首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Crude synaptic membranes of avian and mammalian brain tissue were photolabeled with the benzodiazepine-receptor ligand [3H]flunitrazepam and subsequently treated extensively with trypsin followed by incubation with endoglycosidase F. SDS-polyacrylamide gel electrophoresis and fluorography revealed that the final tryptic degradation product of 25 kDa in both pigeon and calf brain is deglycosylated in two steps. These results were confirmed by immunoblots of similarly pretreated membranes of pig brain using the alpha-subunit-specific monoclonal antibody bd-24. Benzodiazepine-receptor binding and its enhancement by GABA are largely retained after trypsinization. Based on the proposed transmembrane topology for the alpha-subunits of the GABA/benzodiazepine receptor, we suggest that the large N-terminal domain of benzodiazepine-binding proteins is protected against tryptic cleavage.  相似文献   

2.
Affinity-labeling probes with sites of cross-linking distributed along the ligand have been used to biochemically characterize the pancreatic cholecystokinin (CCK) receptor. Probes with photolabile sites spanning the receptor-binding domain have labeled a Mr = 85,000-95,000 plasma membrane protein, while a probe cross-linked via the amino terminus of CCK-33, far removed from the carboxyl-terminal receptor-binding domain, has labeled a distinct Mr = 80,000 protein. In this work, protease peptide mapping of the pancreatic proteins labeled by each of these probes has been performed to gain insight into the identities of the bands and to define domains of the labeled proteins. Photolabile decapeptide probes with sites of cross-linking at the amino terminus, mid region, and carboxyl terminus of the receptor-binding domain each labeled a Mr = 85,000-95,000 glycoprotein with a Mr = 42,000 core protein and similar Staphylococcus aureus V8 protease peptide maps. This confirms that each probe labels the same binding protein and the same domain of that protein. Serial slices through the broad labeled band were separately deglycosylated and protease-treated, demonstrating a single protein core with differential glycosylation. The CCK-33-based probe, however, labeled predominantly two proteins, one having similar sizes in its native and deglycosylated forms to that labeled by the decapeptide probes and a distinct Mr = 80,000 protein. Of note, the peptide map of the protein believed to be the same as that labeled by the shorter probes was different, suggesting that this probe labeled the binding subunit at a site distinct from that which was labeled by the short probes.  相似文献   

3.
Bispecific IgG asymmetric (heterodimeric) antibodies offer enhanced therapeutic efficacy, but present unique challenges for drug development. These challenges are related to the proper assembly of heavy and light chains. Impurities such as symmetric (homodimeric) antibodies can arise with improper assembly. A new method to assess heterodimer purity of such bispecific antibody products is needed because traditional separation-based purity assays are unable to separate or quantify homodimer impurities. This paper presents a liquid chromatography-mass spectrometry (LC-MS)-based method for evaluating heterodimeric purity of a prototype asymmetric antibody containing two different heavy chains and two identical light chains. The heterodimer and independently expressed homodimeric standards were characterized by two complementary LC-MS techniques: Intact protein mass measurement of deglycosylated antibody and peptide map analyses. Intact protein mass analysis was used to check molecular integrity and composition. LC-MSE peptide mapping of Lys-C digests was used to verify protein sequences and characterize post-translational modifications, including C-terminal truncation species. Guided by the characterization results, a heterodimer purity assay was demonstrated by intact protein mass analysis of pure deglycosylated heterodimer spiked with each deglycosylated homodimeric standard. The assay was capable of detecting low levels (2%) of spiked homodimers in conjunction with co-eluting half antibodies and multiple mass species present in the homodimer standards and providing relative purity differences between samples. Detection of minor homodimer and half-antibody C-terminal truncation species at levels as low as 0.6% demonstrates the sensitivity of the method. This method is suitable for purity assessment of heterodimer samples during process and purification development of bispecific antibodies, e.g., clone selection.  相似文献   

4.
Exoglucanase (exo-1,3-β-D-glucan glycohydrolase, EC 3.2.1.56) activity secreted by Saccharomyces cerevisiae into the culture medium was separated by ion exchange chromatography into two glycoprotein isoenzymes which contributed 10% (exoglucanase I) and 90% (exoglucanase II) towards the total activity. Analysis of the “in vitro” deglycosylated products by polyacrylamide gel electrophoresis under native or denaturing conditions indicated that the protein portions of both exoglucanases exhibited identical mobility, each one consisting of two polypeptides with M r of 47000 and 48000. The same profile was shown by the exoglucanase secreted in the presence of tunicamycin. Antibodies raised against the protein portion of exoglucanase II did react with both native exoglucanases and their deglycosylated products with a pattern indicative of immunological identity. Digestion of the “in vitro” deglycosylated products of both exoglucanases with Staphylococcus aureus V-8 protease or trypsin generated the same proteolytic fragments in each case. Only exoglucanase II was secreted by protoplasts. These and previously reported results indicate that the protein portions of both isoenzymes may be the product of the same gene (or a family of related genes), and that exoglucanase I is a product of enzyme II, modified by a process occurring beyond the permeability barrier of the cell.  相似文献   

5.
Fc gamma RIII is a family of protein isoforms encoded by at least two distinct, yet highly homologous, genes. Fc gamma RIII on neutrophils is a glycosylphosphatidylinositol-linked protein with an allelic polymorphism (NA1/NA2) while Fc gamma RIII on NK cells (Fc gamma RIIINK) is an exclusively transmembrane protein without the NA polymorphism. The relationship of the isoform of Fc gamma RIII expressed on cultured monocytes (Fc gamma RIIIM phi) to these two forms, however, is unclear because some evidence suggests lowered expression of Fc gamma RIIIM phi in paroxysmal nocturnal hemoglobinuria (unlike Fc gamma RIIINK) and a unique deglycosylated m.w. for Fc gamma RIIIM phi. In this study we demonstrate that, as with Fc gamma RIIINK, Fc gamma RIIIM phi is resistant to the action of phosphatidylinositol-specific phospholipase C and is expressed at normal levels on affected (glycosylphosphatidylinositol-anchor negative) cultured monocytes from patients with paroxysmal nocturnal hemoglobinuria. Fc gamma RIIIM phi is also shed from the cell surface upon incubation at 37 degrees C. However, Fc gamma RIIIM phi and Fc gamma RIIINK have different m.w. as glycosylated proteins despite the same deglycosylated m.w. Thus, each cell type appears to express distinct glycoforms. These differences in glycosylation may influence the functional properties of the receptor.  相似文献   

6.
A buffalo heart galectin-1 purified by gel filtration chromatography revealed the presence of 3.55% carbohydrate content, thus it is the first mammalian heart galectin found to be glycosylated in nature and emphasizes the need to perform deglycosylation studies. Physicochemical comparative analysis between the properties of the native and deglycosylated proteins was carried out to understand the significance of glycosylation. The deglycosylated protein exhibited lesser thermal and pH stability compared to the native galectin. When exposed to thiol blocking reagents, denaturants, and detergents, remarkable differences were observed in the properties of the native and deglycosylated protein. Compared to the native glycosylated protein, the deglycosylated galectin showed enhanced fluorescence quenching when exposed to various agents. CD and FTIR analysis showed that deglycosylation of the purified galectin and its exposure to different chemicals resulted in significant deviations from regular secondary structure of the protein, thus emphasizing the significance of glycosylation for maintaining the active conformation of the protein. The remarkable differences observed in the properties of the native and deglycosylated galectin add an important dimension to the significance of protein glycosylation and its associated biological and clinical relevance.  相似文献   

7.
Wild-type and deglycosylated forms of human prostate-specific antigen were expressed in Chinese hamster ovary (CHO) cells as zymogens. ProPSA was collected from conditioned medium and purified using a single cation-exchange chromatographic step for the deglycosylated form and cation-exchange followed by gel filtration chromatography for the wild-type form. Recombinant wild-type proPSA produced in CHO cells has an average MW of 34.5 kDa, whereas the deglycosylated proPSA has a MW of 32.4 kDa. Both forms of proPSA were activated in vitro and the kinetic properties measured for the deglycosylated PSA are very similar to those of the wild-type recombinant PSA and the native PSA isolated from seminal fluid. These results suggest that deglycosylated PSA is likely to be very similar to native PSA with respect to its three-dimensional structure and will provide a homogeneous protein preparation necessary for X-ray crystallographic analysis.  相似文献   

8.
The uptake by rat yolk sacs of native invertase and invertase which was deglycosylated by treatment with endo-beta-N-acetylglucosaminidase was compared. The initial rate of uptake of the deglycosylated enzyme was severalfold greater and its accumulation leveled off much earlier than that of the native enzyme. Uptake rates of the deglycosylated and native forms of the enzyme were proportional to their concentration in the medium in the range employed and were inhibited about 85% by 10(-6) M glucagon in both cases. After preloading of yolk sacs with native invertase, the tissue level of activity remained relatively constant over a subsequent 6-h time period, while with the deglycosylated form, activity declined substantially. Since this difference appears not to be attributable to differences in thermal stability, it is suggested that the deglycosylated form of the protein is more susceptible to intracellular proteolytic digestion. In vitro studies on the digestion of these two forms of invertase by trypsin are consistent with this suggestion.  相似文献   

9.
The carbohydrate portion of prothrombin fragment 1 has been removed by fluorolysis in anhydrous HF. The deglycosylated protein retains its calcium- and membrane-binding properties. The slow, calcium-dependent protein transition monitored by changes in intrinsic protein fluorescence remains intact for the aglycoprotein. Calcium-dependent protein-membrane binding is also observed and can be quantitatively reversed with EDTA. The major alteration resulting from carbohydrate removal is the degree of protein self-association. Both the normal and deglycosylated proteins undergo a rapid self-association which approaches a dimer in the presence of calcium. This self-association is independent of the slow change in intrinsic fluorescence. The deglycosylated protein then undergoes a secondary self-association with kinetics identical with the fluorescence change. This secondary self-association also occurs on the membrane surface. This suggests that the calcium-dependent conformational change exposes a site on the protein which functions in secondary self-association. The carbohydrate apparently masks this site in the native molecule.  相似文献   

10.
Dopamine beta-hydroxylase (D beta H) (EC 1.14.17.1) from adrenal medulla is a glycoprotein with approximately 5% carbohydrate by weight. The oligosaccharide chains of this enzyme were enzymatically removed with various glycosidic enzymes (endoglycosidases D, F, and H; glycopeptidase F; alpha-mannosidase; neuraminidase; and beta-galactosidase). The time course of deglycosylation was monitored by polyacrylamide gel electrophoresis, and evidence for sugar removal was shown by a modification of the Western blot technique utilizing 125I-labeled concanavalin A and by amino acid analysis. Protein was detected in the gel by using specific antibodies and 125I-labeled protein A. Steady-state kinetic data of deglycosylated D beta H show minor differences between the native and the deglycosylated protein. The Km values for tyramine were 2.17 and 1.66 mM whereas the Km values for oxygen were 0.18 and 0.14 mM for the native and the deglycosylated protein, respectively. The Vmax values (pH 5.0) for the two forms of the enzyme were comparable, with the deglycosylated D beta H being 15% lower. These data indicate that the oligosaccharide moieties present on D beta H do not play a role in catalysis.  相似文献   

11.
A rat Vla vasopressin (rVla) receptor has two putative N-glycosylation sites at 14th and 27th amino acid asparagine in the extracellular N-terminus. In the present study, we examined the possible roles of N-glycosylation of the N-terminus in the receptor function. Three point mutants for deglycosylated rVla receptor were generated in which the 14th and/or the 27th asparagine was replaced with glutamine, namely N14Q, N27Q, and N14:27Q, each tagged with an enhanced green fluorescent protein (EGFP) at their C-termini, and transfected to COS-7 or HEK292 cells. The two single mutants and a double mutant have progressively smaller molecular mass compared to the wild-type receptor as determined by immunoblot analysis, indicating that the two sites are effectively glycosylated in vivo. The maximal ligand binding capacities of three mutant receptors were comparable to that of wild-type (17.02 +/- 1.32 pmol/g protein) with modest changes in ligand binding affinities: N27Q and N14:27Q had decreased binding affinities compared to N14Q and wild-type receptors. The reduced binding affinities of the deglycosylated mutants are not likely due to the impaired intracellular transport since their traffickings were indistinguishable from one another. Taken together, these results suggest that the N-glycosylation at the two sites of the N-terminus of rV1a receptor minimally affects the surface expression and trafficking of the receptor.  相似文献   

12.
13.
Previous work has suggested that rat luteal cells have two populations of LH/hCG receptors that are located in different parts of the cell membrane. The possibility that these two receptor pools may have functional differences has been investigated through examination of the binding and action of native and deglycosylated hCG to different membrane fractions. Ovaries from eCG/hCG-primed immature female rats were separated into 1,000 x g (heavy) and 20,000 x g (light) particulate fractions. Increasing concentrations of NaCl had a biphasic effect on the binding of native and deglycosylated hCG to both membrane fractions, causing an increase in binding at low concentrations and a decrease in binding at higher concentrations. The binding of deglycosylated hCG to both membrane preparations and the binding of native hCG to light-membrane preparations was maximal at approximately the same NaCl concentration (50-65 mM). This was higher than the concentration of NaCl necessary for maximal binding of native hCG to the heavy-membrane preparation. In addition, maximal native hCG binding to this preparation occurred over a broader NaCl concentration range (15-65 mM). Equilibrium binding experiments showed differences in hCG binding to both fractions. In light membranes there were significantly more receptor sites for deglycosylated hCG (11.2 +/- 4.8 fmol/mg ovary) than for native hCG (4.8 +/- 0.7 fmol/mg ovary), with no significant different in affinity. In contrast, in heavy membranes the affinity for deglycosylated hCG (6.30 +/- 0.19.10(9) M-1), was significantly higher than that for native hCG (2.60 +/- 0.13.10(9) M-1), with no significant differences in receptor number.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

14.
The study on the recognition of 35S-labelled somatic antigens of Gnathostoma spinigerum advanced third-stage larva (aL3) has revealed that the mAb GN6/24 immunoprecipitated 26- and 24-kDa proteins from the undigested and N-glycosidase F-digested larval extracts, respectively. The recognition of the deglycosylated form of the glycoprotein indicated that the mAb reacted with the peptide epitope on the 26-kDa protein. Human gnathostomiasis antiserum immunoprecipitated most of the N-glycosidase F-digested larval proteins including the deglycosylated 26-kDa protein.  相似文献   

15.
Pigeon metallothionein consists of two species   总被引:1,自引:0,他引:1  
Two isospecies of metallothionein, a cysteine-rich protein that binds metals, exist in all mammals examined, but only one in some invertebrates and lower animals. Lower vertebrates such as fish and birds have one or two metallothionein genes depending upon the organism. In this study, we show by amino acid sequence determinations that two isospecies of metallothionein, 75% homologous to each other, can be induced by zinc to accumulate in pigeon livers. This is in contrast to single isospecies found in chicken and duck. Each of these two sequences consists of 63 amino acids, with all 20 cysteines in positions held invariant in most if not all class I mammalian metallothioneins. One of these two pigeon isometallothioneins is terminated with histidine at the carboxyl end, which is apparently unique to avians. Its sequence differs from that of duck and chicken by only four substitutions and is the predominant isospecies that accumulates upon induction. The other pigeon metallothionein has lysine at its carboxyl terminus and is devoid of arginine. None of these isospecies carries any aromatic amino acid, which is also characteristic of all higher metallothioneins. As this is the first demonstration with sequence data that two isospecies of metallothionein indeed exist in birds, these results suggest that pigeon metallothionein genes evolved from an ancestral form through duplication and mutation upon specification.  相似文献   

16.
The nature of the primary signals important for the addition of xylose to serines on the core protein of the cartilage chondroitin sulfate proteoglycan has been investigated. The importance of consensus sequence elements (Acidic-Acidic-Xxx-Ser-Gly-Xxx-Gly) in the natural acceptor was shown by the significant decrease in acceptor capability of peptide fragments derived by digestion of deglycosylated core protein with Staphylococcus aureus V8 protease, which cleaves within the consensus sequence, compared to the similar reactivity of trypsin-derived peptide fragments, in which consensus sequences remain intact. A comparison of the acceptor efficiencies (Vmax/Km) of synthetic peptides containing the proposed xylosylation consensus sequence and the natural acceptor (deglycosylated core protein) was then made by use of the in vitro xylosyltransferase assay. The two types of substrates were found to have nearly equivalent acceptor efficiencies and to be competitive inhibitors of each other's acceptor capability, with Km = Kiapparent. These results suggest that the artificial peptides containing the consensus sequence are analogues of individual substitution sites on the core protein and allowed the kinetic mechanism of the xylosyltransferase reaction to be investigated, with one of the artificial peptides as a model substrate. The most probable kinetic mechanism for the xylosyltransferase reaction was found to be an ordered single displacement with UDP-xylose as the leading substrate and the xylosylated peptide as the first product released. This represents the first reported formal kinetic mechanism for this glycosyltransferase and the only one reported for a nucleotide sugar:protein transferase.  相似文献   

17.
Deglycosylation of chondroitin sulfate proteoglycan and derived peptides   总被引:1,自引:0,他引:1  
In order to define the domain structure of proteoglycans as well as identify primary amino acid sequences specific for attachment of the various carbohydrate substituents, reliable techniques for deglycosylating proteoglycans are required. In this study, deglycosylation of cartilage chondroitin sulfate proteoglycan (CSPG) with minimal core protein cleavage was accomplished by digestion with chondroitinase ABC and keratanase, followed by treatment with anhydrous HF in pyridine. Nearly complete deglycosylation of secreted proteoglycan was verified within 45 min of HF treatment by loss of incorporated [3H]glucosamine label from the proteoglycan as a function of time of treatment, as well as by direct analysis of carbohydrate content and xylosyltransferase acceptor activity of unlabeled core protein preparations. The deglycosylated CSPG preparations were homogeneous and of high molecular weight (approximately 370,000). Comparison of the intact deglycosylated core protein preparations with newly synthesized unprocessed precursors (apparent Mr approximately 360,000) suggested that extensive proteolytic cleavage of the core protein did not occur during normal intracellular processing. Furthermore, peptide patterns generated after clostripain digestion of core protein precursor and of deglycosylated secreted proteoglycan were comparable. With the use of the clostripain digestion procedure, peptides were produced from unlabeled proteoglycan, and two predominant peptides from the most highly glycosylated regions (the chondroitin sulfate rich regions of the proteoglycan) were isolated, characterized, and deglycosylated. These peptides were found to follow similar kinetics of deglycosylation and to acquire xylose acceptor activity comparable to the intact core protein.  相似文献   

18.
Benzodiazepines exert their anxiolytic, anticonvulsant, muscle-relaxant and sedative-hypnotic properties by allosterically enhancing the action of GABA at GABA(A) receptors via their benzodiazepine-binding site. Although these drugs have been used clinically since 1960, the molecular basis of this interaction is still not known. By using multiple homology models and an unbiased docking protocol, we identified a binding hypothesis for the diazepam-bound structure of the benzodiazepine site, which was confirmed by experimental evidence. Moreover, two independent virtual screening approaches based on this structure identified known benzodiazepine-site ligands from different structural classes and predicted potential new ligands for this site. Receptor-binding assays and electrophysiological studies on recombinant receptors confirmed these predictions and thus identified new chemotypes for the benzodiazepine-binding site. Our results support the validity of the diazepam-bound structure of the benzodiazepine-binding pocket, demonstrate its suitability for drug discovery and pave the way for structure-based drug design.  相似文献   

19.
《Phytochemistry》1987,26(2):335-343
Phaseolin, the major storage protein of the French bean Phaseolus vulgaris cv. Tendergreen, has been isolated and purified by either ion-exchange chromatography or reversed-phase HPLC. These purification procedures were used to fractionate the native protein aggregate into its characteristic subunit components. Amino-terminal sequence analysis was performed on the intact peptide subunits. Native phaseolin was chemically cleaved at a unique tryptophan residue which is proximal to the N-terminal region of the protein with BNPS-skatole and the resulting peptide fragments were isolated via reversed-phase HPLC. Chemical and enzymatic sequence results obtained from these peptide fragments are in full agreement with the results obtained for the full length peptide subunits. These N-terminal analyses show that the signal peptide cleavage process is somewhat random resulting in the phaseolin polypeptides having possibly three or four different N-termini. Native phaseolin and purified subunits were chemically deglycosylated with trifluoromethanesulphonic acid in the presence of an anisole scavenger. One-dimensional SDS-PAGE analysis of the deglycosylated products show that differential glycosylation is largely responsible for much of the observed molecular weight heterogeneity found among phaseolin polypeptides.  相似文献   

20.
Bovine corneal keratan sulfate proteoglycan (KSPG) contains two core proteins, 37 and 25 kDa, if fully deglycosylated, but 47 and 35 kDa, respectively, after endo-beta-galactosidase (Funderburgh, J. L., and Conrad, G. W. (1990) J. Biol Chem. 265, 8297-8303). Chicken corneal KSPG released a single core protein of 47 kDa after endo-beta-galactosidase, and of 35 and 36 kDa, if deglycosylated with N-glycanase or trifluoromethanesulfonic acid. Affinity purified rabbit antibodies against each KSPG recognized only the intact proteoglycan or its core proteins in immunoblots of unfractionated guanidine-HCl extracts of whole cornea after sodium dodecyl sulfate-polyacrylamide gel electrophoresis. Affinity purified antibody to a synthetic peptide duplicating the NH2-terminal sequence of the 37-kDa bovine core protein showed little reactivity with untreated corneal extract but reacted with the 47-kDa bovine protein in endo-beta-galactosidase-treated extracts. RNA was isolated from bovine and chick corneal stromas and used for in vitro translation. Antibody against bovine KSPG immunoprecipitated two proteins of 56-53 kDa and a protein of 41 kDa after translation of bovine RNA. Translation of chick RNA produced a double band of 38-39 kDa and a single band of 25 kDa precipitating with antibody against chicken KSPG. Homologous unlabeled KSPG competed for binding of antibodies to these translation products. These data suggest that in vertebrate corneas, the multiple KSPG core protein isoforms may arise as products of separate mRNAs, rather than from proteolytic processing of a large polypeptide precursor.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号