首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
The object of this paper is to help to evolve a conceptual framework suitable for exploring and explaining the mechanisms of protonmotive cytochrome systems.A review of some of the knowledge of the kinetic and equilibrium behaviour of the classical cytochrome systems of mitochondria indicates that the simple redox loop concept is not adequate for building a realistic conceptual model. In particular, the remarkable behaviour of the components of the cytochrome b-c1 complex, which has long been regarded as puzzling, cannot be explained on the basis of simple redox loop formulations. However, the newly introduced concepts of the protonmotive ubiquinone cycle, or Q cycle, and of the cyclic loop 2–3 system, which represent developments of the redox loop concept, are shown to provide a promising basis for the evolution of a satisfactory theory.The mechanism of the Q cycle is discussed and developed in the light of experimental knowledge of classical mitochondrial cytochrome systems. The possible operation of a Q cycle in chloroplasts and bacteria is briefly discussed, and attention is drawn to bacterial cytochrome systems that appear to be organized as simple redox loops rather than as cyclic systems.Some aspects of notions of direct chemiosmotic coupling and indirect conformational coupling are compared in the context of research strategy.  相似文献   

2.
The paper presents a survey of time-resolved studies of charge translocation by cytochrome c oxidase coupled to transfer of the 1st, 2nd 3rd and 4th electrons in the catalytic cycle. Single-electron photoreduction experiments carried out with the A-class cytochrome c oxidases of aa(3) type from mitochondria, Rhodobacter sphaeroides and Paracoccus denitrificans as well as with the ba(3)-type oxidase from Thermus thermophilus indicate that the protonmotive mechanisms, although similar, may not be identical for different partial steps in the same enzyme species, as well as for the same single-electron transition in different oxidases. The pattern of charge translocation coupled to transfer of a single electron in the A-class oxidases confirms major predictions of the original model of proton pumping by cytochrome oxidase [Artzatbanov, V. Y., Konstantinov, A. A. and Skulachev, V.P. "Involvement of Intramitochondrial Protons in Redox Reactions of Cytochrome a." FEBS Lett. 87: 180-185]. The intermediates and partial electrogenic steps observed in the single-electron photoreduction experiments may be very different from those observed during oxidation of the fully reduced oxidase by O(2) in the "flow-flash" studies. .  相似文献   

3.
P Mitchell 《FEBS letters》1987,222(2):235-245
A new hypothetical type of redox loop is described, which translocates hydroxide instead of protons. Conventional protonmotive redox loops use carriers of protons with electrons (e.g. QH2/Q systems) to couple electron transfer to the translocation of protons. The putative hydroxidemotive redox loop uses carriers of hydroxide ions against electrons (e.g. transition-metal centres) to couple electron transfer to the translocation of hydroxide ions. This simple idea leads to the proposal of a hydroxidemotive Cu loop mechanism that may possibly be applicable to the CuA or CuB centre of cytochrome oxidase, and might thus account for the coupling of electron transfer to net proton translocation in that osmoenzyme.  相似文献   

4.
Konstantinov AA 《FEBS letters》2012,586(5):630-639
Several issues relevant to the current studies of cytochrome c oxidase catalytic mechanism are discussed. The following points are raised. (1) The terminology currently used to describe the catalytic cycle of cytochrome oxidase is outdated and rather confusing. Presumably, it would be revised so as to share nomenclature of the intermediates with other oxygen-reactive heme enzymes like P450 or peroxidases. (2) A "catalytic cycle" of cytochrome oxidase involving complete reduction of the enzyme by 4 electrons followed by oxidation by O(2) is a chimera composed artificially from two partial reactions, reductive and oxidative phases, that never operate together as a true multi-turnover catalytic cycle. The 4e(-) reduction-oxidation cycle would not serve a paradigm for oxygen reduction mechanism and protonmotive function of cytochrome oxidase. (3) The foremost role of the K-proton channel in the catalytic cycle may consist in securing faultless delivery of protons for heterolytic O-O bond cleavage in the oxygen-reducing site, minimizing the danger of homolytic scission reaction route. (4) Protonmotive mechanism of cytochrome oxidase may vary notably for the different single-electron steps in the catalytic cycle.  相似文献   

5.
A study is presented on the pH dependence of proton translocation in the oxidative and reductive phases of the catalytic cycle of purified cytochrome c oxidase (COX) from beef heart reconstituted in phospholipid vesicles (COV). Protons were shown to be released from COV both in the oxidative and reductive phases. In the oxidation by O2 of the fully reduced oxidase, the H+/COX ratio for proton release from COV (R --> O transition) decreased from approximately 2.4 at pH 6.5 to approximately 1.8 at pH 8.5. In the direct reduction of the fully oxidized enzyme (O --> R transition), the H+/COX ratio for proton release from COV increased from approximately 0.3 at pH 6.5 to approximately 1.6 at pH 8.5. Anaerobic oxidation by ferricyanide of the fully reduced oxidase, reconstituted in COV or in the soluble case, resulted in H+ release which exhibited, in both cases, an H+/COX ratio of 1.7-1.9 in the pH range 6.5-8.5. This H+ release associated with ferricyanide oxidation of the oxidase, in the absence of oxygen, originates evidently from deprotonation of acidic groups in the enzyme cooperatively linked to the redox state of the metal centers (redox Bohr protons). The additional H+ release (O2 versus ferricyanide oxidation) approaching 1 H+/COX at pH < or = 6.5 is associated with the reduction of O2 by the reduced metal centers. At pH > or = 8.5, this additional proton release takes place in the reductive phase of the catalytic cycle of the oxidase. The H+/COX ratio for proton release from COV in the overall catalytic cycle, oxidation by O2 of the fully reduced oxidase directly followed by re-reduction (R --> O --> R transition), exhibited a bell-shaped pH dependence approaching 4 at pH 7.2. A mechanism for the involvement in the proton pump of the oxidase of H+/e- cooperative coupling at the metal centers (redox Bohr effects) and protonmotive steps of reduction of O2 to H2O is presented.  相似文献   

6.
In cytochrome c oxidase, oxido-reductions of heme a/Cu(A) and heme a3/Cu(B) are cooperatively linked to proton transfer at acid/base groups in the enzyme. H+/e- cooperative linkage at Fe(a3)/Cu(B) is envisaged to be involved in proton pump mechanisms confined to the binuclear center. Models have also been proposed which involve a role in proton pumping of cooperative H+/e- linkage at heme a (and Cu(A)). Observations will be presented on: (i) proton consumption in the reduction of molecular oxygen to H2O in soluble bovine heart cytochrome c oxidase; (ii) proton release/uptake associated with anaerobic oxidation/reduction of heme a/Cu(A) and heme a3/Cu(B) in the soluble oxidase; (iii) H+ release in the external phase (i.e. H+ pumping) associated with the oxidative (R-->O transition), reductive (O-->R transition) and a full catalytic cycle (R-->O-->R transition) of membrane-reconstituted cytochrome c oxidase. A model is presented in which cooperative H+/e- linkage at heme a/Cu(A) and heme a3/Cu(B) with acid/base clusters, C1 and C2 respectively, and protonmotive steps of the reduction of O2 to water are involved in proton pumping.  相似文献   

7.
Antimycin, a specific and highly potent inhibitor of electron transfer in the cytochrome b-c1 segment of the mitochondrial respiratory chain, does not inhibit reduction of cytochrome c1 by succinate in isolated succinate-cytochrome c reductase complex under conditions where the respiratory chain complex undergoes one oxidation-reduction turnover. If a slight molar excess of cytochrome c is added to the isolated reductase complex in the presence of antimycin, there is rapid reduction of one equivalent of c type cytochrome by succinate, after which reduction of the remaining c type cytochrome is inhibited. Antimycin fully inhibits succinate-cytochrome c reductase activity of isolated succinate-cytochrome c reductase complex in which the b-c1 complex undergoes multiple turnovers in a catalytic fashion. In addition, when antimycin is added to isolated reductase complex in the presence of cytochrome c plus cytochrome c oxidase, the inhibitor causes a "crossover" in the steady state level of reduction of the cytochromes b and c1 comparable to this classical effect in mitochondria. On the basis of these results, it is suggested that linear schemes of electron transfer are not adequate to account for the site of antimycin inhibition and the mechanism of electron transfer in the cytochrome b-c1 segment of the respiratory chain. The effects of antimycin are consistent with cyclic electron transfer mechanisms such as the protonmotive Q cycle.  相似文献   

8.
Proton pumping heme-copper oxidases represent the terminal, energy-transfer enzymes of respiratory chains in prokaryotes and eukaryotes. The CuB-heme a3 (or heme o) binuclear center, associated with the largest subunit I of cytochrome c and quinol oxidases, is directly involved in the coupling between dioxygen reduction and proton pumping. The role of the other subunits is less clear. The following aspects will be covered in this paper:i) the efficiency of coupling in the mitochondrial aa3 cytochrome c oxidase. In particular, the effect of respiratory rate and protonmotive force on the H+/e? stoichiometry and the role of subunit IV; ii) mutational analysis of the aa3 quinol oxidase of Bacillus subtilis addressed to the role of subunit III, subunit IV and specific residues in subunit I; iii) possible models of the protonmotive catalytic cycle at the binuclear center. The observations available suggest that H+/e?coupling is based on the combination of protonmotive redox catalysis at the binuclear center and co-operative proton transfer in the protein.  相似文献   

9.
Superoxide dismutase is shown to affect spectral changes observed upon cytochrome c oxidase reaction with H2O2, which indicates a possibility of O2- radicals being formed in the reaction. Using DMPO as a spin trap, generation of superoxide radicals from H2O2 in the presence of cytochrome oxidase is directly demonstrated. The process is inhibited by cyanide and is not observed with a heat-denatured enzyme pointing to a specific reaction in the oxygen-reducing centre of cytochrome c oxidase. The data support a hypothesis on a catalase cycle catalyzed by cytochrome c oxidase in the presence of excess H2O2 (Vygodina and Konstantinov (1988) Ann. NY Acad. Sci., 550, 124-138): (formula: see text)  相似文献   

10.
The heme-copper oxidases convert the free energy liberated in the reduction of O(2) to water into a transmembrane proton electrochemical potential (protonmotive force). One of the essential structural elements of the enzyme is the D-channel, which is thought to be the input pathway, both for protons which go to form H(2)O ("chemical protons") and for protons that get translocated across the lipid membrane ("pumped protons"). The D-channel contains a chain of water molecules extending about 25 A from an aspartic acid (D132 in the Rhodobacter sphaeroides oxidase) near the cytoplasmic ("inside") enzyme surface to a glutamic acid (E286) in the protein interior. Mutations in which either of these acidic residues is replaced by their corresponding amides (D132N or E286Q) result in severe inhibition of enzyme activity. In the current work, an asparagine located in the D-channel has been replaced by the corresponding acid (N139 to D; N98 in bovine enzyme) with dramatic consequences. The N139D mutation not only completely eliminates proton pumping but, at the same time, confers a substantial increase (150-300%) in the steady-state cytochrome oxidase activity. The N139D mutant of the R. sphaeroides oxidase was further characterized by examining the rates of individual steps in the catalytic cycle. Under anaerobic conditions, the rate of reduction of heme a(3) in the fully oxidized enzyme, prior to the reaction with O(2), is identical to that of the wild-type oxidase and is not accelerated. However, the rate of reaction of the fully reduced enzyme with O(2) is accelerated by the N139D mutation, as shown by a more rapid F --> O transition. Whereas the rates of formation and decay of the oxygenated intermediates are altered, the nature of the oxygenated intermediates is not perturbed by the N139D mutation.  相似文献   

11.
The electron transport system coupled to the oxidation of methylamine in Pseudomonas AM1 was investigated by reconstituting it from the highly purified components. A mixture of methylamine dehydrogenase, cytochrome cH and cytochrome c oxidase (= cytochrome aa3) actively oxidized methylamine (161 mol of O2 consumed/mol of heme a of cytochrome c oxidase X min). In this system, addition of amicyanin did not affect the oxygen consumption rate. The oxygen consumption rate of the cell-free extract prepared from the cells cultivated in a copper-deficient medium was directly proportional to the amount of amicyanin added, and extrapolation to zero copper concentration gave a value of 28 mol of O2 consumed/mol of heme a of cytochrome c oxidase X min. These results suggest that methylamine oxidation in the bacterium can occur at least to some extent without participation of amicyanin.  相似文献   

12.
A study is presented of the characteristics of redox-linked proton translocation in the b-c1 complex isolated from beef-heart mitochondria and reconstituted into phospholipid vesicles. Measurements of the H+/e- stoichiometry, with three different methods, show that four protons are released from the vesicles per 2e- flowing from quinols to cytochrome c, two of these protons formally deriving from scalar oxidation of quinols by cytochrome c. This H+/e- stoicheiometry is independent of the initial redox state of the b-c1 complex (fully reduced or oxidized) and the rate of electron flow through the complex. It does not change in the pH range 6.0 - 7.2, but declines to 1.5 going with pH from 7.2 - 8.3. This decrease is accompanied by enhancement of the rate of electron flow in the coupled state. Collapse of delta psi effected by valinomycin addition to turning-over b-c1 vesicles resulted in substantial oxidation of cytochrome b-566 and comparable reduction of cytochrome c1, with little oxidation of cytochrome b-562. Nigericin alone had no effect on the steady-state redox levels of b and c cytochromes. Its addition in the presence of valinomycin caused oxidation of b cytochromes but no change in the redox state of cytochrome c1. Valinomycin alone caused a marked enhancement of the rate of electron flow through the complex. Nigericin alone was ineffective, but caused further stimulation of electron flow when added in the presence of valinomycin. The data presented are discussed in terms of two mechanisms: the Q cycle and a model based on combination of protonmotive catalysis by special bound quinone and proton conduction along pathways in the apoproteins.  相似文献   

13.
The cytochrome bc(1) complex catalyzes electron transfer from ubiquinol to cytochrome c by a protonmotive Q cycle mechanism in which electron transfer is linked to proton translocation across the inner mitochondrial membrane. In the Q cycle mechanism proton translocation is the net result of topographically segregated reduction of quinone and reoxidation of quinol on opposite sides of the membrane, with protons being carried across the membrane as hydrogens on the quinol. The linkage of proton chemistry to electron transfer during quinol oxidation and quinone reduction requires pathways for moving protons to and from the aqueous phase and the hydrophobic environment in which the quinol and quinone redox reactions occur. Crystal structures of the mitochondrial cytochrome bc(1) complexes in various conformations allow insight into possible proton conduction pathways. In this review we discuss pathways for proton conduction linked to ubiquinone redox reactions with particular reference to recently determined structures of the yeast bc(1) complex.  相似文献   

14.
The cytochrome o complex is the predominant terminal oxidase in the aerobic respiratory chain of Escherichia coli when the bacteria are grown under conditions of high aeration. The oxidase is a ubiquinol oxidase and reduces molecular oxygen to water. Electron transport through the enzyme is coupled to the generation of a protonmotive force. The purified cytochrome o complex contains four or five subunits, two protoheme IX (heme b) prosthetic groups, plus at least one Cu. The subunits are all encoded by the cyo operon. Sequence comparisons show that the cytochrome o complex is closely related to the aa3-type cytochrome c oxidase family. Gene fusions have been used to define the topology of each of the gene products. Subunits I, II, III and IV are proposed to have 15, 2, 5 and 3 transmembrane spans, respectively. The fifth gene product (cyoE) encodes a protein with 7 membrane spanning segments, and this may also be a subunit of this enzyme. Fourier transform infrared spectroscopy has been used to monitor CO bound in the active site where oxygen is reduced. These data provide definitive proof that the cytochrome o complex has a heme-copper binuclear center, similar to that present in the aa3-type cytochrome c oxidases. Site-directed mutagenesis is being utilized to define which amino acids are ligands to the heme iron and copper prosthetic groups.  相似文献   

15.
The cytochrome bc1 complex resides in the inner membrane of mitochondria and transfers electrons from ubiquinol to cytochrome c. This electron transfer is coupled to the translocation of protons across the membrane by the protonmotive Q cycle mechanism. This mechanism topographically separates reduction of quinone and reoxidation of quinol at sites on opposite sites of the membrane, referred to as center N (Qn site) and center P (Qp site), respectively. Both are located on cytochrome b, a transmembrane protein of the bc1 complex that is encoded on the mitochondrial genome. To better understand the parameters that affect ligand binding at the Qn site, we applied the Qn site inhibitor ilicicolin H to select for mutations conferring resistance in Saccharomyces cerevisiae. The screen resulted in seven different single amino acid substitutions in cytochrome b rendering the yeast resistant to the inhibitor. Six of the seven mutations have not been previously linked to inhibitor resistance. Ubiquinol-cytochrome c reductase activities of mitochondrial membranes isolated from the mutants confirmed that the differences in sensitivity toward ilicicolin H originated in the cytochrome bc1 complex. Comparative in vivo studies using the known Qn site inhibitors antimycin and funiculosin showed little cross-resistance, indicating different modes of binding of these inhibitors at center N of the bc1 complex.  相似文献   

16.
Proton translocation in the catalytic cycle of cytochrome c oxidase (CcO) proceeds sequentially in a four-stroke manner. Every electron donated by cytochrome c drives the enzyme from one of four relatively stable intermediates to another, and each of these transitions is coupled to proton translocation across the membrane, and to uptake of another proton for production of water in the catalytic site. Using cytochrome c oxidase from Paracoccus denitrificans we have studied the kinetics of electron transfer and electric potential generation during several such transitions, two of which are reported here. The extent of electric potential generation during initial electron equilibration between CuA and heme a confirms that this reaction is not kinetically linked to vectorial proton transfer, whereas oxidation of heme a is kinetically coupled to the main proton translocation events during functioning of the proton pump. We find that the rates and amplitudes in multiphase heme a oxidation are different in the OH-->EH and PM-->F steps of the catalytic cycle, and that this is reflected in the kinetics of electric potential generation. We discuss this difference in terms of different driving forces and relate our results, and data from the literature, to proposed mechanisms of proton pumping in cytochrome c oxidase.  相似文献   

17.
Ubiquinol-cytochrome c oxidoreductase (cytochrome bc1) complex from Paracoccus denitrificans consists of only three polypeptide subunits (Yang, X., and Trumpower, B. L. (1986) J. Biol. Chem. 261, 12282-12289), whereas the analogous complexes of eukaryotic mitochondria consist of nine or more polypeptides (Schagger, H., Link, T. A., Engel, W. D., and von Jagow, G. (1986) Methods Enzymol. 126, 224-237). Using the purified three-subunit Paracoccus complex we have tested whether this simple cytochrome bc1 complex has the same electron transfer pathway and proton translocation activity as the bc1 complexes of mitochondria. Under presteady state conditions, the effects of inhibitors on reduction of cytochromes b and c1 by quinol and oxidant-induced reduction of cytochrome b indicate a cyclic electron transfer pathway and two routes of cytochrome b reduction in the three-subunit Paracoccus cytochrome bc1 complex. A novel method was developed to incorporate the cytochrome bc1 complex into liposomes with the detergent dodecyl maltoside. The enzyme reconstituted into liposomes translocated protons with an H+/2e value of 3.9. Carbonyl cyanide m-chlorophenylhydrazone eliminated proton translocation, while permitting the scalar release of protons from quinol, and thus reduced the H+/2e ratio to 2. These values agree with the predicted stoichiometries for proton translocation by a protonmotive Q cycle pathway. No inhibition of proton translocation by N',N'-dicyclohexylcarbodiimide was detected when the Paracoccus cytochrome bc1 complex was incubated with N',N'-dicyclohexylcarbodiimide before or after reconstitution into liposomes. Electron transfer in the three-subunit complex thus appears to occur by a protonmotive Q cycle pathway identical to that in mitochondrial cytochrome bc1 complexes. Only three polypeptides, cytochromes b, c1, and the Rieske iron-sulfur protein, are required for respiration and energy transduction in the cytochrome bc1 complex. The function of the supernumerary polypeptides in mitochondrial bc1 complexes is thus unclear.  相似文献   

18.
The purpose of this work is to measure protonmotive force and cytochrome reduction level under different respiratory steady states in isolated yeast mitochondria. The rate of respiration was varied by using three sets of conditions: (a) different external phosphate concentrations with a fixed concentration of ADP (ATP synthesis) and (b) different concentrations of carbonylcyanide m-chlorophenylhydrazone in the presence of oligomycin and carboxyatractylate (uncoupling) either in the absence or (c) in the presence of external ATP. ADP plus phosphate stimulates respiration more than uncoupler at the same protonmotive force value. However, the relationships between respiratory rate and protonmotive force were similar when stimulation was induced either by ADP + Pi or by carbonylcyanide m-chlorophenylhydrazone in the presence of ATP. At the same respiratory rate, cytochrome a + a3 is more reduced by uncoupler than by ADP + Pi additions. However, the relationships between respiratory rate and reduction level of cytochrome-c oxidase are similar both under ATP synthesis and with uncoupling conditions in the presence of external ATP. Control of respiration exerted by cytochrome-c oxidase, and support the view the condition mentioned above. This control was low when the respiratory rate was varied by the ATP synthesis rate; it increased as a function of the respiratory rate with uncoupler in the absence of ATP. ATP decreased this control under uncoupling conditions. These results suggest a regulatory effect of external ATP on cytochrome-c oxidase, and support the view that the relationships between respiratory rate and protonmotive force, on the one hand, and respiratory rate and the reduction level of cytochrome-c oxidase, on the other, depend respectively on the kinetic regulations of the system.  相似文献   

19.
B C Hill  C Greenwood 《FEBS letters》1984,166(2):362-366
The reaction with O2 of equimolar mixtures of cytochrome c and cytochrome c oxidase in high and low ionic strength buffers has been examined by flow-flash spectrophotometry at room temperature. In low ionic strength media where cytochrome c and the oxidase are bound in an electrostatic, 1:1 complex some of the cytochrome c is oxidised at a faster rate than a metal centre of the oxidase. In contrast, when cytochrome c and cytochrome c oxidase are predominantly dissociated at high ionic strength cytochrome c oxidation occurs only slowly (t1/2 = 5 s) following the complete oxidation of the oxidase. These results demonstrate that maximal rates of electron transfer from cytochrome c to O2 occur when both substrates are present on the enzyme. The heterogeneous oxidation of cytochrome c observed in the complex implies more than one route for electron transfer within the enzyme. Possibilities for new electron transfer pathways from cytochrome c to O2 are proposed.  相似文献   

20.
Fungal respiration: a fusion of standard and alternative components   总被引:22,自引:0,他引:22  
In animals, electron transfer from NADH to molecular oxygen proceeds via large respiratory complexes in a linear respiratory chain. In contrast, most fungi utilise branched respiratory chains. These consist of alternative NADH dehydrogenases, which catalyse rotenone insensitive oxidation of matrix NADH or enable cytoplasmic NADH to be used directly. Many also contain an alternative oxidase that probably accepts electrons directly from ubiquinol. A few fungi lack Complex I. Although the alternative components are non-energy conserving, their organisation within the fungal electron transfer chain ensures that the transfer of electrons from NADH to molecular oxygen is generally coupled to proton translocation through at least one site. The alternative oxidase enables respiration to continue in the presence of inhibitors for ubiquinol:cytochrome c oxidoreductase and cytochrome c oxidase. This may be particularly important for fungal pathogens, since host defence mechanisms often involve nitric oxide, which, whilst being a potent inhibitor of cytochrome c oxidase, has no inhibitory effect on alternative oxidase. Alternative NADH dehydrogenases may avoid the active oxygen production associated with Complex I. The expression and activity regulation of alternative components responds to factors ranging from oxidative stress to the stage of fungal development.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号