首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
We have previously reported that Ser13 and Ser34 on glial fibrillary acidic protein (GFAP) in the cleavage furrow of glioma cells are phosphorylated during late mitotic phase (Matsuoka, Y., K. Nishizawa, T. Yano, M. Shibata, S. Ando, T. Takahashi, and M. Inagaki. 1992, EMBO (Eur. Mol. Biol. Organ.) J. 11:2895-2902). This observation implies a possibility that there is a protein kinase specifically activated at metaphase-anaphase transition. To further analyze the cell cycle- dependent GFAP phosphorylation, we prepared monoclonal antibodies KT13 and KT34 which recognize the phosphorylation of GFAP at Ser13 and Ser34, respectively. Immunocytochemical studies with KT13 and KT34 revealed that the GFAP phosphorylation in the cleavage furrow during late mitotic phase occurred not only in glioma cells but also in human SW-13 and mouse Ltk- cells in which GFAP was ectopically expressed, thus the phosphorylation can be monitored in a wide range of cell types. Furthermore, we detected kinase activity which phosphorylates GFAP at Ser13 and Ser34 in the lysates of late mitotic cells but not in those of interphase cells or early mitotic cells. These results suggest that there exists a protein kinase which is specifically activated at the transition of metaphase to anaphase not only in GFAP-expressing cells but also in cells without GFAP.  相似文献   

2.
Rho-associated kinase (Rho-kinase), which is activated by the small GTPase Rho, regulates formation of stress fibers and focal adhesions, myosin fiber organization, and neurite retraction through the phosphorylation of cytoskeletal proteins, including myosin light chain, the ERM family proteins (ezrin, radixin, and moesin) and adducin. Rho-kinase was found to phosphorylate a type III intermediate filament (IF) protein, glial fibrillary acidic protein (GFAP), exclusively at the cleavage furrow during cytokinesis. In the present study, we examined the roles of Rho-kinase in cytokinesis, in particular organization of glial filaments during cytokinesis. Expression of the dominant-negative form of Rho-kinase inhibited the cytokinesis of Xenopus embryo and mammalian cells, the result being production of multinuclei. We then constructed a series of mutant GFAPs, where Rho-kinase phosphorylation sites were variously mutated, and expressed them in type III IF-negative cells. The mutations induced impaired segregation of glial filament (GFAP filament) into postmitotic daughter cells. As a result, an unusually long bridge-like cytoplasmic structure formed between the unseparated daughter cells. Alteration of other sites, including the cdc2 kinase phosphorylation site, led to no remarkable defect in glial filament separation. These results suggest that Rho-kinase is essential not only for actomyosin regulation but also for segregation of glial filaments into daughter cells which in turn ensures correct cytokinetic processes.  相似文献   

3.
Cell cycle regulation of the p34cdc2 inhibitory kinases.   总被引:15,自引:4,他引:11       下载免费PDF全文
In cells of higher eukaryotic organisms the activity of the p34cdc2/cyclin B complex is inhibited by phosphorylation of p34cdc2 at two sites within its amino-terminus (threonine 14 and tyrosine 15). In this study, the cell cycle regulation of the kinases responsible for phosphorylating p34cdc2 on Thr14 and Tyr15 was examined in extracts prepared from both HeLa cells and Xenopus eggs. Both Thr14- and Tyr15- specific kinase activities were regulated in a cell cycle-dependent manner. The kinase activities were high throughout interphase and diminished coincident with entry of cells into mitosis. In HeLa cells delayed in G2 by the DNA-binding dye Hoechst 33342, Thr14- and Tyr15-specific kinase activities remained high, suggesting that a decrease in Thr14- and Tyr15- kinase activities may be required for entry of cells into mitosis. Similar cell cycle regulation was observed for the Thr14/Tyr15 kinase(s) in Xenopus egg extracts. These results indicate that activation of CDC2 and entry of cells into mitosis is not triggered solely by activation of the Cdc25 phosphatase but by the balance between Thr14/Tyr15 kinase and phosphatase activities. Finally, we have detected two activities capable of phosphorylating p34cdc2 on Thr14 and/or Tyr15 in interphase extracts prepared from Xenopus eggs. An activity capable of phosphorylating Tyr15 remained soluble after ultracentrifugation of interphase extracts whereas a second activity capable of phosphorylating both Thr14 and Tyr15 pelleted. The pelleted fraction contained activities that were detergent extractable and that phosphorylated p34cdc2 on both Thr14 and Tyr15. The Thr14- and Tyr15-specific kinase activities co-purified through three successive chromatographic steps indicating the presence of a dual-specificity protein kinase capable of acting on p34cdc2.  相似文献   

4.
Glial fibrillary acidic protein (GFAP), the intermediate filament component of astroglial cells, can serve as an excellent substrate for both cAMP-dependent protein kinase and protein kinase C, in vitro. GFAP phosphorylated by each protein kinase does not polymerize, and the filaments that do polymerize tend to depolymerize after phosphorylation. Dephosphorylation of phospho-GFAP by phosphatase led to a recovery of the polymerization competence of GFAP. Most of the phosphorylation sites for cAMP-dependent protein kinase and protein kinase C on GFAP are the same, Ser-8, Ser-13, and Ser-34. cAMP-dependent protein kinase has one additional phosphorylation site, Thr-7. All the sites are located within the amino-terminal non-alpha-helical head domain of GFAP. These observations pave the way for in vivo studies on organization of glial filaments.  相似文献   

5.
The cdc25 phosphatase is a mitotic inducer that activates p34cdc2 at the G2/M transition by dephosphorylation of Tyr15 in p34cdc2. cdc25 itself is also regulated through periodic changes in its phosphorylation state. To elucidate the mechanism for induction of mitosis, phosphorylation of cdc25 has been investigated using recombinant proteins. cdc25 is phosphorylated by both cyclin A/p34cdc2 and cyclin B/p34cdc2 at similar sets of multiple sites in vitro. This phosphorylation retards its electrophoretical mobility and activates its ability to increase cyclin B/p34cdc2 kinase activity three- to fourfold in vitro, as found for endogenous Xenopus cdc25 in M-phase extracts. The threonine and serine residues followed by proline that are conserved between Xenopus and human cdc25 have been mutated. Both the triple mutation of Thr48, Thr67, and Thr138 and the quintuple mutation of these three threonine residues plus Ser205 and Ser285, almost completely abolish the shift in electrophoretic mobility of cdc25 after incubation with M-phase extracts or phosphorylation by p34cdc2. These mutations inhibit the activation of cdc25 by phosphorylation with p34cdc2 by 70 and 90%, respectively. At physiological concentrations these mutants cannot activate cyclin B/p34cdc2 in cdc25-immunodepleted oocyte extracts, suggesting that a positive feed-back loop between cdc2 and cdc25 is necessary for the full activation of cyclin B/p34cdc2 that induces abrupt entry into mitosis in vivo.  相似文献   

6.
W Krek  E A Nigg 《The EMBO journal》1991,10(2):305-316
The cdc2 kinase is a key regulator of the eukaryotic cell cycle. The activity of its catalytic subunit, p34cdc2, is controlled by cell cycle dependent interactions with other proteins as well as by phosphorylation--dephosphorylation reactions. In this paper, we examine the phosphorylation state of chicken p34cdc2 at various stages of the cell cycle. By peptide mapping, we detect four major phosphopeptides in chicken p34cdc2; three phosphorylation sites are identified as threonine (Thr) 14, tyrosine (Tyr) 15 and serine (Ser) 277. Analysis of synchronized cells demonstrates that phosphorylation of all four sites is cell cycle regulated. Thr 14 and Tyr 15 are phosphorylated maximally during G2 phase but dephosphorylated abruptly at the G2/M transition, concomitant with activation of p34cdc2 kinase. This result suggests that phosphorylation of Thr 14 and/or Tyr 15 inhibits p34cdc2 kinase activity, in line with the location of these residues within the putative ATP binding site of the kinase. During M phase, p34cdc2 is also phosphorylated, but phosphorylation occurs on a threonine residue distinct from Thr 14. Finally, phosphorylation of Ser 277 peaks during G1 phase and drops markedly as cells progress through S phase, raising the possibility that this modification may contribute to control the proposed G1/S function of the vertebrate p34cdc2 kinase.  相似文献   

7.
W Krek  E A Nigg 《The EMBO journal》1991,10(11):3331-3341
In vertebrates, entry into mitosis is accompanied by dephosphorylation of p34cdc2 kinase on threonine 14 (Thr14) and tyrosine 15 (Tyr15). To examine the role of these residues in controlling p34cdc2 kinase activation, and hence the onset of mitosis, we replaced Thr14 and/or Tyr15 by non-phosphorylatable residues and transfected wild-type and mutant chicken p34cdc2 cDNAs into HeLa cells. While expression of wild-type p34cdc2 did not interfere with normal cell cycle progression, p34cdc2 carrying mutations at both Thr14 and Tyr15 displayed increased histone H1 kinase activity and rapidly induced premature mitotic events, including chromosome condensation and lamina disassembly. No phenotype was observed in response to mutation of only Thr14, and although single-site mutation at Tyr15 did induce premature mitotic events, effects were partial and their onset was delayed. These results identify both Thr14 and Tyr15 as sites of negative regulation of vertebrate p34cdc2 kinase, and they suggest that dephosphorylation of p34cdc2 represents the rate-limiting step controlling entry of vertebrate cells into mitosis.  相似文献   

8.
Aurora-B is a protein kinase required for chromosome segregation and the progression of cytokinesis during the cell cycle. We report here that Aurora-B phosphorylates GFAP and desmin in vitro, and this phosphorylation leads to a reduction in filament forming ability. The sites phosphorylated by Aurora-B; Thr-7/Ser-13/Ser-38 of GFAP, and Thr-16 of desmin are common with those related to Rho-associated kinase (Rho-kinase), which has been reported to phosphorylate GFAP and desmin at cleavage furrow during cytokinesis. We identified Ser-59 of desmin to be a specific site phosphorylated by Aurora-B in vitro. Use of an antibody that specifically recognized desmin phosphorylated at Ser-59 led to the finding that the site is also phosphorylated specifically at the cleavage furrow during cytokinesis in Saos-2 cells. Desmin mutants, in which in vitro phosphorylation sites by Aurora-B and/or Rho-kinase are changed to Ala or Gly, cause dramatic defects in filament separation between daughter cells in cytokinesis. The results presented here suggest the possibility that Aurora-B may regulate cleavage furrow-specific phosphorylation and segregation of type III IFs coordinatedly with Rho-kinase during cytokinesis.  相似文献   

9.
Regulatory phosphorylation of the p34cdc2 protein kinase in vertebrates.   总被引:69,自引:19,他引:50       下载免费PDF全文
C Norbury  J Blow    P Nurse 《The EMBO journal》1991,10(11):3321-3329
The p34cdc2 protein kinase is a conserved regulator of the eukaryotic cell cycle. Here we show that residues Thr14 and Tyr15 of mouse p34cdc2 become phosphorylated as mouse fibroblasts proceed through the cell cycle. We have mutated these residues and measured protein kinase activity of the p34cdc2 variants in a Xenopus egg extract. Phosphorylation of residues 14 and 15, which lie within the presumptive ATP-binding region of p34cdc2, normally restrains the protein kinase until it is specifically dephosphorylated and activated at the G2/M transition. Regulation by dephosphorylation of Tyr15 is conserved from fission yeast to mammals, while an extra level of regulation of mammalian p34cdc2 involves Thr14 dephosphorylation. In the absence of phosphorylation on these two residues, the kinase still requires cyclin B protein for its activation. Inhibition of DNA synthesis inhibits activation of wild-type p34cdc2 in the Xenopus system, but a mutant which cannot be phosphorylated at residues 14 and 15 escapes this inhibition, suggesting that these phosphorylation events form part of the pathway linking completion of DNA replication to initiation of mitosis.  相似文献   

10.
K L Gould  S Moreno  D J Owen  S Sazer    P Nurse 《The EMBO journal》1991,10(11):3297-3309
Eukaryotic cell cycle progression requires the periodic activation and inactivation of a protein-serine/threonine kinase which in fission yeast is encoded by the cdc2+ gene. The activity of this gene product, p34cdc2, is controlled by numerous interactions with other proteins and by its phosphorylation state. In fission yeast, p34cdc2 is phosphorylated on two sites, one of which has been identified as Tyr15. Dephosphorylation of Tyr15 regulates the initiation of mitosis. To understand more completely the regulation of p34cdc2 kinase activity, we have identified the second site of phosphorylation as Thr167, a residue conserved amongst all p34cdc2 homologues. By analysing the phenotypes of cells expressing various position 167 mutations and performing in vitro experiments, we establish that Thr167 phosphorylation is required for p34cdc2 kinase activity at mitosis and is involved in the association of p34cdc2 with cyclin B. Dephosphorylation of Thr167 might also play a role in the exit from mitosis.  相似文献   

11.
Members of the mitogen-activated protein (MAP) kinase family are implicated in mediating entry of cells into the cell cycle, as well as passage through meiotic M phase. These kinases have attracted much interest because their activation involves phosphorylation on both tyrosine and threonine residues, but little is known about their physiological targets. In this study, two distinct members of the MAP kinase family (p44mpk and p42mapk) are shown to phosphorylate chicken lamin B2 at a single site identified as Ser16. Moreover, these MAP kinases cause depolymerization of in-vitro-assembled longitudinal lamin head-to-tail polymers. Ser16 was previously shown to be phosphorylated during mitosis in vivo, and to be a target of the mitotic protein kinase p34cdc2 in vitro. Accordingly, lamins were proposed to be direct in vivo substrates of p34cdc2. This proposal is supported by quantitative analyses indicating that lamin B2, when assayed in vitro, is a substantially better substrate for p34cdc2 than for MAP kinases. Nevertheless, a physiological role of MAP kinases in lamin phosphorylation is not excluded. The observation that members of the MAP kinase family display sequence specificities overlapping that of p34cdc2 raises the possibility that some of the purported substrates of p34cdc2 may actually be physiological substrates of MAP kinases.  相似文献   

12.
The regulation of p34cdc2 kinase activity controls the entry into and exit from mitosis. Although genetic and biochemical evidence suggested close interactions between cyclins, p13suc1 and p34cdc2 kinase, the roles of p13suc1 on p34cdc2 kinase functions remain unclear. To examine the effects of p13suc1 on p34cdc2 kinase function we developed a simple purification procedure for p34cdc2 kinase, unassociated with p13suc1. The key to the purification procedures we used was buffer containing 0.5 M NaCl and 50% ethylene glycol, as a specific elutant of p34cdc2 kinase from p13suc1-Sepharose. This purified p34cdc2 kinase stoichiometrically phosphorylated vimentin and desmin. Exogenous p13suc1 suppressed the phosphorylation of these filament proteins by the kinase and prevented disassembly, although histone H1 phosphorylation was not affected. Peptide mapping analysis showed a similar extent of inhibition by p13suc1 for all five phosphorylation sites by p34cdc2 kinase of vimentin and desmin, hence these p13suc1-induced inhibitions are probably not site-specific. It thus appears that p13suc1 has a selective effect on the catalytic activity of p34cdc2 kinase for these filament proteins.  相似文献   

13.
We have previously shown that overexpressed chicken pp60c-src has retarded mobility, novel serine/threonine phosphorylation, and enhanced kinase activity during NIH 3T3 cell mitosis. Here we show that novel mitotic phosphorylations occur at Thr 34, Thr 46, and Ser 72. The possibility, previously raised, that Ser 17 is dephosphorylated during mitosis is excluded. The phosphorylated sites lie in consensus sequences for phosphorylation by p34cdc2, the catalytic component of maturation promoting factor (MPF). Furthermore, highly purified MPF from metaphase-arrested Xenopus eggs phosphorylated both wild-type and kinase-defective pp60c-src at these sites. Altered phosphorylation alone is sufficient to account for the large retardation in mitotic pp60c-src electrophoretic mobility: phosphorylation of normal pp60c-src by MPF retarded mobility and dephosphorylation of mitotic pp60c-src restored normal mobility. These results suggest that pp60c-src is one of the targets for MPF action, which may account in part for the pleiotropic changes in protein phosphorylation and cellular architecture that occur during mitosis.  相似文献   

14.
Y H Chou  J R Bischoff  D Beach  R D Goldman 《Cell》1990,62(6):1063-1071
As cells enter mitosis, the intermediate filament (IF) networks of interphase BHK-21 cells are depolymerized to form cytoplasmic aggregates of disassembled IFs, and the constituent IF proteins, vimentin and desmin are hyperphosphorylated at several specific sites. We have characterized one of two endogenous vimentin kinases from a particulate fraction of mitotic cell lysates. Through several purification steps, vimentin kinase activity copurifies with histone H1 kinase and both activities bind to p13suc1-Sepharose. The final enriched kinase preparation consists primarily of p34cdc2 and polypeptides of 65 and 110 kd. The purified kinase complex phosphorylates vimentin in vitro at a subset of sites phosphorylated in vivo during mitosis. Furthermore, phosphorylation of in vitro polymerized vimentin IFs by the purified kinase causes their disassembly. Therefore, vimentin is a substrate of p34cdc2 and phosphorylation of vimentin contributes to M phase reorganization of the IF network.  相似文献   

15.
Inhibitor-2 (I-2) is a regulator of protein phosphatase type-1 (PP1), known to be phosphorylated in vitro by multiple kinases. In particular Thr72 is a Thr-Pro phosphorylation site conserved from yeast to human, but there is no evidence that this phosphorylation responds to any physiological signals. Here, we used electrophoretic mobility shift and immunoblotting with a site-specific phospho-Thr72 antibody to establish Thr72 phosphorylation in HeLa cells and show a 25-fold increase in phosphorylation during mitosis. Mass spectrometry demonstrated I-2 in actively growing HeLa cells was also phosphorylated at three other sites, Ser120, Ser121, and an additional Ser located between residues 70 and 90. In vitro kinase assays using recombinant I-2 as a substrate showed that the Thr72 kinase(s) was activated during mitosis, and sensitivity to kinase inhibitors indicated that the principal I-2 Thr72 kinase was not GSK3 but instead a member of the cyclin-dependent protein kinase family. Immunocytochemistry confirmed Thr72 phosphorylation of I-2 during mitosis, with peak intensity at prophase, and revealed subcellular concentration of the phospho-Thr72 I-2 at centrosomes. Together, the data show dynamic changes in I-2 phosphorylation during mitosis and localization of phosphorylated I-2 at centrosomes, suggesting involvement in mammalian cell division.  相似文献   

16.
c-Src is phosphorylated at specific serine and threonine residues during mitosis in fibroblastic and epithelial cells. These sites are phosphorylated in vitro by the mitotic kinase Cdk1 (p34(cdc2)). In contrast, c-Src in Y79 human retinoblastoma cells, which are of neuronal origin, is phosphorylated at one of the mitotic sites, Ser75, throughout the cell cycle. The identity of the serine kinase that nonmitotically phosphorylates c-Src on Ser75 remains unknown. We now are able to show for the first time that Cdk5 kinase, which has the same consensus sequence as the Cdk1 and Cdk2 kinases, is required for the phosphorylation in asynchronous Y79 cells. The Ser75 phosphorylation was inhibited in a dose-dependent manner by butyrolactone I, a specific inhibitor of Cdk5-type kinases. Three stable subclones that have almost no kinase activity were selected by transfection of an antisense Cdk5-specific activator p35 construct into Y79 cells. The loss of the kinase activity caused an approximately 85% inhibition of the Ser75 phosphorylation. These results present compelling evidence that Cdk5/p35 kinase is responsible for the novel phosphorylation of c-Src at Ser75 in neuronal cells, raising the intriguing possibility that c-Src acts as an effector of Cdk5/p35 kinase during neuronal development.  相似文献   

17.
The intermediate filament protein nestin is expressed during early stages of development in the central nervous system and in muscle tissues. Nestin expression is associated with morphologically dynamic cells, such as dividing and migrating cells. However, little is known about regulation of nestin during these cellular processes. We have characterized the phosphorylation-based regulation of nestin during different stages of the cell cycle in a neuronal progenitor cell line, ST15A. Confocal microscopy of nestin organization and (32)P in vivo labeling studies show that the mitotic reorganization of nestin is accompanied by elevated phosphorylation of nestin. The phosphorylation-induced alterations in nestin organization during mitosis in ST15A cells are associated with partial disassembly of nestin filaments. Comparative in vitro and in vivo phosphorylation studies identified cdc2 as the primary mitotic kinase and Thr(316) as a cdc2-specific phosphorylation site on nestin. We generated a phosphospecific nestin antibody recognizing the phosphorylated form of this site. By using this antibody we observed that nestin shows constitutive phosphorylation at Thr(316), which is increased during mitosis. This study shows that nestin is reorganized during mitosis and that cdc2-mediated phosphorylation is an important regulator of nestin organization and dynamics during mitosis.  相似文献   

18.
In fission yeast, the M-phase inducing kinase, a complex of p34cdc2 and cyclin B, is maintained in an inhibited state during interphase due to the phosphorylation of Cdc2 at Tyr15. This phosphorylation is believed to be carried out primarily by the Wee1 kinase. In human cells the negative regulation of p34cdc2/cyclin B is more complex, in that Cdc2 is phosphorylated at two inhibitory sites, Thr14 and Tyr15. The identities of the kinases that phosphorylate these sites are unknown. Since fission yeast Wee1 kinase behaves as a dual-specificity kinase in vitro, a popular hypothesis is that a human Wee1 homolog might phosphorylate p34cdc2 at both sites. We report here that a human gene, identified as a possible Wee1 homologue, blocks cell division when overexpressed in HeLa cells. This demonstrates functional conservation of the Wee1 mitotic inhibitor. Contrary to the dual-specificity kinase hypothesis, purified human Wee1 phosphorylates p34cdc2 exclusively on Tyr15 in vitro; no Thr14 phosphorylation was detected. Human and fission yeast Wee1 also specifically phosphorylate synthetic peptides at sites equivalent to Tyr15. Mutation of a critical lysine codon (Lys114) believed to be essential for kinase activity abolished both the in vivo mitotic inhibitor function and in vitro kinase activities of human Wee1. These results conclusively prove that Wee1 kinases inhibit mitosis by directly phosphorylating p34cdc2 on Tyr15, and strongly indicate that human cells have independent kinase pathways directing the two inhibitor phosphorylations of p34cdc2.  相似文献   

19.
Tau protein, a neuronal microtubule-associated protein, is phosphorylated in situ and hyperphosphorylated when aggregated into the paired helical filaments of Alzheimer's disease. To study the phosphorylation of tau protein in vivo, we have stably transfected htau40, the largest human tau isoform, into Chinese hamster ovary cells. The distribution and phosphorylation of tau was monitored by gel shift, autoradiography, immunofluorescence, and immunoblotting, using the antibodies Tau-1, AT8, AT180, and PHF-1, which are sensitive to the phosphorylation of Ser202, Thr205, Thr231, Ser235, Ser396, and Ser404 and are used in the diagnosis of Alzheimer tau. In interphase cells, tau becomes phosphorylated to some extent, partly at these sites; most of the tau is associated with microtubules. In mitosis, the above Ser/Thr-Pro sites become almost completely phosphorylated, causing a pronounced shift in M(r) and an antibody reactivity similar to that of Alzheimer tau. Moreover, a substantial fraction of tau is found in the cytoplasm detached from microtubules. Autoradiographs of metabolically labeled Chinese hamster ovary cells in interphase and mitosis confirmed that tau protein is more highly phosphorylated during mitosis. The understanding of tau phosphorylation under physiological conditions might help elucidate possible mechanisms for the hyperphosphorylation in Alzheimer's disease.  相似文献   

20.
p34cdc2 kinase-phosphorylation sites in the microtubule (MT)-binding region of MAP4 were determined by peptide sequence of phosphorylated MTB3, a fragment containing the carboxy-terminal half of human MAP4. In addition to two phosphopeptides containing Ser696 and Ser787 which were previously indicated to be in vivo phosphorylation sites, two novel phosphopeptides, containing Thr892 or Thr901 and Thr917 as possible phosphorylation sites, were isolated, though only in in vitro phosphorylation. The role of phosphorylation at Ser696 and Ser787, which were differently phosphorylated during the cell cycle (Ookata et al., (1997). Biochemistry, 36: 15873-15883), was investigated in MT-polymerization, using MAP4 Ser to Glu mutants, which mimic phosphorylation at each site. Mutation of Ser787 to Glu strikingly reduced the MAP4's MT-polymerization activity, while Glu-mutation at Ser696 did not. These results suggest that Ser787 could be the critical phosphorylation site causing MTs to be dynamic at mitosis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号