首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 250 毫秒
1.
Our group previously described a new type of G protein, the 78-kDa XLalphas (extra large alphas) (Kehlenbach, R. H., Matthey, J., and Huttner, W. B. (1994) Nature 372, 804-809 and (1995) Nature 375, 253). Upon subcellular fractionation, XLalphas labeled by ADP-ribosylation with cholera toxin was previously mainly detected in the bottom fractions of a velocity sucrose gradient that contained trans-Golgi network and was differentially distributed to Galphas, which also peaked in the top fractions containing plasma membrane. Here, we investigate, using a new antibody specific for the XL domain, the tissue distribution and subcellular localization of XLalphas and novel splice variants referred to as XLN1. Upon immunoblotting and immunofluorescence analysis of various adult rat tissues, XLalphas and XLN1 were found to be enriched in neuroendocrine tissues, with a particularly high level of expression in the pituitary. By both immunofluorescence and immunogold electron microscopy, endogenous as well as transfected XLalphas and XLN1 were found to be predominantly associated with the plasma membrane, with only little immunoreactivity on internal, perinuclear membranes. Upon subcellular fractionation, immunoreactive XLalphas behaved similarly to Galphas but was differentially distributed to ADP-ribosylated XLalphas. Moreover, the bottom fractions of the velocity sucrose gradient were found to contain not only trans-Golgi network membranes but also certain subdomains of the plasma membrane, which reconciles the present with the previous observations. To further investigate the molecular basis of the association of XLalphas with the plasma membrane, chimeric proteins consisting of the XL domain or portions thereof fused to green fluorescent protein were analyzed by fluorescence and subcellular fractionation. In both neuroendocrine and non-neuroendocrine cells, a fusion protein containing the entire XL domain, in contrast to one containing only the proline-rich and cysteine-rich regions, was exclusively localized at the plasma membrane. We conclude that the physiological role of XLalphas is at the plasma membrane, where it presumably is involved in signal transduction processes characteristic of neuroendocrine cells.  相似文献   

2.
Catalysis of nucleotide exchange in heterotrimeric G proteins (Galphabetagamma) is a key step in cellular signal transduction mediated by G protein-coupled receptors. The Galpha N terminus with its helical stretch is thought to be crucial for G protein/activated receptor (R(*)) interaction. The N-terminal fatty acylation of Galpha is important for membrane targeting of G proteins. By applying biophysical techniques to the rhodopsin/transducin model system, we studied the effect of N-terminal truncations in Galpha. In Galphabetagamma, lack of the fatty acid and Galpha truncations up to 33 amino acids had little effect on R(*) binding and R(*)-catalyzed nucleotide exchange, implying that this region is not mandatory for R(*)/Galphabetagamma interaction. However, when the other hydrophobic modification of Galphabetagamma, the Ggamma C-terminal farnesyl moiety, is lacking, R(*) interaction requires the fatty acylated Galpha N terminus. This suggests that the two hydrophobic extensions can replace each other in the interaction of Galphabetagamma with R(*). We propose that in native Galphabetagamma, these two terminal regions are functionally redundant and form a microdomain that serves both to anchor the G protein to the membrane and to establish an initial docking complex with R(*). Accordingly, we find that the native fatty acylated Galpha is competent to interact with R(*) even in the absence of Gbetagamma, whereas nonacylated Galpha requires Gbetagamma for interaction. Experiments with N-terminally truncated Galpha subunits suggest that in the second step of the catalytic process, the receptor binds to the alphaN/beta1-loop region of Galpha to reduce nucleotide affinity and to make the Galpha C terminus available for subsequent interaction with R(*).  相似文献   

3.
Plasma membrane targeting of G protein alpha (Galpha) subunits is essential for competent receptor-to-G protein signaling. Many Galpha are tethered to the plasma membrane by covalent lipid modifications at their N terminus. Additionally, it is hypothesized that Gq family members (Gqalpha,G11alpha,G14alpha, and G16alpha) in particular utilize a polybasic sequence of amino acids in their N terminus to promote membrane attachment and protein palmitoylation. However, this hypothesis has not been tested, and nothing is known about other mechanisms that control subcellular localization and signaling properties of G14alpha and G16alpha. Here we report critical biochemical factors that mediate membrane attachment and signaling function of G14alpha and G16alpha. We find that G14alpha and G16alpha are palmitoylated at distinct polycysteine sequences in their N termini and that the polycysteine sequence along with the adjacent polybasic region are both important for G16alpha-mediated signaling at the plasma membrane. Surprisingly, the isolated N termini of G14alpha and G16alpha expressed as peptides fused to enhanced green fluorescent protein each exhibit differential requirements for palmitoylation and membrane targeting; individual cysteine residues, but not the polybasic regions, determine lipid modification and subcellular localization. However, full-length G16alpha, more so than G14alpha, displays a functional dependence on single cysteines for membrane localization and activity, and its full signaling potential depends on the integrity of the polybasic sequence. Together, these findings indicate that G14alpha and G16alpha are palmitoylated at distinct polycysteine sequences, and that the adjacent polybasic domain is not required for Galpha palmitoylation but is important for localization and functional activity of heterotrimeric G proteins.  相似文献   

4.
The membrane-transport factor p115 interacts with diverse components of the membrane-transport machinery. It binds two Golgi matrix proteins, a Rab GTPase, and various members of the soluble N-ethylmaleimide-sensitive factor attachment protein receptor (SNARE) family. Here, we describe a novel interaction between p115 and Golgi-specific brefeldin-A-resistant factor 1 (GBF1), a guanine-nucleotide exchange factor for ADP ribosylation factor (ARF). GBF1 was identified in a yeast two-hybrid screen, using full-length p115 as bait. The interaction was confirmed biochemically, using in vitro and in vivo assays. The interacting domains were mapped to the proline-rich region of GBF1 and the head region of p115. These proteins colocalize extensively in the Golgi and in peripheral vesicular tubular clusters. Mutagenesis analysis indicates that the interaction is not required for targeting GBF1 or p115 to membranes. Expression of the p115-binding (pro-rich) region of GBF1 leads to Golgi disruption, indicating that the interaction between p115 and GBF1 is functionally relevant.  相似文献   

5.
Black Creek Canal virus (BCCV) is a New World hantavirus which is associated with hantavirus pulmonary syndrome. We have examined the site of expression of the BCCV nucleocapsid protein (NBCCV) in the absence of BCCV glycoproteins and found that the majority of the protein is localized to the Golgi region. Immunofluorescence analysis of BHK21 cells expressing the NBCCV and La Crosse virus nucleocapsid protein (NLACV) showed different intracellular localization patterns of these proteins within the same cell: NLACV is cytoplasmic, whereas NBCCV is perinuclear. NBCCV was found to be colocalized with alpha-mannosidase II, a marker for the Golgi complex. Also, NBCCV was found to be associated with microsomal membranes following cell fractionation. Sedimentation analysis in density gradients revealed that the membrane association of NBCCV is sensitive to treatments with high-salt and high-pH solutions, which indicates that NBCCV is a peripheral membrane protein. Analysis of NBCCV truncation mutants revealed that the 141-amino-acid C-terminal portion of this protein was capable of targeting green fluorescent protein to the perinuclear region. The difference in the intracellular localization between the NBCCV and NLACV proteins suggests that the mechanisms involved in the morphogenesis of New World hantaviruses are distinct from that documented for other members of the Bunyaviridae family.  相似文献   

6.
The central function of heterotrimeric GTP-binding proteins (G proteins) is the transduction of extracellular signals, via membrane receptors, leading to the activation of intracellular effectors. In addition to being associated with the plasma membrane, the alpha subunits of some of these proteins have also been localized in intracellular compartments. The mRNA of the G-protein inhibitory alpha subunit 2 (G(alphai2)) encodes two proteins, G(alphai2) and sG(i2), by an alternative splicing mechanism. sG(i2) differs from G(alphai2) in the C-terminal region and localizes in the Golgi in contrast to the plasma membrane localization of G(alphai2). In this paper we show that the sequence specific to sG(i2) can direct the Golgi localization of other G(alphai) subunits, but not of the stimulatory subunit G(alphas) or of a secreted protein. This indicates that, in addition to the sG(i2) C-terminus, sequences located elsewhere in the protein are required to determine the Golgi localization. Inside the sG(i2) C-terminal region we have identified a 14-amino-acid proline-rich motif which specifies the Golgi localization. Finally, we show that the sG(i2) subunit, once activated, leaves the Golgi to be localized in the endoplasmic reticulum.  相似文献   

7.
Membrane targeting of G-protein alphabetagamma heterotrimers was investigated in live cells by use of Galpha and Ggamma subunits tagged with spectral mutants of green fluorescent protein. Unlike Ras proteins, Gbetagamma contains a single targeting signal, the CAAX motif, which directed the dimer to the endoplasmic reticulum. Endomembrane localization of farnesylated Ggamma(1), but not geranylgeranylated Ggamma(2), required carboxyl methylation. Targeting of the heterotrimer to the plasma membrane (PM) required coexpression of all three subunits, combining the CAAX motif of Ggamma with the fatty acyl modifications of Galpha. Galpha associated with Gbetagamma on the Golgi and palmitoylation of Galpha was required for translocation of the heterotrimer to the PM. Thus, two separate signals, analogous to the dual-signal targeting mechanism of Ras proteins, cooperate to target heterotrimeric G proteins to the PM via the endomembrane.  相似文献   

8.
Vesicular carriers for intracellular transport associate with unique sets of accessory molecules that dictate budding and docking on specific membrane domains. Although many of these accessory molecules are peripheral membrane proteins, in most cases the targeting sequences responsible for their membrane recruitment have yet to be identified. We have previously defined a novel Golgi targeting domain (GRIP) shared by a family of coiled-coil peripheral membrane Golgi proteins implicated in membrane trafficking. We show here that the docking site for the GRIP motif of p230 is a specific domain of Golgi membranes. By immuno-electron microscopy of HeLa cells stably expressing a green fluorescent protein (GFP)-p230GRIP fusion protein, we show binding specifically to a subset of membranes of the trans -Golgi network (TGN). Real-time imaging of live HeLa cells revealed that the GFP-p230GRIP was associated with highly dynamic tubular extensions of the TGN, which have the appearance and behaviour of transport carriers. To further define the nature of the GRIP membrane binding site, in vitro budding assays were performed using purified rat liver Golgi membranes and cytosol from GFP-p230GRIP-transfected cells. Analysis of Golgi-derived vesicles by sucrose gradient fractionation demonstrated that GFP-p230GRIP binds to a specific population of vesicles distinct from those labelled for β-COP or γ-adaptin. The GFP-p230GRIP fusion protein is recruited to the same vesicle population as full-length p230, demonstrating that the GRIP domain is solely proficient as a targeting signal for membrane binding of the native molecule. Therefore, p230 GRIP is a targeting signal for recruitment to a highly selective membrane attachment site on a specific population of trans -Golgi network tubulo-vesicular carriers.  相似文献   

9.
In this report, we characterize GIV (Galpha-interacting vesicle-associated protein), a novel protein that binds members of the Galpha(i) and Galpha subfamilies of heterotrimeric G proteins. The Galpha(s) interaction site was mapped to an 83-amino acid region of GIV that is enriched in highly charged amino acids. BLAST searches revealed two additional mammalian family members, Daple and an uncharacterized protein, FLJ00354. These family members share the highest homology at the Galpha binding domain, are homologous at the N terminus and central coiled coil domain but diverge at the C terminus. Using affinity-purified IgG made against two different regions of the protein, we localized GIV to COPI, endoplasmic reticulum (ER)-Golgi transport vesicles concentrated in the Golgi region in GH3 pituitary cells and COS7 cells. Identification as COPI vesicles was based on colocalization with beta-COP, a marker for these vesicles. GIV also codistributes in the Golgi region with endogenous calnuc and the KDEL receptor, which are cis Golgi markers and with Galpha(i3)-yellow fluorescent protein expressed in COS7 cells. By immunoelectron microscopy, GIV colocalizes with beta-COP and Galpha(i3) on vesicles found in close proximity to ER exit sites and to cis Golgi cisternae. In cell fractions prepared from rat liver, GIV is concentrated in a carrier vesicle fraction (CV2) enriched in ER-Golgi transport vesicles. beta-COP and several Galpha subunits (Galpha(i1-3), Galpha(s)) are also most enriched in CV2. Our results demonstrate the existence of a novel Galpha-interacting protein associated with COPI transport vesicles that may play a role in Galpha-mediated effects on vesicle trafficking within the Golgi and/or between the ER and the Golgi.  相似文献   

10.
RGS proteins comprise a family of proteins named for their ability to negatively regulate heterotrimeric G protein signaling. Biochemical studies suggest that members of this protein family act as GTPase-activating proteins for certain Galpha subunits, thereby accelerating the turn-off mechanism of Galpha and terminating signaling by both Galpha and Gbetagamma subunits. In the present study, we used confocal microscopy to examine the intracellular distribution of several RGS proteins in COS-7 cells expressing RGS-green fluorescent protein (GFP) fusion proteins and in cells expressing RGS proteins endogenously. RGS2 and RGS10 accumulated in the nucleus of COS-7 cells transfected with GFP constructs of these proteins. In contrast, RGS4 and RGS16 accumulated in the cytoplasm of COS-7 transfectants. As observed in COS-7 cells, RGS4 exhibited cytoplasmic localization in mouse neuroblastoma cells, and RGS10 exhibited nuclear localization in human glioma cells. Deletion or alanine substitution of an N-terminal leucine repeat motif present in both RGS4 and RGS16, a domain identified as a nuclear export sequence in HIV Rev and other proteins, promoted nuclear localization of these proteins in COS-7 cells. In agreement with this observation, treatment of mouse neuroblastoma cells with leptomycin B to inhibit nuclear protein export by exportin1 resulted in accumulation of RGS4 in the nucleus of these cells. GFP fusions of RGS domains of RGS proteins localized in the nucleus, suggesting that nuclear localization of RGS proteins results from nuclear targeting via RGS domain sequences. RGSZ, which shares with RGS-GAIP a cysteine-rich string in its N-terminal region, localized to the Golgi complex in COS-7 cells. Deletion of the N-terminal domain of RGSZ that includes the cysteine motif promoted nuclear localization of RGSZ. None of the RGS proteins examined were localized at the plasma membrane. These results demonstrate that RGS proteins localize in the nucleus, the cytoplasm, or shuttle between the nucleus and cytoplasm as nucleo-cytoplasmic shuttle proteins. RGS proteins localize differentially within cells as a result of structural differences among these proteins that do not appear to be important determinants for their G protein-regulating activities. These findings suggest involvement of RGS proteins in more complex cellular functions than currently envisioned.  相似文献   

11.
Heterotrimeric G proteins are peripheral membrane proteins that propagate signals from membrane receptors to regulatory proteins localized in distinct cellular compartments. To facilitate signal amplification, G proteins are in molar excess with respect to G protein-coupled receptors. Because G proteins are capable of translocating from membrane to cytosol, protein-lipid interactions play a crucial role in signal transduction. Here, we studied the binding of heterotrimeric G proteins (Galphabetagamma) to model membranes (liposomes) and that of the entities formed upon receptor-mediated activation (Galpha and Gbetagamma). The model membranes used were composed of defined membrane lipids capable of organizing into either lamellar or nonlamellar (hexagonal H(II)) membrane structures. We demonstrated that although heterotrimeric G(i) proteins and Gbetagamma dimers can bind to lipid bilayers of phosphatidylcholine, their binding to membranes was markedly and significantly enhanced by the presence of nonlamellar phases of phosphatidylethanolamine. Conversely, activated G protein alpha subunits showed an opposite membrane binding behavior with a marked preference for lamellar membranes. These results have important consequences in cell signaling. First, the binding characteristics of the Gbetagamma dimer account for the lipid binding behavior and the cellular localization of heterotrimeric G proteins. Second, the distinct protein-lipid interactions of heterotrimeric G proteins, Gbetagamma dimers, and Galpha subunits with membrane lipids explain, in part, their different cellular mobilizations during signaling upon receptor activation. Finally, their differential interactions with lipids suggest an active role of the membrane lipid secondary structure in the propagation of signals through G protein-coupled receptors.  相似文献   

12.
The G protein cascade of vision depends on two peripheral membrane proteins: the G protein, transducin (G(t)), and cGMP phosphodiesterase (PDE). Each has covalently attached lipids, and interacts with transduction components on the membrane surface. We have found that their surface interactions are critically dependent on the nature of the lipid. Membranes enhance their protein-protein interactions, especially if electrostatic attraction is introduced with positively charged lipids. These interactions are less enhanced on highly curved surfaces, but are most enhanced by unsaturated or bulky acyl chains. On positively charged membranes, G(t) assembles at a high enough density to form two-dimensional arrays with short-range crystalline order. Cationic membranes also support extremely efficient activation of PDE by the GTPgammaS (guanosine 5'-O-(thiotriphosphate)) form of Galpha(t) (Galpha(t)-GTPgammaS), minimizing functional heterogeneity of transducin and allowing activation with nanomolar Galpha(t)-GTPgammaS. Quantification of PDE activation and of the amount of Galpha(t)-GTPgammaS bound to PDE indicated that G(t) activates PDE maximally when bound in a 1:1 molar ratio. No cooperativity was observed, even at nanomolar concentrations. Thus, under these conditions, the one binding site for Galpha(t)-GTPgammaS on PDE that stimulates catalysis must be of higher affinity than one or more additional sites which are silent with respect to activation of PDE.  相似文献   

13.
The mechanism by which peripheral membrane proteins are targeted to the cytoplasmic face of the Golgi apparatus is poorly understood. Previously, we have identified a carboxy-terminal domain of the trans-Golgi-network (TGN) protein p230 that is responsible for Golgi localisation [1]. Here, we report the identification of a similar Golgi-localisation domain (GLD, also termed the 'GRIP' domain - see the paper by Munro and Nichols elsewhere in this issue) in a family of putative peripheral membrane proteins from lower and higher eucaryotes. The majority of family members have a domain structure similar to that of p230, with extensive coiled-coil regions (>80%) and the potential GLD located in a non-coiled-coil domain at the carboxyl terminus. Previously reported proteins in this family include human golgin-97 and Saccharomyces cerevisiae Imh1p. By constructing chimeric cDNAs encoding carboxy-terminal regions of these family members fused to green fluorescent protein (GFP), we have directly demonstrated that the GLD of p230, golgin-97, the newly identified human protein GCC1p and yeast Imh1p functions as a Golgi-targeting domain in transfected mammalian cells. Site-directed mutagenesis of the GLDs identified two conserved aromatic residues that are critical for the function of this targeting domain. Endogenous p230 was displaced from the Golgi membranes in transfected cells expressing high levels of GFP fused to the GLD of either p230 or golgin-97, indicating that different GLDs interact with similar membrane determinants. Thus, we have identified a family of coiled-coil proteins that share a domain shown to be sufficient for the localisation of peripheral membrane proteins to the Golgi apparatus.  相似文献   

14.
Trans-Golgi network (TGN) protein p230 is a peripheral membrane protein associated with the cytoplasmic face of the TGN. TGNp230 is an extensively coiled-coil protein with flexible amino- and carboxyl-terminal ends, associates with non-clathrin-coated vesicles arising from the TGN, and is implicated in vesicle biogenesis. Here we used an autoimmune serum from a patient with S ogren's syndrome to clone partial cDNAs from a human hepatoma HepG2 expression library. The partial cDNAs encoded a novel amino-terminal splice variant of TGNp230. Specific reactivity of the autoimmune serum for p230 is supported by immunofluorescene staining of the Golgi apparatus, immunoblotting of a > 200-kDa HeLa cell protein, and reactivity with a bacterially expressed GST-p230 fusion protein. The alternative splicing occurs within the first proline-rich domain of p230. It comprises a deletion of 30 bp followed immediately by an additional 66 bp absent in the published sequence. RT-PCR analysis indicated that the splicing occurs independently of previously reported carboxyl-terminal splicing, and that this novel splice variant is more frequent than the previously reported p230. The novel splice variant of p230 is also located at the TGN. We propose that p230 splice variants may be implicated in selection of cargo molecules for vesicles arising from the TGN.  相似文献   

15.
Soluble N-ethylmaleimide-sensitive fusion attachment proteins (SNAPs) are required for the binding of N-ethylmaleimide-sensitive fusion protein (NSF) to Golgi membranes and are, therefore, required for intra-Golgi transport. We report the existence of distinct alpha/beta-SNAP and gamma-SNAP-binding sites in Golgi membranes that appear to be part of the same receptor complex. Cross-linking studies with alpha-SNAP demonstrate that an integral membrane protein of between 30-40 kDa is the alpha-SNAP binding component of the multi-SNAP receptor complex. These data suggest that SNAPs function by independently binding to a multi-SNAP membrane-receptor complex, thereby activating them to serve as adaptors for the targeting of NSF.  相似文献   

16.
We studied the maturation of Uukuniemi virus and the localization of the viral surface glycoproteins and nucleocapsid protein in infected cells by electron microscopy, indirect immunofluorescence, and immunoelectron microscopy with specific antisera prepared in rabbits against the two glycoproteins G1 and G2 and the nucleocapsid protein N. Electron microscopy of thin sections from infected cells showed virus particles maturing at smooth-surfaced membranes close to the nucleus. Localization of the G1/G2 and N proteins by indirect immunofluorescence at different stages after infection showed the antigens to be present throughout the cell interior but concentrated in the juxtanuclear region. The G1/G2 antiserum also appeared to stain the nuclear and plasma membranes. Double staining with tetramethylrhodamine isothiocyanate-conjugated wheat germ agglutinin, which preferentially stains the Golgi complex, and fluorescein isothiocyanate-conjugated anti-rabbit immunoglobulin G, which stained the G1/G2 or N proteins, showed that the staining of the juxtanuclear region coincided. Similarly, double staining for thiamine pyrophosphatase, an enzyme activity specific for the Golgi complex, showed the fluorescence and the cytochemical stain to coincide in the juxtanuclear region. Immunoperoxidase electron microscopy of cells permeabilized with saponin revealed that the viral glycoproteins were present in the rough endoplasmic reticulum and the nuclear and Golgi membranes; the latter was heavily stained. With this method, the N protein was localized to the cytoplasm, especially around smooth-surfaced vesicles in the Golgi region. Taken together, the results indicate that Uukuniemi virus and its structural proteins accumulate in the Golgi complex, supporting the idea that this compartment rather than the plasma membrane is the site of virus maturation. This raises the interesting possibility that deficient transport of the glycoproteins to the plasma membrane and hence their accumulation in the Golgi complex determines the site of virus maturation.  相似文献   

17.
Intracellular palmitoylation dynamics are regulated by a family of 24 DHHC (aspartate-histidine-histidine-cysteine) palmitoyltransferases, which are localized in a compartment-specific manner. The majority of DHHC proteins localize to endoplasmic reticulum (ER) and Golgi membranes, and a small number target to post-Golgi membranes. To date, there are no reports of the fine mapping of sorting signals in mammalian DHHC proteins; thus, it is unclear how spatial distribution of the DHHC family is achieved. Here, we have identified and characterized lysine-based sorting signals that determine the restricted localization of DHHC4 and DHHC6 to ER membranes. The ER targeting signal in DHHC6 conforms to a KKXX motif, whereas the signal in DHHC4 is a distinct KXX motif. The identified dilysine signals are sufficient to specify ER localization as adding the C-terminal pentapeptide sequences from DHHC4 or DHHC6, which contain these KXX and KKXX motifs, to the C terminus of DHHC3, redistributes this palmitoyltransferase from Golgi to ER membranes. Recent work proposed that palmitoylation of newly synthesized peripheral membrane proteins occurs predominantly at the Golgi. Indeed, previous analyses of the peripheral membrane proteins, SNAP25 and cysteine string protein, are fully consistent with their initial palmitoylation being mediated by Golgi-localized DHHC proteins. Interestingly, ER-localized DHHC3 is able to palmitoylate SNAP25 and cysteine string protein to a similar level as wild-type Golgi-localized DHHC3 in co-expression studies. These results suggest that targeting of intrinsically active DHHC proteins to defined membrane compartments is an important factor contributing to spatially restricted patterns of substrate palmitoylation.  相似文献   

18.
Microtubule disruption has dramatic effects on the normal centrosomal localization of the Golgi complex, with Golgi elements remaining as competent functional units but undergoing a reversible "fragmentation" and dispersal throughout the cytoplasm. In this study we have analyzed this process using digital fluorescence image processing microscopy combined with biochemical and ultrastructural approaches. After microtubule depolymerization, Golgi membrane components were found to redistribute to a distinct number of peripheral sites that were not randomly distributed, but corresponded to sites of protein exit from the ER. Whereas Golgi enzymes redistributed gradually over several hours to these peripheral sites, ERGIC-53 (a protein which constitutively cycles between the ER and Golgi) redistributed rapidly (within 15 minutes) to these sites after first moving through the ER. Prior to this redistribution, Golgi enzyme processing of proteins exported from the ER was inhibited and only returned to normal levels after Golgi enzymes redistributed to peripheral ER exit sites where Golgi stacks were regenerated. Experiments examining the effects of microtubule disruption on the membrane pathways connecting the ER and Golgi suggested their potential role in the dispersal process. Whereas clustering of peripheral pre-Golgi elements into the centrosomal region failed to occur after microtubule disruption, Golgi-to-ER membrane recycling was only slightly inhibited. Moreover, conditions that impeded Golgi-to-ER recycling completely blocked Golgi fragmentation. Based on these findings we propose that a slow but constitutive flux of Golgi resident proteins through the same ER/Golgi cycling pathways as ERGIC-53 underlies Golgi Dispersal upon microtubule depolymerization. Both ERGIC-53 and Golgi proteins would accumulate at peripheral ER exit sites due to failure of membranes at these sites to cluster into the centrosomal region. Regeneration of Golgi stacks at these peripheral sites would re-establish secretory flow from the ER into the Golgi complex and result in Golgi dispersal.  相似文献   

19.
Distinct lipid compositions of intracellular organelles could provide a physical basis for targeting of membrane proteins, particularly where transmembrane domains have been shown to play a role. We tested the possibility that cholesterol is required for targeting of membrane proteins to the Golgi complex. We used insect cells for our studies because they are cholesterol auxotrophs and can be depleted of cholesterol by growth in delipidated serum. We found that two well-characterized mammalian Golgi proteins were targeted to the Golgi region of Aedes albopictus cells, both in the presence and absence of cellular cholesterol. Our results imply that a cholesterol gradient through the secretory pathway is not required for membrane protein targeting to the Golgi complex, at least in insect cells.  相似文献   

20.
The signals involved in axonal trafficking and presynaptic clustering are poorly defined. Here we show that targeting of the gamma-aminobutyric acid-synthesizing enzyme glutamate decarboxylase 65 (GAD65) to presynaptic clusters is mediated by its palmitoylated 60-aa NH(2)-terminal domain and that this region can target other soluble proteins and their associated partners to presynaptic termini. A Golgi localization signal in aa 1-23 followed by a membrane anchoring signal upstream of the palmitoylation motif are required for this process and mediate targeting of GAD65 to the cytosolic leaflet of Golgi membranes, an obligatory first step in axonal sorting. Palmitoylation of a third trafficking signal downstream of the membrane anchoring signal is not required for Golgi targeting. However, palmitoylation of cysteines 30 and 45 is critical for post-Golgi trafficking of GAD65 to presynaptic sites and for its relative dendritic exclusion. Reduction of cellular cholesterol levels resulted in the inhibition of presynaptic clustering of palmitoylated GAD65, suggesting that the selective targeting of the protein to presynaptic termini is dependent on sorting to cholesterol-rich membrane microdomains. The palmitoylated NH(2)-terminal region of GAD65 is the first identified protein region that can target other proteins to presynaptic clusters.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号