首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
3.
Numerous Arabidopsis genes have been cloned that correspond to putative pathogen defense-related genes identified in parsley (Petroselinum crispum). Treatment of Arabidopsis cells with fungal elicitor leads to rapid accumulation of the respective mRNAs with time courses comparable to those observed for their counterparts in parsley. Evolutionary sequence conservation of many of these genes in several plant species suggests they code for important plant functions.  相似文献   

4.
5.
The differential response of cultured parsley cells to u.v. irradiation and elicitor treatment is a paradigm for analysis of specific plant defense responses. We demonstrate that freshly isolated parsley protoplasts, in the absence of detectable cell wall, maintain fully the ability to be activated by these important environmental factors. Stimulated protoplasts synthesize typical qualitative patterns and amounts of potentially protective flavonoid glycosides and coumarin phytoalexins following either u.v. irradiation or treatment with fungal elicitor, respectively. Induced accumulation of mRNAs and enzymes of the phenylpropanoid biosynthetic pathways is nearly identical in protoplasts and cells. Stimulation of protoplasts with elicitor requires only a short period of contact, which is not sufficient for cell wall regeneration. Importantly, there is no activation of these pathways during protoplast preparation. These results establish that parsley protoplasts respond appropriately to two physically distinct stimuli and might serve as an especially suitable system for the analysis of signal transduction and gene activation.  相似文献   

6.
Treatment of suspension-cultured parsley (Petroselinum crispum) cells with fungal elicitor triggers rapid, transient and sequential phosphorylation of a number of proteins, as shown by electrophoretic analysis on two-dimensional gels. This response is rapidly reversed by removal of the elicitor from the medium and appears to be specific. It is not observed in cells exposed to other environmental stress factors, such as heat shock, UV irradiation or treatment with mercuric chloride. Pronase digestion of the elicitor has the same negative effect on protein phosphorylation as its previously demonstrated effect on the activation of some pathogen defense-related genes, suggesting a link between these two phenomena. Some of the changes in protein phosphorylation are among the earliest known events following elicitation. The phosphorylation of a neutral 45-kDa protein, which is found in both the microsomal and cytoplasmic fractions, can be observed as early as 1 min after the onset of elicitor treatment. The phosphorylation of a 26-kDa nuclear protein also starts increasing very early. The changes in protein phosphorylation in response to the elicitor are dependent on the presence of Ca2+ in the medium. Our data are compatible with the hypothesis that protein phosphorylation is involved in the signal transduction processes following elicitor recognition by parsley cells.  相似文献   

7.
8.
Jasmonates have been proposed to be signaling intermediates in the wound and/or elicitor-activated expression of plant defense genes. We used parsley (Petroselinum crispum) cell cultures and transgenic tobacco (Nicotiana tabacum) plants expressing 4CL1-GUS gene fusions to investigate the potential role played by jasmonates in mediating the wound and/or elicitor activation of phenylpropanoid and other defense-related genes. Jasmonates and [alpha]-linolenic acid strongly induced the expression of 4CL in a dose-dependent manner in parsley cells; methyl jasmonate also activated the coordinate expression of other phenylpropanoid genes and the accumulation of furanocoumarin phytoalexins. However, the response of the cells to optimal methyl jasmonate concentrations was distinct quantitatively and qualitatively from the response of elicitor-treated cells. In transgenic tobacco wound-inducible tobacco 4CL genes and a 4CL1 promoter-GUS transgene were responsive to jasmonates and [alpha]-linolenic acid in a dose-dependent manner. Pre-treatment of parsley cells or tobacco leaves with a lipoxygenase inhibitor reduced their responsiveness to the elicitor and to wounding. These results show that the elicitor response in parsley cells can be partially mimicked by jasmonate treatment, which supports a role for jasmonates in mediating wound-induced expression of 4CL and other phenylpropanoid genes.  相似文献   

9.
10.
11.
R Wingender  H Rhrig  C Hricke    J Schell 《The Plant cell》1990,2(10):1019-1026
An elicitor-regulated transient expression system was established in soybean protoplasts that allowed the identification of cis-regulatory elements involved in plant defense. The 5' region of an ultraviolet (UV) light-inducible and elicitor-inducible chs gene (chs1) of soybean was subjected to deletion analysis with the help of chimeric chs-nptII/gus gene constructs. This analysis delimited the sequences necessary for elicitor inducibility to -175 and -134 of the chs1 promoter. The same soybean sequences were able to direct elicitor inducibility in parsley protoplasts, suggesting a conserved function of cis-acting elements involved in plant defense. In addition, this region of the soybean promoter also promotes UV light inducibility in parsley protoplasts. However, in contrast to the elicitor induction, correct regulation was not observed after UV light induction when sequences downstream of -75 were replaced by a heterologous minimal promoter. This result indicates that at least two cis-acting elements are involved in UV light induction.  相似文献   

12.
13.
Treatment of cultured parsley (Petroselinum crispum L.) cells with a structurally defined peptide elicitor (Pep25) of fungal origin has previously been shown to cause rapid and large changes in the levels of various desaturated fatty acids. We isolated two distinct parsley cDNAs sharing high sequence similarity with microsomal omega-6 fatty acid desaturases (FADs). One of them was functionally identified as a delta 12 FAD by expression in the yeast Saccharomyces cerevisiae. Two dienoic fatty acids, hexadecadienoic and linoleic, which were not detectable in control cells, together constituted up to 12% of the total fatty acids in the transformed yeast cells. delta 12 FAD mRNA accumulated rapidly and transiently in elicitor-treated parsley cells, protoplasts, and leaves. These and previous results indicate that fatty acid desaturation is an important early component of the complex defense response of parsley to attempted fungal infection.  相似文献   

14.
15.
We describe a novel system of reduced complexity for analysing molecular plant-fungus interactions. The system consists of suspension-cultured parsley (Petroselinum crispum) cells infected with a phytopathogenic fungus (Phytophthora infestans) which adheres to a coated glass plate and thus immobilizes the plant cells for live microscopy. Conventional light and electron microscopy as well as time-lapse video microscopy confirmed the virtual identity of fungal infection structures and of several characteristic early plant defence reactions in the cultured cells and whole-plant tissue. Using this new system to approach previously unresolved questions, we made four major discoveries: (i) rapid translocation of plant cell cytoplasm and nucleus to the fungal penetration site was associated with local depolymerization of the microtubular network; (ii) the directed translocation was dependent on intact actin filaments; (iii) a typical plant defence-related gene was activated in the fungus-invaded cell; and (iv) simultaneous activation of this gene in adjacent, non-invaded cells did not require hypersensitive death of the directly affected cell.  相似文献   

16.
17.
18.
19.
Cell suspension cultures of parsley (Petroselinum crispum) accumulated coumarin phytoalexins and exhibited increased β-1,3-glucanase activity when treated with either a purified α-1,4-d-endopolygalacturonic acid lyase from Erwinia carotovora or oligogalacturonides solubilized from parsley cell walls by endopolygalacturonic acid lyase. Coumarin accumulation induced by the plant cell wall elicitor was preceded by increases in the activities of phenylalanine ammonia lyase (PAL), 4-coumarate:CoA ligase (4CL) and S-adenosyl-l-methionine:xanthotoxol O-methyltransferase (XMT). The time courses for the changes in these three enzyme activities were similar to those observed in cell cultures treated with a fungal glucan elicitor. The plant cell wall elicitor was found to act synergistically with the fungal glucan elicitor in the induction of coumarin phytoalexins. As much as a 10-fold stimulation in coumarin accumulation above the calculated additive response was observed in cell cultures treated with combinations of plant and fungal elicitors. The synergistic effect was also observed for the induction of PAL, 4CL, and XMT activities. These results demonstrate that plant cell wall elicitors induce at least two distinct biochemical responses in parsley cells and further support the role of oligogalacturonides as important regulators of plant defense.  相似文献   

20.
U Conrath  W Jeblick  H Kauss 《FEBS letters》1991,279(1):141-144
An elicitor preparation from fungal cell walls known to induce coumarin synthesis in suspension-cultured parsley cells also elicits a rapid and transient Ca2+ uptake, K+ release and external alkalinization, and increases uptake of 45Ca2+ into the cells. The latter three responses were inhibited by the protein kinase inhibitor K-252a at 0.2 microM. Elicitor-induced coumarin synthesis, a process which requires gene activation, was greatly enhanced by K-252a. These results suggest that protein phosphorylation might be involved in the initial steps of signal transduction as well as in the long-term induction of coumarin synthesis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号