首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Biosynthesis of storage proteins in developing rice seeds   总被引:23,自引:4,他引:19       下载免费PDF全文
Sodium dodecyl sulfate-polyacrylamide gel electrophoretic analysis of the starchy endosperm protein of rice (Oryza sativa L. Japonica cv Koshihikari) during seed development confirmed that storage protein begins to accumulate about 5 days after flowering. Two polypeptide groups, 22 to 23 and 37 to 39 kilodaltons, the components of glutelin, the major storage protein in rice seed, appeared 5 days after flowering. A 26-kilodalton polypeptide, the globulin component, also appeared 5 days after flowering. Smaller polypeptides (10- to 16-kilodaltons) including prolamin components, appeared about 10 days after flowering. In contrast, the levels of the 76- and 57-kilodalton polypeptides were fairly constant throughout seed development. Transmission electron microscopy and fractionation by sucrose density gradient centrifugation of the starchy endosperms at various stages of development showed that protein body type II, the accumulation site of glutelin and globulin, was formed faster than protein body type I, the accumulation site of prolamin.

The 57-kilodalton polypeptide but not the glutelin subunits was labeled in a 2-hour treatment with [14C]leucine given between 4 and 12 days after flowering to developing ears. In vivo pulse-chase labeling studies showed the 57-kilodalton polypeptide to be a precursor of the 22 to 23 and 37 to 39 kilodalton subunits. The 57-kilodalton polypeptide was salt-soluble, but the mature glutelin subunits were almost salt insoluble.

In vitro protein synthesis also showed that the mRNAs directly coding the 22 to 23 and 37 to 39 kilodalton components were absent in developing seeds and that the 57-kilodalton polypeptide was the major product. Thus, it was concluded that the two subunits of rice glutelin are formed through post-translational cleavage of the 57-kilodalton polypeptide.

  相似文献   

2.
Intact cotyledons were taken from pea seeds at various stages during seed development and pulse-labeled with 14C-amino acids. Salt-soluble proteins then were extracted and fractionated on Na dodecyl sulfate-polyacrylamide gels. Storage proteins in these extracts were identified by their binding to immunoaffinity columns. The labeling studies showed that the synthesis of storage protein polypeptides accounts for a major part of total protein synthesis of developing cotyledons between 10 and 22 days after flowering. The distribution of the incorporated radioactivity between individual storage protein polypeptides varied with stage of development. For example, the synthesis of the 50 kilodalton complex of vicilin subunits dominated the early stages of protein accumulation but was a negligible proportion of the total incorporation in the later stages. On the other hand, the 75 kilodalton vicilin subunit was synthesized throughout this entire period. The major small subunit of legumin (20 kilodaltons) was not detected by either Coomassie blue staining or by 2-hour labeling during this period. It was found to arise during the desiccation phase of seed maturation from a long-lived precursor with a relative electrophoretic mobility equivalent to 19 kilodaltons.  相似文献   

3.
Polyadenylated (poly A+) RNAs were prepared from both dry and incubated embryonic axes of Vigna unguiculata seeds and were translated by a wheat germ translation system. Analysis with gel electrophoresis and fluorography showed that translation products of poly A+ RNA from dry embryonic axes were nearly the same as those from 2-hour incubated axes but somewhat different from those of 4- to 24-hour incubated axes, and that translation products remained almost unchanged between the 4- and 24-hour stages of postimbibition. The results indicate the possibility that the stored mRNA (poly A+ RNA from dry embryonic axes) directs the protein synthesis required for early stages of germination. This is supported by comparison of the in vitro translation products of poly A+ RNAs with those of polysomal RNAs. Experiments with α-amanitin, a specific inhibitor of RNA polymerase II (J. Jendrisak 1980 J Biol Chem 255: 8529-8533), suggested that the synthesis of some of the stored mRNA species is resumed as early as 4 hours after the onset of imbibition.  相似文献   

4.
Luthe DS 《Plant physiology》1987,84(2):337-340
Oat (Avena sativa L.) seeds harvested at 2-day intervals from anthesis to maturity were tested for their ability to incorporate [35S]sulfate into protein. Incorporation of [35S]sulfate into TCA-insoluble material began 2 to 4 days postanthesis (DPA), reached a peak 14 to 16 DPA, and was barely detectable by 24 DPA. Incorporation of label into globulin was parallel to total protein accumulation, and averaged about 85% of the total protein synthesis. Sodium dodecyl sulfate-polyacrylamide gel electrophoresis of total protein extracted from developing seeds indicated that some polypeptides coinciding with the α and β globulin subunits were present 2 to 4 DPA, but the full complement of globulin polypeptides was not present until 10 DPA. Immunoprecipitation of in vivo labeled seed extracts showed that globulin polypeptides and the 59 kilodalton precursor were present at early stages of development (4 DPA). Quantitation of dot blot analysis, using an oat globulin cDNA clone as a probe, indicated that one species of oat globulin mRNA was most abundant 15 DPA, which is during the peak time of storage protein synthesis.  相似文献   

5.
Using Nycodenz, a novel density gradient medium, we isolated intact protein bodies from developing seeds of Lupinus angustifolius L. (cultivar Unicrop) and achieved excellent separation from the endoplasmic reticulum, mitochondria, and other organelles. The distribution of the storage protein conglutin-β was taken as evidence that up to 96% of the protein bodies remained intact on the gradients and banded at 1.25 grams per milliliter. The protein bodies also contained the three other abundant proteins present in L. angustifolius seeds: conglutins-α, -γ, and -δ. Pulse labeling experiments were carried out to determine the site of proteolytic processing of conglutin-α, a legumin-like 11Svedberg unit storage protein. Cotyledons aged either 33 or 40 days after flowering were pulsed with [3H]leucine. Protein bodies obtained from the cotyledons aged 33 days after flowering contained only the labeled precursors of conglutin-α with molecular weights 85,000, 72,000, and 64,000, even after a 4 hour chase of the radioactivity. Protein bodies obtained from the cotyledons aged 40 days after flowering contained the same radioactive precursors if the tissue had been pulsed for 2 hours, and the processing products of these precursors when the tissue had been chased for 4 hours. These studies confirm that the subcellular location of proteolytic cleavage of this legumin-like protein is the protein body, that this activity is detected only in protein bodies from lupin seeds aged between 33 and 40 days of seed development after flowering and that protein bodies from seeds younger than this contain only unprocessed conglutin-α.  相似文献   

6.
Regulation of isocitrate lyase gene expression in sunflower   总被引:3,自引:0,他引:3       下载免费PDF全文
  相似文献   

7.
It was shown previously that when peas (Pisum sativum L.) are grown with suboptimal sulfur supply the level of legumin (the more S-rich of the two major seed storage proteins) in the mature seed is selectively reduced (Randall, Thomson, Schroeder, 1979 Aust J Plant Physiol 6: 11-24). This paper reports a study of the cellular mechanisms involved in regulating legumin synthesis under these conditions. Pulse and pulse-chase labeling experiments were carried out with excised, immature cotyledons from normal and S-deficient plants. Legumin was isolated from cotyledon extracts by immunochromatography, and the proportion of legumin synthesis relative to total protein synthesis was determined. Results showed that reduced legumin accumulation could largely be accounted for by a greatly reduced level of legumin synthesis (80-88% reduction) rather than by a major increase in legumin breakdown.

Legumin mRNA levels were assayed by two methods. In vitro translation of polysomal RNA from cotyledons of normal and S-deficient plants indicated a reduction of 60 to 70% in synthesis of legumin-related products by preparations from S-deficient plants. A legumin cDNA clone was constructed, characterized, and used to measure the levels of legumin mRNA in polysomal and total RNA preparations from developing cotyledons. Legumin mRNA levels were reduced by 90% in preparations from S-deficient plants.

When restored to an adequate S supply, S-deficient plants (or pods taken from such plants) recovered normal levels of legumin synthesis (in vivo and in vitro) and of legumin mRNA. These results indicate that reduced legumin accumulation under conditions of S deficiency is primarily a consequence of reduced levels of legumin mRNA.

  相似文献   

8.
A study has been made of the RNA and protein synthesising systems of wheat embryos isolated from seed lots having high viability but differing in vigour. The rate of RNA and protein synthesis in wheat embryos during the early hours of germination is related to the vigour of the seed lot. The imposition of a stress factor, in the nature of a sub-optimal germination temperature, during germination of isolated wheat embryos magnifies the differences in rates of protein and RNA synthesis between high and low vigour seed. Using cell-free protein synthesising systems it has been demonstrated that an important difference between high and low vigour embryos lies in the relative levels of messenger RNA in the embryo. High vigour embryos contain relatively higher levels of poly A+-RNA (i.e. potential mRNA species) than lower vigour embryos and furthermore the level of poly A+-RNA in high vigour embryos increases during early germination whilst in lower vigour embryos the level decreases. The difference in poly A+-RNA levels accounts, at least partially, for the differences in rates of protein synthesis observed between embryos from high and low vigour wheat seed during early germination at both optimal and sub-optimal germination temperatures.Abbreviations HEPES N-2-hydroxyethylpiperazine-N-2-ethane sulfonic acid - poly A+-RNA polyadenylated RNA - GM germination medium - PMS post-mitochondrial supernatant fraction  相似文献   

9.
Soybean (Glycine max) plants accumulate a vacuolar glycoprotein in the parenchymal cells of leaves, petioles, stems, seed pods, and germinating cotyledons that acts in temporary nitrogen storage during vegetative growth. In situ immunolocalization of this vegetative storage protein (VSP) revealed that it accumulates in those parenchymal cells in close proximity to existing and developing vasculature, as well as in epidermal and cortical cells. The protein was more prevalent in younger, nitrogen-importing tissues before pod and seed development. Removal of actively growing seed pods greatly enhanced VSP accumulation, primarily in bundle sheath and paraveinal mesophyll cells. In situ hybridization of a VSP RNA probe to mRNA in leaf sections demonstrated that cell-specific mRNA accumulation corresponded with the pattern of protein localization. Treatment of leaf explants with 50 micromolar methyl jasmonate resulted in accumulation of VSP mRNA and protein in all cell types.  相似文献   

10.
11.
Differences in the accumulation of total seed protein and globulin-1 (G1) protein were detected among three inbred lines of common bean. Total protein accumulation ranged from 2.3 to 3.7 milligrams per cotyledon pair per day among lines. In all lines the dry weight and protein accumulation ceased and a loss of chlorophyll in the cotyledons occurred when the moisture content had fallen to 50% of fresh weight. G1 was first detected and rapid accumulation began 14 days after flowering in two lines, whereas in the cultivar Endogava zurundi namame, rapid accumulation was delayed until 20 days after flowering. Rates of G1 accumulation ranged from 1.0 to 1.8 milligrams G1 per cotyledon pair per day among lines. G1 accumulation ceased 6 days before the end of total protein accumulation in Sanilac. A steady rate of protein accumulation was observed in Sanilac, but pauses in the accumulation of G1 and of total protein were documented in Endogava zurundi namame. The rate of G1 accumulation preceding and following the pause in Endogava zurundi namame was 2.7 milligrams G1 per cotyledon pair per day, nearly double that of the other lines.  相似文献   

12.
In the present investigation changes in polyribosomes and RNAs in the developing seeds of chickpea (Cicer arietinum L.) have been studied. The total polysome yield was higher in the early stages of development and declined at the later stages. The maximum level of polyribosomes was obtained at 18 days after flowering and a drastic decrease was noticed at maturity. The total RNA yield correlated with the polysomal yield. Northern hybridization with a heterologous probe (pea legumin cDNA) gave distinct hybridization with the mRNA coding for legumin proteins at different stages of seed development. Hybridization showed a direct relation between mRNA levels and seed weight accumulation.  相似文献   

13.
Fresh weight and dry weight as well as quantitative and qualitative protein changes in the developing soybean (Glycine max) seed were described from 12 days after flowering until maturity. The seed proteins were separated on sucrose density gradients into three major fractions, having average sedimentation coefficients of 2.2S, 7.5S, and 11.8S. The 2.2S sedimenting proteins predominated at very early stages of development (12 days after flowering) and decreased proportionately throughout maturation. The 7.5S and 11.8S components appeared to be synthesized later in maturity and in larger amounts than the 2.2S proteins. Electrophoretic studies on extracts from whole seeds and on isolated protein fractions confirmed the early abundance of proteins in the 2.2S fraction and revealed temporal differences in the accumulation of three components of the 7.5S fraction. The 11.8S sedimenting fraction appeared throughout seed development as a homogeneous protein which accumulated in the seed with a time course similar to that of the total 7.5S protein fraction.  相似文献   

14.
The amount of glucose-repressible alcohol dehydrogenase is regulated by the amount of its functional messenger RNA. ADHII2 protein was detected by a radioimmune assay and differentiated from ADHI, the classical ADH isozyme, by limited proteolysis with Staphylococcus aureus protease. When yeast containing the wild-type alleles for ADR2 (the ADH II structural locus) and for ADR1 (its positive regulatory gene) were pulse-labeled with [35S]methionine during derepression, radioactive label accumulated in the antibody-precipitated ADHII coterminously with the appearance of ADHII activity. The kinetics of functional ADHII mRNA appearance during derepression in this strain were shown to be the same as those for ADHII protein synthesis in vivo when RNA, extracted from derepressed cells, was translated in a wheat germ cell-free translation system.The role of the positive regulatory gene, ADR1, in ADHII expression was analyzed using two strains mutated at that locus. Yeast containing the adr1-1 allele are incapable of derepressing ADHII activity. When this strain was pulselabeled with [35S]methionine during derepression, approximately one-tenth to one-twentieth the level of ADHII protein synthesis was detected as in the wild-type strain. When RNA was extracted during derepression from cells containing the udr1-1 allele and translated in a wheat germ cell-free system, little functional ADHII mRNA was found to be present.The role of the ADR1 gene was further analyzed using a strain containing the ADR1-5c allele, which allows constitutive synthesis of ADHII activity. In this strain during glucose repression. ADHII protein synthesis and amount of functional mRNA were at levels comparable to those found for the wild-type strain after complete derepression. Similar kinetics of ADHII protein synthesis and of mRNA accumulation during derepression were observed in the strain carrying the ADR1-5c allele when compared to that carrying the ADR1 allele, but the absolute amounts were greater by three- to fourfold in cells containing the ADR1-5c allele. These results indicate that the ADR1 gene acts to increase the level of functional ADHII mRNA during derepression.  相似文献   

15.
The accumulation and degradation of a wheat (Triticum durum) embryo cytokinin-binding protein (CBF-1) was followed during embryo development and germination by its N6-benzyladenine (BA) binding activity and immunological reactivity (rocket immunoelectrophoresis and Western blotting). Both BA binding activity and CBF-1 appeared at 2 weeks post-anthesis and rose sharply between 2 to 4 weeks before leveling off to approximately 47 micrograms per embryo (9% of the soluble embryo protein at maturity). In vitro translation of polyadenylated RNA from 20-day-old embryos yielded a polypeptide which was immunoprecipitable with anti-CBF-1 IgG and migrated closely to the 54-kilodalton CBF-1 polypeptide on sodium dodecyl sulfate-polyacrylamide gel electrophoresis. Upon germination, both the amount of CBF-1 and BA binding activity dropped to low levels within 3 days. The data are discussed in relation to the possible role of CBF-1 as a regulator of cytokinin availability, and comparisons are drawn between the structural and biosynthetic similarities found between CBF-1 and the vicilin storage proteins of legumes. An improved method for isolating undegraded CBF-1 from whole seeds is also presented.  相似文献   

16.
Protein synthesis was studied during precocious and natural soybean seed (Glycine max [L.] Merr.) maturation. Developing seeds harvested 35 days after flowering were precociously matured through controlled dehydration. Total soluble proteins and proteins labeled with [35S]methionine were extracted from control, developing seeds and from precociously and naturally matured seeds and were analyzed by one-dimensional PAGE and fluorography. The results demonstrated that several polypeptides which were designated “mature polypeptides,” were synthesized de novo during precocious and natural seed maturation. Two of these polypeptides, 31 and 128 kilodalton in mass, also stained intensely with Coomassie blue, suggesting their abundant accumulation during seed maturation. Results from in vitro translation experiments showed that the mRNAs corresponding to these “maturation polypeptides” accumulated during precocious maturation and in naturally matured seeds, but not in seeds freshly harvested 35 days after flowering (control). The role of the “maturation polypeptides” is currently unknown; however, their presence and that of their corresponding mRNAs was coincident with the ability of matured seeds to establish seedling growth. This study has demonstrated that precocious seed maturation treatments may be extremely useful for investigations of metabolic events and molecular control mechanisms affecting soybean seed maturation.  相似文献   

17.
In vitro synthesis of barley storage proteins   总被引:1,自引:0,他引:1  
Membrane-bound polysomes were isolated from developing endosperms of barley (Hordeum vulgare L.) and shown to support the synthesis of trichloroacetic acid-insoluble material by an in vitro wheat germ protein synthesis system. The mRNA associated with the polysomes was separated from the ribosomes by affinity chromatography on oligo-dT cellulose and was also shown to support in vitro protein synthesis. The poly-A+ RNA isolated contained material of between 0.55 and 2.55 kilobases in length with about 6% poly A. The products of in vitro protein synthesis resembled hordeins (the prolamin storage proteins of the barley endosperm) in that they were predominantly soluble in 55% propan-2-ol, contained a low proportion of lysine as compared with leucine and had similar, but not identical, electrophoretic properties. The differences in the electrophoretic behaviour between the products of poly-A+ RNA translation and authentic hordeins is suggested to be due to the presence of an extra (leader?) sequence on the former.  相似文献   

18.
Protein synthesis and accumulation in growing sunflower (Helianthus annuus L.cv.Airelle) seeds are studied. The salt soluble fraction, globulin, is the main soluble protein component. The earlier stages of seed development (10 days after flowering) are characterized by high Mr polypeptides (74, 58 and 44 kDa). Later stages mainly show nature globulin polypeptides. Thus, protein synthesis in seed occurs at a specific period of seed development which follows a period of fast cell divisions (0–14 days after flowering). Protein bodies are isolated and their protein composition analyzed. Globulin subunits are the main polypeptides of protein bodies soluble fraction. Mature globulin is only stored in protein bodies.   相似文献   

19.
Protein Synthesis and Accumulation in Bean Cotyledons during Growth   总被引:14,自引:5,他引:9       下载免费PDF全文
Analysis of total protein, of specific proteins by gel electrophoresis and immunoelectrophoresis, and of protein synthetic activity in vitro confirmed that intense protein synthesis and accumulation occurred as the French bean (Phaseolus vulgaris L). seed grew from 12 to 20 millimeters. These techniques showed that there was no globulin-1 (G1) fraction (requiring high salt for solubility) present in 6-millimeter seeds, and only very small amounts were synthesized in seeds less than 9 millimeters long. The 7- to 9-millimeter stages represent a 2-day transition period over which genetic information for the G1 protein becomes actively expressed, accounting for at least 50% of all protein synthesized in this tissue during the following 14 days. At maturity, the electrophoretic analysis confirmed that G1 globulin was the major storage protein, representing some 50% of the dry seed protein. Cell-free protein synthesis assays, including immunoprecipitation of the in vitro products, clearly showed G1 polypeptides to be among the polysome-directed products.  相似文献   

20.
During the transition of tobacco (Nicotiana tabacum) pith tissue to callus tissue, there were changes in the composition of the soluble amino acid pools, in the distribution of amino acids between pool and protein, and in the synthesis, accumulation, and degradation of proteins. The size of the leucine pool decreased from 90 nanomoles per gram fresh weight in fresh pith to 20 nanomoles in 24-hour cultured pith, followed by a return to 90 nmoles in pith cultured longer than 5 days. The latter value is the same as that reported for exponentially growing callus cells. Many other pool amino acids changed as dramatically. However, they always approached callus levels after 5 days of culturing. The total amino acid content of pith tissue (the sum of both pool and protein) remained unchanged during culturing. The value for total amino acid content (34 to 42 nanomoles per gram fresh weight) was also similar to that found in callus. The distribution of amino acids between pool and protein did change during culturing. The transition of pith tissue with 88% of its total amino acids free in the soluble pool to callus with 92% of its amino acids in protein was further characterized by changes in protein metabolism. Both protein synthesis and accumulation increased over the first 50 hours in culture to a maximum rate of 45 milligrams protein synthesized gram protein−1 hour−1. After 50 hours in culture, the rate of protein accumulation decreased to equal the rate of fresh weight accumulation (10 mg g−1 hour−1). However, protein synthesis continued at a high rate for several days, suggesting protein degradation was turned on by this time. By 5 days protein synthesis had decreased to a rate similar to that of callus.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号