首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Discordant phylogenies within the rrn loci of Rhizobia   总被引:9,自引:0,他引:9       下载免费PDF全文
It is evident from complete genome sequencing results that lateral gene transfer and recombination are essential components in the evolutionary process of bacterial genomes. Since this has important implications for bacterial systematics, the primary objective of this study was to compare estimated evolutionary relationships among a representative set of alpha-Proteobacteria by sequencing analysis of three loci within their rrn operons. Tree topologies generated with 16S rRNA gene sequences were significantly different from corresponding trees assembled with 23S rRNA gene and internally transcribed space region sequences. Besides the incongruence in tree topologies, evidence that distinct segments along the 16S rRNA gene sequences of bacteria currently classified within the genera Bradyrhizobium, Mesorhizobium and Sinorhizobium have a reticulate evolutionary history was also obtained. Our data have important implications for bacterial taxonomy, because currently most taxonomic decisions are based on comparative 16S rRNA gene sequence analysis. Since phylogenetic placement based on 16S rRNA gene sequence divergence perhaps is questionable, we suggest that the proposals of bacterial nomenclature or changes in their taxonomy that have been made may not necessarily be warranted. Accordingly, a more conservative approach should be taken in the future, in which taxonomic decisions are based on the analysis of a wider variety of loci and comparative analytical methods are used to estimate phylogenetic relationships among the genomes under consideration.  相似文献   

2.
Massively parallel high throughput sequencing technologies allow us to interrogate the microbial composition of biological samples at unprecedented resolution. The typical approach is to perform high-throughout sequencing of 16S rRNA genes, which are then taxonomically classified based on similarity to known sequences in existing databases. Current technologies cause a predicament though, because although they enable deep coverage of samples, they are limited in the length of sequence they can produce. As a result, high-throughout studies of microbial communities often do not sequence the entire 16S rRNA gene. The challenge is to obtain reliable representation of bacterial communities through taxonomic classification of short 16S rRNA gene sequences. In this study we explored properties of different study designs and developed specific recommendations for effective use of short-read sequencing technologies for the purpose of interrogating bacterial communities, with a focus on classification using naïve Bayesian classifiers. To assess precision and coverage of each design, we used a collection of ∼8,500 manually curated 16S rRNA gene sequences from cultured bacteria and a set of over one million bacterial 16S rRNA gene sequences retrieved from environmental samples, respectively. We also tested different configurations of taxonomic classification approaches using short read sequencing data, and provide recommendations for optimal choice of the relevant parameters. We conclude that with a judicious selection of the sequenced region and the corresponding choice of a suitable training set for taxonomic classification, it is possible to explore bacterial communities at great depth using current technologies, with only a minimal loss of taxonomic resolution.  相似文献   

3.
Methods to estimate microbial diversity have developed rapidly in an effort to understand the distribution and diversity of microorganisms in natural environments. For bacterial communities, the 16S rRNA gene is the phylogenetic marker gene of choice, but most studies select only a specific region of the 16S rRNA to estimate bacterial diversity. Whereas biases derived from from DNA extraction, primer choice and PCR amplification are well documented, we here address how the choice of variable region can influence a wide range of standard ecological metrics, such as species richness, phylogenetic diversity, β-diversity and rank-abundance distributions. We have used Illumina paired-end sequencing to estimate the bacterial diversity of 20 natural lakes across Switzerland derived from three trimmed variable 16S rRNA regions (V3, V4, V5). Species richness, phylogenetic diversity, community composition, β-diversity, and rank-abundance distributions differed significantly between 16S rRNA regions. Overall, patterns of diversity quantified by the V3 and V5 regions were more similar to one another than those assessed by the V4 region. Similar results were obtained when analyzing the datasets with different sequence similarity thresholds used during sequences clustering and when the same analysis was used on a reference dataset of sequences from the Greengenes database. In addition we also measured species richness from the same lake samples using ARISA Fingerprinting, but did not find a strong relationship between species richness estimated by Illumina and ARISA. We conclude that the selection of 16S rRNA region significantly influences the estimation of bacterial diversity and species distributions and that caution is warranted when comparing data from different variable regions as well as when using different sequencing techniques.  相似文献   

4.
The diversity of bacterial communities at three sites impacted by acid mine drainage (AMD) from the Yinshan Mine in China was studied using comparative sequence analysis of two molecular markers, the 16S rRNA and gyrB genes. The phylogenetic analyses retrieved sequences from six classes of bacteria, Nitrospira, Alphaproteobacteria, Gammaproteobacteria, Deltaproteobacteria, Acidobacteria, and Actinobacteria, as well as sequences related to the plastid of the cyanobacterium Cyanidium acidocaldarium and also some unknown bacteria. The results of phylogenetic analyses based on gyrB and 16S rRNA were compared. This confirmed that gyrB gene analysis may be a useful tool, in addition to the comparative sequence analysis of the 16S rRNA gene, for the analysis of microbial community compositions. Moreover, the Mantel test showed that the geochemical characteristics, especially the pH value and the concentration of iron, strongly influenced the composition of the microbial communities.  相似文献   

5.
We evaluated phylogenetic clustering of bacterial and archaeal communities from redox-dynamic subtropical forest soils that were defined by 16S rRNA and rRNA gene sequences. We observed significant clustering for the RNA-based communities but not the DNA-based communities, as well as increasing clustering over time of the highly active taxa detected by only rRNA.  相似文献   

6.
16S rRNA gene analysis is the most convenient and robust method for microbiome studies. Inaccurate taxonomic assignment of bacterial strains could have deleterious effects as all downstream analyses rely heavily on the accurate assessment of microbial taxonomy. The use of mock communities to check the reliability of the results has been suggested. However, often the mock communities used in most of the studies represent only a small fraction of taxa and are used mostly as validation of sequencing run to estimate sequencing artifacts. Moreover, a large number of databases and tools available for classification and taxonomic assignment of the 16S rRNA gene make it challenging to select the best-suited method for a particular dataset. In the present study, we used authentic and validly published 16S rRNA gene type strain sequences (full length, V3-V4 region) and analyzed them using a widely used QIIME pipeline along with different parameters of OTU clustering and QIIME compatible databases. Data Analysis Measures (DAM) revealed a high discrepancy in ratifying the taxonomy at different taxonomic hierarchies. Beta diversity analysis showed clear segregation of different DAMs. Limited differences were observed in reference data set analysis using partial (V3-V4) and full-length 16S rRNA gene sequences, which signify the reliability of partial 16S rRNA gene sequences in microbiome studies. Our analysis also highlights common discrepancies observed at various taxonomic levels using various methods and databases.  相似文献   

7.
芒草种植对土壤细菌群落结构和功能的影响   总被引:1,自引:0,他引:1  
芒草作为第二代能源植物的代表,其生长过程中根际土壤细菌群落的结构与功能尚不清楚.本研究以种植5年的芒草(湘杂芒1号)为研究对象,选取裸地作为对照,采用16S rRNA基因Miseq测序技术研究其细菌群落组成,同时采用PICRUSt功能预测分析其功能.结果表明: 芒草根际细菌由变形菌门、酸杆菌门、放线菌门、绿弯菌门、拟杆菌门和芽单胞菌门等23个门、231个属的细菌组成,表现出群落组成的丰富性.细菌群落分析表明,种植湘杂芒1号改变了根际细菌群落结构,其细菌群落多样性低于裸地对照.PICRUSt功能预测分析表明,湘杂芒1号根际细菌主要涉及氨基酸运输和代谢、细胞壁/细胞膜/膜结构的生物合成、信号转导机制等24个基因功能家族,表现出功能上的丰富性,并有22个基因功能家族预测基因相对丰度高于裸地,表明种植湘杂芒1号提高了根际细菌功能.对氮、磷循环相关基因进行分析表明,种植湘杂芒1号改变了土壤氮、磷代谢能力.  相似文献   

8.
Culture-independent DNA fingerprints are commonly used to assess the diversity of a microbial community. However, relating species composition to community profiles produced by community fingerprint methods is not straightforward. Terminal restriction fragment length polymorphism (T-RFLP) is a community fingerprint method in which phylogenetic assignments may be inferred from the terminal restriction fragment (T-RF) sizes through the use of web-based resources that predict T-RF sizes for known bacteria. The process quickly becomes computationally intensive due to the need to analyze profiles produced by multiple restriction digests and the complexity of profiles generated by natural microbial communities. A web-based tool is described here that rapidly generates phylogenetic assignments from submitted community T-RFLP profiles based on a database of fragments produced by known 16S rRNA gene sequences. Users have the option of submitting a customized database generated from unpublished sequences or from a gene other than the 16S rRNA gene. This phylogenetic assignment tool allows users to employ T-RFLP to simultaneously analyze microbial community diversity and species composition. An analysis of the variability of bacterial species composition throughout the water column in a humic lake was carried out to demonstrate the functionality of the phylogenetic assignment tool. This method was validated by comparing the results generated by this program with results from a 16S rRNA gene clone library.  相似文献   

9.
Culture-independent DNA fingerprints are commonly used to assess the diversity of a microbial community. However, relating species composition to community profiles produced by community fingerprint methods is not straightforward. Terminal restriction fragment length polymorphism (T-RFLP) is a community fingerprint method in which phylogenetic assignments may be inferred from the terminal restriction fragment (T-RF) sizes through the use of web-based resources that predict T-RF sizes for known bacteria. The process quickly becomes computationally intensive due to the need to analyze profiles produced by multiple restriction digests and the complexity of profiles generated by natural microbial communities. A web-based tool is described here that rapidly generates phylogenetic assignments from submitted community T-RFLP profiles based on a database of fragments produced by known 16S rRNA gene sequences. Users have the option of submitting a customized database generated from unpublished sequences or from a gene other than the 16S rRNA gene. This phylogenetic assignment tool allows users to employ T-RFLP to simultaneously analyze microbial community diversity and species composition. An analysis of the variability of bacterial species composition throughout the water column in a humic lake was carried out to demonstrate the functionality of the phylogenetic assignment tool. This method was validated by comparing the results generated by this program with results from a 16S rRNA gene clone library.  相似文献   

10.
11.
AIMS: To determine the phylogenetic composition of the colonic microbiota of transgenic (TG) HLA-B27 rats using 16S ribosomal RNA (rRNA) gene sequences obtained from denaturing gradient gel electrophoresis (DGGE) gels and sequences from a 16S rRNA gene library. METHODS AND RESULTS: Colonic microbiota of TG and nontransgenic (NT) rats harboured by 10-week-old and 6-month-old animals was screened using PCR/DGGE. Six months old TG rats had marked inflammation of the colon compared with 10-week-old TG and NT rats. The DGGE profiles of rats with inflamed colon were similar from rat to rat (Dice's Similarity Coefficient proximal colon 73%, distal colon 83%) whereas profiles from animals without inflammation were dissimilar (52-64%). Identifications of bacterial origins of 16S rRNA gene sequences obtained from DGGE gels (200 bp) and from 16S rRNA clones (450 bp) of the colonic microbiota of diseased rats gave sequences most closely phylogenetically affiliated with uncultured or unknown bacteria. CONCLUSIONS: PCR/DGGE was shown to be an effective method to compare the colonic microbiota composition of TG and NT rats relative to the progression of inflammatory disease. Sequencing of 16S rRNA gene fragments from DGGE gels or 16S rRNA gene clones from a random library showed that uncultured or unknown bacteria were most commonly detected by both methods. It can be concluded that it would be better in future studies to search for the antigens produced by the gut microbiota against which the dysfunctional immune system reacts rather than seek phylogenetic associations. SIGNIFICANCE AND IMPACT OF THE STUDY: PCR/DGGE can be used as a rapid initial screening method to compare the composition of bacterial communities of initially unknown composition that are associated with the development of intestinal disease.  相似文献   

12.
An ecological study on distribution of Antarctic bacterial communities was determined by 16S-based phylogenetic analyses of clone libraries derived from RNA and DNA extracted from two different marine areas and compared between each other. Superficial seawater samples were collected from four stations in Ross Sea, three of them located in Rod Bay and one in Evans Cove; for each station two clone libraries (16S rDNA and 16S rRNA) were prepared and evident divergences between DNA and RNA libraries of each site were obtained. Of all phylotypes 93.6% were found in RNA libraries; in contrast, only 31 phylotypes (70.5%) were retrieved from total microbial community (DNA libraries). DNA and RNA sequences related to gamma-Proteobacteria and Bacteroidetes groups, typical for Antarctic sea-ice bacterial communities, were detected in analysed sites. 16S rDNA and rRNA libraries derived from the two different areas were enriched by picophytoplanktonic 16S sequences of plastid and mitochondrion origins, reflecting that the algal blooms occurred during sampling (Antarctic summer 2003). The finding in Rod Bay libraries of high percentage of DNA clones apparently affiliated with beta-Proteobacteria typical for activated sludges and well water could be explained by the presence of a sewage depuration system at this site. Obtained results clearly demonstrate that combination of 16S rDNA and 16S rRNA gene sequencing is preferred approach to have a more reliable vision on the composition of microbial communities.  相似文献   

13.
The recent introduction of massively parallel pyrosequencers allows rapid, inexpensive analysis of microbial community composition using 16S ribosomal RNA (rRNA) sequences. However, a major challenge is to design a workflow so that taxonomic information can be accurately and rapidly assigned to each read, so that the composition of each community can be linked back to likely ecological roles played by members of each species, genus, family or phylum. Here, we use three large 16S rRNA datasets to test whether taxonomic information based on the full-length sequences can be recaptured by short reads that simulate the pyrosequencer outputs. We find that different taxonomic assignment methods vary radically in their ability to recapture the taxonomic information in full-length 16S rRNA sequences: most methods are sensitive to the region of the 16S rRNA gene that is targeted for sequencing, but many combinations of methods and rRNA regions produce consistent and accurate results. To process large datasets of partial 16S rRNA sequences obtained from surveys of various microbial communities, including those from human body habitats, we recommend the use of Greengenes or RDP classifier with fragments of at least 250 bases, starting from one of the primers R357, R534, R798, F343 or F517.  相似文献   

14.
Phototrophic consortia represent the most highly developed type of interspecific association of bacteria and consist of green sulfur bacterial epibionts attached around a central colourless rod-shaped bacterium. Based on 16S rRNA gene sequencing, the central bacterium of the consortium 'Chlorochromatium aggregatum' was recently shown to represent a novel and phylogenetically isolated lineage of the Comamonadaceae within the beta-subgroup of the Proteobacteria. To date, 19 types of phototrophic consortia are distinguished based on the different 16S rRNA gene sequences of their epibionts, but the diversity and phylogenetic relationships of the heterotrophic partner bacteria are still unknown. We developed an approach based on the specific rrn (ribosomal RNA) operon structure of the central bacterium of 'C. aggregatum' to recover 16S rRNA gene sequences of other central bacteria and their close relatives from natural consortia populations. Genomic DNA of the central bacterium of 'C. aggregatum' was first enriched several hundred-fold by employing a selective method for growth of consortia in a monolayer biofilm followed by a purification of the genome of the central bacterium by cesium chloride-bisbenzimidazole equilibrium density gradient centrifugation. A combination of inverse PCR, cloning and sequencing revealed that two rrn operons of the central bacterium are arranged in a tandem fashion and are separated by an unusually short intergenic region of 195 base pairs. This rare gene order was exploited to screen various natural microbial communities by PCR. We discovered a diverse and previously unknown subgroup of Betaproteobacteria in the chemoclines of freshwater lakes. This group was absent in other freshwater and soil samples. All the 16S rRNA gene sequences recovered are related to that of the central bacterium of 'C. aggregatum'. Fluorescence in situ hybridization indicated that two of these sequences originated from central bacteria of different phototrophic consortia, which, however, were only distantly related to the central bacterium of 'C. aggregatum'. Based on a detailed phylogenetic analysis, these central bacterial symbionts of phototrophic consortia have a polyphyletic origin.  相似文献   

15.
16.

Background

The 16S rRNA gene-based amplicon sequencing analysis is widely used to determine the taxonomic composition of microbial communities. Once the taxonomic composition of each community is obtained, evolutionary relationships among taxa are inferred by a phylogenetic tree. Thus, the combined representation of taxonomic composition and phylogenetic relationships among taxa is a powerful method for understanding microbial community structure; however, applying phylogenetic tree-based representation with information on the abundance of thousands or more taxa in each community is a difficult task. For this purpose, we previously developed the tool VITCOMIC (VIsualization tool for Taxonomic COmpositions of MIcrobial Community), which is based on the genome-sequenced microbes’ phylogenetic information. Here, we introduce VITCOMIC2, which incorporates substantive improvements over VITCOMIC that were necessary to address several issues associated with 16S rRNA gene-based analysis of microbial communities.

Results

We developed VITCOMIC2 to provide (i) sequence identity searches against broad reference taxa including uncultured taxa; (ii) normalization of 16S rRNA gene copy number differences among taxa; (iii) rapid sequence identity searches by applying the graphics processing unit-based sequence identity search tool CLAST; (iv) accurate taxonomic composition inference and nearly full-length 16S rRNA gene sequence reconstructions for metagenomic shotgun sequencing; and (v) an interactive user interface for simultaneous representation of the taxonomic composition of microbial communities and phylogenetic relationships among taxa. We validated the accuracy of processes (ii) and (iv) by using metagenomic shotgun sequencing data from a mock microbial community.

Conclusions

The improvements incorporated into VITCOMIC2 enable users to acquire an intuitive understanding of microbial community composition based on the 16S rRNA gene sequence data obtained from both metagenomic shotgun and amplicon sequencing.
  相似文献   

17.
18.
The potential for comparing microbial community population structures has been greatly enhanced by developments in next generation sequencing methods that can generate hundreds of thousands to millions of reads in a single run. Conversely, many microbial community comparisons have been published with no more than 1,000 sequences per sample. These studies have presented data on levels of shared operational taxonomic units (OTUs) between communities. Due to lack of coverage, that approach might compromise the conclusions about microbial diversity and the degree of difference between environments. In this study, we present data from recent studies that highlight this problem. Also, we analyzed datasets of 16 rRNA sequences with small and high sequence coverage from different environments to demonstrate that the level of sequencing effort used for analyzing microbial communities biases the results. We randomly sampled pyrosequencing-generated 16S rRNA gene libraries with increasing sequence effort. Sequences were used to calculate Good's coverage, the percentage of shared OTUs, and phylogenetic distance measures. Our data showed that simple counts of presence/absence of taxonomic unities do not reflect the real similarity in membership and structure of the bacterial communities and that community comparisons based on phylogenetic tests provide a way to test statistically significant differences between two or more environments without need an exhaustive sampling effort.  相似文献   

19.
Membrane biofouling was investigated during the early stages of filtration in a laboratory-scale membrane bioreactor operated on molasses wastewater. The bacterial diversity and composition of the membrane biofilm and activated sludge were analyzed using terminal restriction fragment length polymorphism coupled with 16S rRNA clone library construction and sequencing. The amount of extracellular polymeric substances produced by bacteria was investigated using spectroscopic methods. The results reveal that the bacterial community of activated sludge differs significantly from that of the membrane biofilm, especially at the initial phase. Phylogenetic analysis based on 16S rRNA gene sequences identified 25 pioneer OTUs responsible for membrane surface colonization. Also, the relationship between the identified bacterial strains and the system specifications was explored.  相似文献   

20.
Great Salt Lake (GSL) represents one of the world’s most hypersaline environments. In this study, the archaeal and bacterial communities at the North and South arms of the lake were surveyed by cloning and sequencing the 16S rRNA gene. The sampling locations were chosen for high salt concentration and the presence of unique environmental gradients, such as petroleum seeps and high sulfur content. Molecular techniques have not been systematically applied to this extreme environment, and thus the composition and the genetic diversity of microbial communities at GSL remain mostly unknown. This study led to the identification of 58 archaeal and 42 bacterial operational taxonomic units. Our phylogenetic and statistical analyses displayed a high biodiversity of the microbial communities in this environment. In this survey, we also showed that the majority of the 16S rRNA gene sequences within the clone library were distantly related to previously described environmental halophilic archaeal and bacterial taxa and represent novel phylotypes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号