-type Ca(2+) channel, ET(A) receptor appears to be involved in the subsequent Ca(2+) release from endoplasmic reticulum and mitochondria Ca(2+) stores.  相似文献   

18.
In cultured vascular smooth muscle cells (VSMC), the vasculotrophic factor, angiotensin II (AngII) activates three major MAPKs via the G(q)-coupled AT1 receptor. Extracellular signal-regulated kinase (ERK) activation by AngII requires Ca(2+)-dependent "transactivation" of the EGF receptor that may involve a metalloprotease to stimulate processing of an EGF receptor ligand from its precursor. Whether EGF receptor transactivation also contributes to activation of other members of MAPKs such as p38MAPK and c-Jun N-terminal kinase (JNK) by AngII remains unclear. In the present study, we have examined the effects of a synthetic metalloprotease inhibitor BB2116, and the EGF receptor kinase inhibitor AG1478 on AngII-induced activation of MAPKs in cultured VSMC. BB2116 markedly inhibited ERK activation induced by AngII or the Ca(2+) ionophore without affecting the activation by EGF or PDGF. BB2116 as well as HB-EGF neutralizing antibody inhibited the EGF receptor transactivation by AngII, suggesting a critical role of HB-EGF in the metalloprotease-dependent EGF receptor transactivation. In addition to the ERK activation, activation of p38MAPK and JNK by AngII was inhibited by an AT1 receptor antagonist, RNH6270. and EGF markedly activate p38MAPK, whereas but not EGF markedly activates JNK, indicating the possible contribution of the EGF receptor transactivation to the p38MAPK activation. The findings that both BB2116 and AG1478 specifically inhibited activation of p38MAPK but not JNK by AngII support this hypothesis. From these data, we conclude that ERK and p38MAPK activation by AngII requires the metalloprotease-dependent EGF receptor transactivation, whereas the JNK activation is regulated without involvement of EGF receptor transactivation.  相似文献   

19.
We examined the regulatory role of cytosolic phospholipase A(2) (cPLA(2)) and phosphatidylinositol (PI)-specific phospholipase C (PLC) in the degranulation of human eosinophils and leukotriene (LT) C(4) synthesis. Activation with formyl-Met-Leu-Phe + cytochalasin B (fMLP/B) caused a time-dependent release of eosinophil peroxidase (EPO) and LTC(4), which was inhibited by pertussis toxin. By immunoblotting, eosinophil PLC-beta2 and -gamma2 isoforms were identified, and PLC activation was measured as a function of inositol 1,4,5-trisphosphate concentration. Stimulated release of EPO and intracellular Ca(2+) concentration was inhibited by ET-18-OCH(3), a PI-PLC inhibitor, whereas trifluoromethylketone (TFMK), a cPLA(2) blocker, had no inhibitory effect. Both TFMK and ET-18-OCH(3) attenuated stimulated arachidonate release and LTC(4) secretion, suggesting that activation of both PLC and cPLA(2) is essential for LTC(4) synthesis caused by fMLP/B. The structurally unrelated protein kinase C inhibitors bisindolylmaleimide, Ro-31-8220, and Go-6976 all blocked fMLP/B-induced EPO release but not LTC(4) secretion. 1,2-bis(2-Aminophenoxy)ethane-N,N,N',N'- tetraacetic acid acetoxymethyl ester, an intracellular Ca(2+) chelator, suppressed both EPO release and LTC(4) secretion. We found that fMLP/B-induced LTC(4) secretion from human eosinophils is regulated by PI-PLC through calcium-mediated activation of cPLA(2). However, cPLA(2) does not regulate eosinophil degranulation.  相似文献   

20.
In cell cultures of human lung fibroblasts, we found that oxidized LDL (oxLDL), after 24-h treatment, stimulated arachidonic acid release. A putative role for phospholipases A(2) and MAPK activities in this process was postulated. Consequently, we studied the contribution of either Ca(2+)-dependent, cytosolic phospholipase A(2) (cPLA(2)) or Ca(2+)-independent phospholipase A(2) (iPLA(2)), and the role of the MAP kinase family in oxLDL toxicity to fibroblastic cells in vitro. Activation of extracellular signal-regulated kinases ERK1/2, p38 and c-Jun NH(2)-terminal kinase (JNK) was also assessed with Western blotting. Compared with cellular samples untreated or treated with native LDL, treatment with oxLDL (50-100 microM hydroperoxides) for 24 h significantly increased the levels of either cPLA(2) protein expression or constitutively phosphorylated cPLA(2) protein; in addition we observed enzyme translocation to membranes. iPLA(2) activity was not stimulated by oxLDL. Arachidonic acid release appeared to be associated with phosphorylation of ERK1/2 which was significantly enhanced in a dose-dependent manner whereas no activation of p38 and JNKs was found, indicating that these MAPKs are not involved in mediating the maximal oxLDL response. Western blotting on subcellular fractions and confocal microscopy analyses confirmed an increase in 15-lipoxygenase (15-LO) protein expression and translocation upon activation. A significant increase of cyclooxygenase-2 expression into membrane fraction was also found. Collectively, the data presented link the stimulation of ERK-cPLA(2)-15-LO pathway by oxLDL to the prooxidant mechanism of the lipoprotein complex. It may initially stimulate the fibroblast reaction against the oxidation challenge as well as metabolic repair, such as during lung inflammation and pulmonary fibrosis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号