首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Although the impact of plant invasions on benthic communities, especially burrowing crabs, has received increasing attention, the results from past studies are mixed. The exotic plant Spartina alterniflora has become the most abundant species in the salt marshes of the Yangtze River estuary since it was first found just over a decade ago, but its effects on crabs in the salt marshes is largely unknown. To examine whether the invasions of this exotic plant affected native crabs, we compared the biomass and abundance of the dominant burrowing crab Sesarma dehaani in an exotic Spartina marsh, native Phragmites australis marsh and mudflats of the Yangtze River estuary, China. To explain the differences of S. dehaani populations between different habitats, feeding preference of S. dehaani for Spartina and Phragmites was investigated. Results showed crab abundance and biomass in the Spartina marsh were significantly greater than those in the Phragmites marsh and mudflats. Soil water content and plant community characteristics in the Spartina marsh also significantly differed in the Phragmites marsh and mudflats. Moreover, the feeding preference experiment showed that crabs consumed Spartina more than twice as much as Phragmites. In summary, this study showed that Spartina provided compatible habitats for native crab S. dehaani through offering suitable food source and moderate environmental conditions.  相似文献   

2.
The haying of salt marshes, a traditional activity since colonial times in New England, still occurs in about 400 ha of marsh in the Plum Island Sound estuary in northeastern Massachusetts. We took advantage of this haying activity to investigate how the periodic large-scale removal of aboveground biomass affects a number of marsh processes. Hayed marshes were no different from adjacent reference marshes in plant species density (species per area) and end-of-year aboveground biomass, but did differ in vegetation composition. Spartina patens was more abundant in hayed marshes than S. alterniflora, and the reverse was true in reference marshes. The differences in relative covers of these plant species were not associated with any differences between hayed and reference marshes in the elevations of the marsh platform. Instead it suggested that S. patens was more tolerant of haying than S. alterniflora. Spartina patens had higher stem densities in hayed marshes than it did in reference marshes, suggesting that periodic cutting stimulated tillering of this species. Although we predicted that haying would stimulate benthic chlorophyll production by opening up the canopy, we found differences to be inconsistent, possibly due to the relatively rapid regrowth of S. patens and to grazing by invertebrates on the algae. The pulmonate snail, Melampus bidendatus was depleted in its δ13C content in the hayed marsh compared to the reference, suggesting a diet shift to benthic algae in hayed marshes. The stable isotope ratios of a number of other consumer species were not affected by haying activity. Migratory shorebirds cue in to recently hayed marshes and may contribute to short term declines in some invertebrate species, however, the number of taxa per unit area of marsh surface invertebrates and their overall abundances were unaffected by haying over the long term. Haying had no impact on nutrient concentrations in creeks just downstream from hayed plots, but the sediments of hayed marshes were lower in total N and P compared to references. In sum, haying appeared to affect plant species composition but had only short-term affects on consumer organisms. This contrasts with many grassland ecosystems, where an intermediate level of disturbance, such as by grazing, increases species diversity and may stimulate productivity. From a management perspective, periodic mowing could be a way to maintain S. patens habitats and the suite of species with which they are associated.  相似文献   

3.
Summary Studies of the seasonal CO2 and water vapor exchange patterns of Juncus roemerianus and Spartina alterniflora were conducted in an undisturbed marsh community on Sapelo Island, Georgia. Daily patterns of net photosynthesis, transpiration, leaf diffusive conductance and water-use efficiency in response to ambient conditions were monitored on intact, in situ plants. Net primary productivity was calculated from the daytime CO2 fixation totals, nighttime CO2 loss, leaf standing stock and aboveground to belowground biomass ratios for each plant type.The tall form of S. alterniflora had higher rates of photosynthesis and higher water-use efficiency values which, in conjunction with low respiratory losses and large leaf standing crop, results in high values of net primary productivity. The environmental factors in the marsh which permit these physiological responses occur in less than 10% of the marsh. Overall, the physiological capabilities of the short form of S. alterniflora were reduced in comparison to the tall form, but the combination of environmental factors which determine the physiological responses of this form occur in a much greater portion of the marsh, and the short form of S. alterniflora dominates the Sapelo Island marshes.The response patterns of the C3 species, J. roemerianus, differed somewhat from the height forms of S. alterniflora. A large, seasonally constant leaf standing crop coupled with moderate rates of photosynthesis resulted in a net primary productivity value which was between the tall and short height forms of S. alterniflora. However, as with the tall S. alterniflora, the environmental conditions under which this high productivity and high water loss rate can be sustained are restricted to specific regions of the environmental gradient in the marsh.Contribution No. 435 from the University of Georgia Marine Institute  相似文献   

4.
In this study we used pinfish (Lagodon rhomboides) in field experiments to examine linkages between intertidal saltmarsh and adjacent subtidal habitats. Pinfish are more than twice as abundant in intertidal marshes adjacent to seagrass beds than in those adjacent to the unvegetated subtidal bottom. Movement of pinfish between the marsh edge and the adjacent subtidal habitat was greater for fish captured in areas with both intertidal and subtidal vegetation than in those with intertidal vegetation and adjacent unvegetated mudflats. This movement provides an important link between habitats, allowing transfer of marsh-derived secondary production to subtidal seagrass beds and vice versa. Pinfish held in enclosures with both intertidal and subtidal vegetation were, on average, approximately 90% heavier than fish held in enclosures with intertidal vegetation and unvegetated subtidal bottom. Because saltmarshes and seagrass beds contribute to the production of living marine resources, active measures are being taken to preserve and restore these habitats. The results from this study have direct application to decisions concerning site selection and optimal spatial proximity of saltmarsh and seagrass habitats in the planning of restoration and mitigation projects. To maximize secondary production and utilization of intertidal marshes, managers may opt to restore and/or preserve marshes adjacent to subtidal seagrass beds. Received: 31 May 1996 / Accepted: 23 October 1996  相似文献   

5.
Phenology, or seasonal variation in life cycle events, is poorly described for many macroalgal species. We describe the phenology of a non-native population of Gracilaria vermiculophylla whose thalli are free-living or anchored by decorating polychaetes to tube caps. At a site in South Carolina, USA, we sampled 100 thalli approximately every month from January 2014 to January 2015. We assessed the reproductive state and measured thallus size based on wet weight, thallus length, and thallus surface area from herbarium mounts. Because life cycle stage cannot be assigned using morphology, we implemented a PCR assay to determine the life cycle stage—tetrasporophyte, female gametophyte, or male gametophyte—of each thallus. Tetrasporophytes dominated throughout the year, making up 81%–100% of thalli sampled per month. Reproductive tetrasporophytes varied between 0% and 65% of monthly samples and were most common in warm summer months (July through September) when thalli also tended to be larger. The vast majority of the reproductive thalli were worm-anchored and not fixed to hard substratum via a holdfast. Thus, free-living thalli can be reproductive and potentially seed new non-native populations. Given G. vermiculophylla reproduction seems tied closely to temperature, our work suggests phenology may change with climate-related changes in seawater temperatures. We also highlight the importance of understanding the natural history of macroalgae to better understand the consequence of range expansions on population dynamics.  相似文献   

6.
The ribbed mussel, Geukensia demissa, is highly dependent on the cordgrass Spartina alterniflora for amelioration from environmental stress and substrate stabilization. Spartina alterniflora is a foundation species in marshes, and G. demissa is typically associated with cordgrass beds. Marshes in the southern Gulf of St. Lawrence are experiencing erosion and degradation, presumably as a result of increases in sea level, which increases salinity exposure and negatively impacts S. alterniflora. The population structure of the ribbed mussel, Geukensia demissa, was studied at nine sites in six estuaries in the southern Gulf of St. Lawrence in Nova Scotia, Canada, where marsh degradation is occurring. Mussel length was used as a proxy for age of G. demissa in three salt marsh zones characterized by density and elevation of Spartina alterniflora: (1) a lower zone in which the S. alterniflora was dead, but where the basal mat was coherent, (2) a zone of living, but low density S. alterniflora at the margin of the living marsh, and (3) a zone of dense S. alterniflora one to three meters back from the edge. Mussel length was significantly different across the three zones in seven of the nine sites. Mean length decreased as elevation increased, and small mussels (i.e., 1–3 cm) were absent at seven sites. The smallest mussels occurred in the dense S. alterniflora zone, higher in the marsh. Mussel length in the two western sites did not differ between zones, and small mussels (i.e., 1–3 cm) were present, but rare. The absence of small mussels in seven of the nine sites, and the size frequency distribution at remaining sites, suggests a lack of recent recruitment and a long-term threat to the survival of G. demissa. Salt marsh degradation and the death of S. alterniflora have negatively impacted G. demissa recruitment, and population decline is evident.  相似文献   

7.
Narrow fringing salt marshes dominated by Spartina alterniflora occur naturally along estuarine shorelines and provide many of the same ecological functions as more extensive marshes. These fringing salt marshes are sometimes incorporated into shoreline stabilization efforts. We obtained data on elevation, salinity, sediment characteristics, vegetation and fish utilization at three study sites containing both natural fringing marshes and nearby restored marshes located landward of a stone sill constructed for shoreline stabilization. During the study, sediment accretion rates in the restored marshes were approximately 1.5- to 2-fold greater than those recorded in the natural marshes. Natural fringing marsh sediments were predominantly sandy with a mean organic matter content ranging between 1.5 and 6.0%. Average S. alterniflora stem density in natural marshes ranged between 130 and 222 stems m−2, while mean maximum stem height exceeded 64 cm. After 3 years, one of the three restored marshes (NCMM) achieved S. alterniflora stem densities equivalent to that of the natural fringing marshes, while percentage cover and maximum stem heights were significantly greater in the natural than in the restored marshes at all sites. There was no significant difference in the mean number of fish, crabs or shrimp captured with fyke nets between the natural and restored marshes, and only the abundance of Palaemonetes vulgaris (grass shrimp) was significantly greater in the natural marshes than in the restored ones. Mean numbers of fish caught per 5 m of marsh front were similar to those reported in the literature from marshes adjacent to tidal creeks and channels, and ranged between 509 and 634 fish net−1. Most of the field data and some of the sample analyses were obtained by volunteers as they contributed 223 h of the total 300 h spent collecting data from three sites in one season. The use of fyke nets required twice as many man-hours as any other single task. Vegetation and sediment parameters were sensitive indicators of marsh restoration success, and volunteers were capable of contributing a significant portion of the labor needed to collect these parameters. The U.S. Government's right to retain a non-exclusive, royalty-free license in and to any copyright is acknowledged.  相似文献   

8.
Baker's Law predicts uniparental reproduction will facilitate colonization success in novel habitats. While evidence supports this prediction among colonizing plants and animals, few studies have investigated shifts in reproductive mode in haplo‐diplontic species in which both prolonged haploid and diploid stages separate meiosis and fertilization in time and space. Due to this separation, asexual reproduction can yield the dominance of one of the ploidy stages in colonizing populations. We tested for shifts in ploidy and reproductive mode across native and introduced populations of the red seaweed Gracilaria vermiculophylla. Native populations in the northwest Pacific Ocean were nearly always attached by holdfasts to hard substrata and, as is characteristic of the genus, haploid–diploid ratios were slightly diploid‐biased. In contrast, along North American and European coastlines, introduced populations nearly always floated atop soft‐sediment mudflats and were overwhelmingly dominated by diploid thalli without holdfasts. Introduced populations exhibited population genetic signals consistent with extensive vegetative fragmentation, while native populations did not. Thus, the ecological shift from attached to unattached thalli, ostensibly necessitated by the invasion of soft‐sediment habitats, correlated with shifts from sexual to asexual reproduction and slight to strong diploid bias. We extend Baker's Law by predicting other colonizing haplo‐diplontic species will show similar increases in asexuality that correlate with the dominance of one ploidy stage. Labile mating systems likely facilitate colonization success and subsequent range expansion, but for haplo‐diplontic species, the long‐term eco‐evolutionary impacts will depend on which ploidy stage is lost and the degree to which asexual reproduction is canalized.  相似文献   

9.
Specialist species are more vulnerable to environmental change than generalist species. For species with ontogenetic niche shifts, specialization may occur at a particular life stage making those stages more susceptible to environmental change. In the salt marshes in the northeast U.S., accelerated sea level rise is shifting vegetation patterns from flood‐intolerant species such as Spartina patens to the flood‐tolerant Spartina alterniflora. We tested the potential impact of this change on the coffee bean snail, Melampus bidentatus, a numerically dominant benthic invertebrate with an ontogenetic niche shift. From a survey of eight marshes throughout the northeast U.S., small snails were found primarily in S. patens habitats, and large snails were found primarily in stunted S. alterniflora habitats. When transplanted into stunted S. alterniflora, small snails suffered significantly higher mortality relative to those in S. patens habitats; adult snail survivorship was similar between habitats. Because other habitats were not interchangeable with S. patens for young snails, these results suggest that Melampus is an ontogenetic specialist where young snails are habitat specialists and adult snails are habitat generalists. Temperature was significantly higher and relative humidity significantly lower in stunted S. alterniflora than in S. patens. These data suggest that thermal and desiccation stress restricted young snails to S. patens habitat, which has high stem density and a layer of thatch that protects snails from environmental stress. Other authors predict that if salt marshes in the northeast U.S. are unable to migrate landward, sea level rise will eliminate S. patens habitats. We suggest that if a salt marsh loses its S. patens habitats, it will also lose its coffee bean snails. Our results demonstrate the need to consider individual life stages when determining a species’ vulnerability to global change.  相似文献   

10.
Ecological functions of bioturbation in ecosystems have received increasing attention over the recent decades, and crab burrowing has been considered as one of the major bioturbations affecting the physical and chemical processes in salt marshes. This study assessed the integrated effects of crab excavating and burrow mimic trapping on sediment turnover and vertical C and N distributions in a Chinese salt marsh in the Yangtze River estuary. Crab burrowing increased soil water content and the turnover of carbon and nitrogen and decreased bulk soil density. Vertical movement of materials, nutrient cycling and reuse driven by crab burrowing might be obstructed by vegetation (Phragmites australis and Spartina alterniflora communities). The amount of soil excavated by crab burrowing was higher than that deposited into burrow mimics. In Phragmites marshes, Spartina marshes and unvegetated mudflats, net transport of soil to the marsh surface was 171.73, 109.54, and 374.95 g m−2 d−1, respectively; and the corresponding estimated soil turnover time was 2.89, 4.07 and 1.83 years, respectively. Crab burrowing in salt marshes can mix surface and deeper soil over a period of years, accelerating litter decomposition and promoting the efficient reuse of nutrients by plants. Therefore, bioturbation affects soil physical processes and functioning of ecosystems, and needs to be addressed in ecosystem management.  相似文献   

11.
During the last decades the Mondego estuary has been under severe ecological stress mainly caused by eutrophication. In this salt march system, Spartina maritima covers about 10.5 ha of the intertidal areas. The objective of the present study was to evaluate the effect of Spartina maritima marshes on the dynamics of phosphorus (P) binding in the surface sediment. We compare phosphate and oxygen fluxes, P-adsorption capacity, phosphate concentrations and total amount, and the extractable P forms in the upper 20 cm of sediment in vegetated sediment with adjacent mudflats without vegetation. Sediment pore-water profiles followed a clear trend, with lower P concentrations in more superficial layers, and increasing with depth. The vegetated mudflats presented lower concentrations of dissolved inorganic phosphorus than adjacent bare bottom mudflats, lower phosphate total amount, as well as higher P-adsorption capacity. Results from the extraction procedure show that the superficial layers are the most important for estuarine phosphorus dynamics, since maximum concentrations of labile P pools are present here. In contrast, higher proportions of refractory P pool are found in deeper layers. Spartina marsh sediments had less total P, less iron bound P, and less exchangeable P than adjacent bare bottom mudflats. Also the pool of loosely sorbed P is lower in the Spartina marsh. Phosphate regeneration from the sediment to the overlying water was only 11.8 kg ha−1 year−1 in vegetated sediment while 25.8 kg ha−1 year−1 in the bare mud flat. Plant uptake for growth combined with an enhanced P-adsorption capacity of the sediment, may explain these differences. Therefore, Spartina marshes are very important agents in the sedimentary P cycle worldwide, and can be considered a useful management tool in estuarine ecosystem recovery efforts.  相似文献   

12.
Along the Atlantic coast of South America, the northern salt marshes (lower than 43°S) are dominated by Spartina species while the southern salt marshes (greater than 43°S) are dominated by Sarcocornia perennis. The most abundant Spartina species are Spartina densiflora which is present in most coastal marshes, and Spartina alterniflora that was never recorded above the ~42°25′S. It is not clear why S. alterniflora has not succeeded in the southern marshes, in which the low marsh zone remains as an extensive bared mud flat. We address the hypothesis that the absence of S. alterniflora in the south is driven by the cold temperatures inversely related with increasing latitudes along the East coast of Patagonia. To evaluate this hypothesis, we carried out an experiment in which we manipulated the temperature in combination with frost formation and photoperiod. We found that cold temperature produced a negative effect on S. alterniflora, and this effect seems accentuated by the frost but not by the reduction in the photoperiod. Our results support the hypothesis that the absence of S. alterniflora in the southernmost salt marshes of Patagonia is a consequence of the frost as an outcome of the co-occurrence of low temperature and high humidity. The importance of our results are discussed in the context of the global warming and how Spartina species enlarge their distributional range toward higher latitudes.  相似文献   

13.
Invasive species frequently degrade habitats, disturb ecosystem processes, and can increase the likelihood of extinction of imperiled populations. However, novel or enhanced functions provided by invading species may reduce the impact of processes that limit populations. It is important to recognize how invasive species benefit endangered species to determine overall effects on sensitive ecosystems. For example, since the 1990s, hybrid Spartina (Spartina foliosa × alterniflora) has expanded throughout South San Francisco Bay, USA, supplanting native vegetation and invading mudflats. The endangered California clapper rail (Rallus longirostris obsoletus) uses the tall, dense hybrid Spartina for cover and nesting, but the effects of hybrid Spartina on clapper rail survival was unknown. We estimated survival rates of 108 radio-marked California clapper rails in South San Francisco Bay from January 2007 to March 2010, a period of extensive hybrid Spartina eradication, with Kaplan–Meier product limit estimators. Clapper rail survival patterns were consistent with hybrid Spartina providing increased refuge cover from predators during tidal extremes which flood native vegetation, particularly during the winter when the vegetation senesces. Model averaged annual survival rates within hybrid Spartina dominated marshes before eradication (? = 0.466) were greater than the same marshes posttreatment (? = 0.275) and a marsh dominated by native vegetation (? = 0.272). However, models with and without marsh treatment as explanatory factor for survival rates had nearly equivalent support in the observed data, lending ambiguity as to whether hybrid Spartina facilitated greater survival rates than native marshland. Conservation actions to aid in recovery of this endangered species should recognize the importance of available of high tide refugia, particularly in light of invasive species eradication programs and projections of future sea-level rise.  相似文献   

14.
高会  翟水晶  孙志高  何涛  田莉萍  胡星云 《生态学报》2018,38(17):6136-6142
2016年1—12月,选择闽江河口鳝鱼滩的短叶茳芏湿地、互花米草湿地以及二者的交错带湿地为研究对象,采用定位研究方法探讨了互花米草入侵影响下湿地土壤有效硅含量的时空变化特征。结果表明:互花米草入侵影响下3块湿地土壤有效硅含量随时间推移整体呈波动上升趋势;互花米草入侵显著提高了鳝鱼滩湿地30—60 cm土层土壤有效硅含量(P0.01),与短叶茳芏湿地相比,交错带湿地和互花米草湿地30—60 cm土层土壤有效硅含量分别增加了8.56%和19.97%,逐步线性回归分析表明土温和电导是影响其变化的重要因素(P0.01)。研究互花米草入侵影响下湿地土壤有效硅含量的变化特征,对于揭示湿地生态系统生源要素硅生物地球化学循环过程以及互花米草入侵及其扩张机制具有重要意义。  相似文献   

15.
Plant zonation is one of the most conspicuous ecological features of salt marshes worldwide. In this work we used a combination of field transplant and greenhouse experiments to evaluate the importance of interspecific interactions and physical stress in the determination of the major plant zonation patterns in Central Patagonian salt marshes. There, Spartina alterniflora dominates the low marsh, and Sarcocornia perennis the high marsh. We addressed two questions: (i) What prevents Spartina alterniflora from colonizing the Sarcocornia perennis‐dominated high marsh zone? and (ii) What prevents Sarcocornia perennis from colonizing the Spartina alterniflora‐dominated low marsh zone? Our experimental transplants combined with neighbour exclusion treatments showed that the presence of Sarcocornia perennis negatively affects Spartina alterniflora, preventing it from surviving and/or spreading. Complementary field transplant and greenhouse experiments showed that Sarcocornia perennis did not survive the frequent tidal submersion by approximately 1.5 m of turbid seawater in the Spartina alterniflora zone, but its survival was independent of the presence of Spartina neighbours, and of the strong soil anoxia as well. Our results suggest that Spartina alterniflora is excluded by Sarcocornia perennis towards the low marsh, where frequent and prolonged submersion limit the survival of the latter. We provide and discuss key baseline information to facilitate the future design of ecophysiological experiments designed to accurately identify the exact mechanisms acting in every situation.  相似文献   

16.
For the purpose of ecological engineering, Spartina alterniflora was introduced to China in 1979 and now covers about 112,000 ha of China's coastal lands. It was hypothesized that S. alterniflora could actively change the habitat environment, thus facilitating its competition over native species. In Yancheng Nature Reserve, sulfur storage of sediments and plant tissues was compared among marshes dominated by the exotic S. alterniflora and adjacent native Suaeda salsa and Phragmites australis and bare mudflat. Results showed that the S. alterniflora marsh contained the highest content of water-soluble, adsorbed, carbonate-occluded and total sulfur in the sediment. The sulfur levels were higher in the center than at the edges of the S. alterniflora marsh. Native marshes showed no significant difference in sediment sulfur levels. With greater biomass and higher tissue sulfur concentrations, plant sulfur storage of S. alterniflora vegetation was also larger than those of the native vegetations. Because higher concentrations of sulfur increase the competitive advantage of S. alterniflora over native halophytes, the results of the research showing that S. alterniflora increased marsh sulfur storage may shed light on the mechanism of expansion of monospecific vegetation in coastal China.  相似文献   

17.
Edaphic diatoms were collected from 5 representative habitats of Canary Creek salt marsh, Lewes, Delaware, from 24 July 1969 to 21 July 1970. Of the 104 taxa encountered, 32 had a general distribution on the marsh and 41 were endemic to one of the 5 habitats sampled. Three of the habitats supported stands of grasses: tall Spartina alterniflora Loisel., dwarf S. alterniflora, and Distichlis spicata (L.) Greene; and these habitats possessed the highest species diversity (H') and the greatest number of diatom species. The remaining 2 habitats, a bare bank and a panne, were devoid of macroscopic vegetation. The diatoms of these last 2 habitats were exposed to hypersaline conditions during warmer periods of the year and this was considered a contributing factor to the lower values observed for the aforementioned parameters of community structure. A comprehensive examination of the community structure characterizing the 5 habitats, employing statistical analyses and the distribution of species, showed each habitat to support its own unique and easily recognizable edaphic diatom community. A multiple regression analysis indicated that the differences between the 5 communities were closely related to differences in temperature and elevation between the habitats, and also a result of significant interactions between edaphic diatoms and filamentous algae.  相似文献   

18.
Anthropogenic habitat fragmentation is increasingly problematic in both terrestrial and aquatic systems. Fragmentation reduces the size of habitat patches, so examining the effect of patch size on community structure can provide insight into the potential effects of fragmentation. In this study, we examined the effect of habitat size on the density of Spartina alterniflora shoots in tidal saltwater marshes, as well as on the two predominant macrofaunal species, the marsh periwinkle Littoraria irrorata and fiddler crabs Uca spp. We estimated the density of shoots in three different marsh habitats, (1) large island marshes, (2) small island marshes, and (3) large fringing marshes, in Indian Field Creek, York River, Chesapeake Bay. We manipulated shoot density in each of the marsh types to distinguish between the effects of marsh grass density and marsh type on crab and Littoraria densities in the system. We found significant differences in grass density among the three marsh types as well as significant species-specific effects of grass density, marsh type, and distance from edge on faunal abundance. Decreasing the shoot density resulted in a decrease in Littoraria density in the large marshes. Littoraria density increased with distance from edge in the small marshes and in the first 5 m of the fringing marshes, then decreased with distance from edge after 5 m in the fringing marshes. Shoot density had a negative effect on crabs in both the large and small marshes. These results suggest that fragmentation would have a negative effect on the community structure by lowering the densities of both the flora and fauna.  相似文献   

19.
Five natural and ten created Spartinaalternifloramarshes in the Lower Galveston BaySystem were compared to determine if there weresignificantly different physical characteristicsassociated with each type of marsh. The saltmarsheswere compared on the basis of microhabitats,length-width ratio, area-perimeter ratio, marsh-wateredge ratio, total size of S. alternifloraplantcommunities, fetch distances, angle of exposure,orientation, and elevation. All physicalmeasurements, except for elevation, were obtained fromphotography analyzed with the use of a GeographicInformation System with digital image processingcapabilities. Differences existed between natural andcreated marshes. The natural marsh sites in this studywere characterized by highly undulant marsh-wateredges, island-like S. alternifloraplant stands,concave shorelines, and low elevations. Createdmarshes were characterized by relatively smoothmarsh-water edges, an unbroken shoreline morphology,convex to straight shoreline configurations, andelevations on the edge and inner portions of the marshhigher than those of natural marshes. The lowelevations of the natural marsh appear to be due tocoastal subsidence in the Galveston Bay area alongwith rising sea level. Reticulated marshes andundulant shorelines appear to be caused by consequentdrowning of the natural marshes. High elevations insome of the created marshes are related to erosion ofthe low elevation marsh or deposition of coarsesediments at the marsh-water edge.  相似文献   

20.
Tidal flow to salt marshes throughout the northeastern United States is often restricted by roads, dikes, impoundments, and inadequately sized culverts or bridge openings, resulting in altered ecological structure and function. In this study we evaluated the response of vegetation and nekton (fishes and decapod crustaceans) to restoration of full tidal flow to a portion of the Sachuest Point salt marsh, Middletown, Rhode Island. A before, after, control, impact study design was used, including evaluations of the tide‐restricted marsh, the same marsh after reintroduction of tidal flow (i.e., tide‐restored marsh), and an unrestricted control marsh. Before tidal restoration vegetation of the 3.7‐ha tide‐restricted marsh was dominated by Phragmites australis and was significantly different from the adjacent 6.3‐ha Spartina‐dominated unrestricted control marsh (analysis of similarities randomization test, p < 0.001). After one growing season vegetation of the tide‐restored marsh had changed from its pre‐restoration condition (analysis of similarities randomization test, p < 0.005). Although not similar to the unrestricted control marsh, Spartina patens and S. alterniflora abundance increased and abundance and height of Phragmites significantly declined, suggesting a convergence toward typical New England salt marsh vegetation. Before restoration shallow water habitat (creeks and pools) of the unrestricted control marsh supported a greater density of nekton compared with the tide‐restricted marsh (analysis of variance, p < 0.001), but after one season of restored tidal flow nekton density was equivalent. A similar trend was documented for nekton species richness. Nekton density and species richness from marsh surface samples were similar between the tide‐restored marsh and unrestricted control marsh. Fundulus heteroclitus and Palaemonetes pugio were the numerically dominant fish and decapod species in all sampled habitats. This study provides an example of a quantitative approach for assessing the response of vegetation and nekton to tidal restoration.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号