首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
Progesterone is present at micromolar concentrations in the cumulus matrix, which surrounds mammalian oocytes. Exposure of human spermatozoa to a concentration gradient of progesterone (0-3 microM) to simulate approach to the oocyte induced a slowly developing increase in [Ca(2+)](i) upon which, in many cells, slow oscillations were superimposed. [Ca(2+)](i) oscillations often started at very low progesterone (<10 nm), and their frequency did not change during the subsequent rise in concentration. Oscillations also occurred, but in a much smaller proportion of cells, in response to stepped application of progesterone (3 microM). When progesterone was removed, [Ca(2+)](i) oscillations often persisted or quickly resumed. Superfusion with low-Ca(2+) bathing medium (no added Ca(2+)) did not prevent [Ca(2+)](i) oscillations, but they could be abolished by addition of EGTA or La(3+). Inhibitors of sarcoplasmic/endoplasmic reticulum Ca(2+)-ATPases or inositol trisphosphate signaling had no effect on [Ca(2+)](i) oscillations, but pharmacological manipulation of ryanodine receptors affected both their frequency and amplitude. Staining of live spermatozoa with BODIPY FL-X ryanodine showed localization of ryanodine binding primarily to the caudal part of the head and mid-piece. [Ca(2+)](i) oscillations did not induce acrosome reaction, but in cells generating oscillations, the flagellar beat mode alternated in synchrony with the oscillation cycle. Flagellar bending and lateral movement of the sperm head during [Ca(2+)](i) peaks were markedly increased compared with during [Ca(2+)](i) troughs. This alternating pattern of activity is likely to facilitate zona penetration. These observations show that progesterone initiates unusual and complex store-mediated [Ca(2+)](i) signaling in human spermatozoa and identify a previously unrecognized effect of progesterone in regulating sperm "behavior" during fertilization.  相似文献   

3.
Ca(2+) entry in endothelial cells is a key signaling event as it prolongs the Ca(2+) signal activated by a receptor agonist, and thus allows an adequate production of a variety of compounds. The possible routes that lead to Ca(2+) entry in non-excitable cells include the receptor-activated Ca(2+) entry (RACE), which requires the presence of an agonist to be activated, and the store-operated Ca(2+) entry (SOCE) pathway, whose activation requires the depletion of the ER Ca(2+) store. However, the relative importance of these two influx pathways during physiological stimulation is not known. In the present study we experimentally differentiated these two types of influxes and determined under which circumstances they are activated. We show that La(3+) (at 10 microM) is a discriminating compound that efficiently blocks SOCE but is almost without effect on histamine-induced Ca(2+) entry (RACE). In line with this, histamine does not induce massive store depletion when performed in the presence of extracellular Ca(2+). In addition, inhibition of mitochondrial respiration significantly reduces SOCE but modestly affects RACE. Thus, agonist-induced Ca(2+) entry is insensitive to La(3+), and only modestly affected by mitochondrial depolarization. These data shows that agonist relies almost exclusively on RACE for sustained Ca(2+) signaling in endothelial cells.  相似文献   

4.
Putney JW 《Cell calcium》2007,42(2):103-110
Activation of phospholipase C by G-protein-coupled receptors results in release of intracellular Ca(2+) and activation of Ca(2+) channels in the plasma membrane. The intracellular release of Ca(2+) is signaled by the second messenger, inositol 1,4,5-trisphosphate. Ca(2+) entry involves signaling from depleted intracellular stores to plasma membrane Ca(2+) channels, a process referred to as capacitative calcium entry or store-operated calcium entry. The electrophysiological current associated with capacitative calcium entry is the calcium-release-activated calcium current, or I(crac). In the 20 years since the inception of the concept of capacitative calcium entry, a variety of activation mechanisms have been proposed, and there has been considerable interest in the possibility of transient receptor potential channels functioning as store-operated channels. However, in the past 2 years, two major players in both the signaling and permeation mechanisms for store-operated channels have been discovered: Stim1 (and possibly Stim2) and the Orai proteins. Activation of store-operated channels involves an endoplasmic reticulum Ca(2+) sensor called Stim1. Stim1 acts by redistributing within a small component of the endoplasmic reticulum, approaching the plasma membrane, but does not appear to translocate into the plasma membrane. Stim1, either directly or indirectly, signals to plasma membrane Orai proteins which constitute pore-forming subunits of store-operated channels.  相似文献   

5.
In the absence of progesterone (P), the anti-P at the receptor RU486 reduces basal and GnRH-stimulated LH secretion both in vivo and in vitro, demonstrating the existence of a ligand-independent activation of progesterone receptor (LIAPR). The aim of the present study was to determine which component of the intracellular LH secretory pathway activated by GnRH is responsible for LIAPR. To do this, anterior pituitary dispersed cells from female rats in proestrus, cultured in the presence of 17beta-estradiol, were incubated with activators or inhibitors of PKC, cAMP-PKA signalling pathways or intracellular calcium (Ca2+) traffic, in the presence or absence of RU486. Results showed that RU486 reduced both GnRH- and the PKC activator PMA-induced LH secretion. In GnRH-stimulated cells incubated with the PKC inhibitor BIS-I or treated with PMA "overnight", RU486 had no effect on reduced LH secretion, nor on stimulated LH secretion elicited by the Ca2+ ionophore ionomycin. Moreover, when GnRH- or PMA-treated cells were co-incubated with 1 microM of the L-type Ca2+ channel blocker nifedipine or the intracellular Ca2+ chelator BAPTA-AM, RU486 potentiated the expected inhibition of these drugs on LH secretion. Activation (forskolin, 8-Br-cAMP) or inhibition (MDL-12,330A) of the cAMP-PKA signalling cascade affected neither the GnRH- and PMA-induced increase of LH secretion nor the reduction of LH secretion due to RU486. Taken together, the data point to the existence of a Ca2+ -independent PKC-PR cross-talk mechanism as part of the intracellular signalling of GnRH-stimulated LH secretion.  相似文献   

6.
Recent studies associate cholesterol excess and atherosclerosis with inflammation. The link between these processes is not understood, but cholesterol is an important component of lipid rafts. Rafts are thought to concentrate membrane signaling molecules and thus regulate cell signaling through G protein-coupled pathways. We used methyl beta-cyclodextrin to deplete cholesterol from polymorphonuclear neutrophil (PMN) rafts and thus study the effects of raft disruption on G protein-coupled Ca(2+) mobilization. Methyl beta-cyclodextrin had no effect on Ca(2+) store depletion by the G protein-coupled agonists platelet-activating factor or fMLP, but abolished agonist-stimulated Ca(2+) entry. Free cholesterol at very low concentrations regulated Ca(2+) entry into PMN via nonspecific Ca(2+) channels in a biphasic fashion. The specificity of cholesterol regulation for Ca(2+) entry was confirmed using thapsigargin studies. Responses to cholesterol appear physiologic because they regulate respiratory burst in a proportional biphasic fashion. Investigating further, we found that free cholesterol accumulated in PMN lipid raft fractions, promoting formation and polarization of membrane rafts. Finally, the transient receptor potential calcium channel protein TRPC1 redistributed to raft fractions in response to cholesterol. The uniformly biphasic relationships between cholesterol availability, Ca(2+) signaling and respiratory burst suggest that Ca(2+) influx and PMN activation are regulated by the quantitative relationships between cholesterol and other environmental lipid raft components. The association between symptomatic cholesterol excess and inflammation may therefore in part reflect free cholesterol- dependent changes in lipid raft structure that regulate immune cell Ca(2+) entry. Ca(2+) entry-dependent responses in other cell types may also reflect cholesterol bioavailability and lipid incorporation into rafts.  相似文献   

7.
We have previously demonstrated [M. Campos-Toimil, T. Bagrij, J.M. Edwardson, P. Thomas, Two modes of secretion in pancreatic acinar cells: involvement of phosphatidylinositol 3-kinase and regulation by capacitative Ca(2+) entry, Curr. Biol. 12 (2002) 211-215] that in rat pancreatic acinar cells, Gd(3+)-sensitive Ca(2+) entry is instrumental in governing which second messenger pathways control secretory activity. However, in those studies, we were unable to demonstrate a significant increase in cytoplasmic [Ca(2+)] during agonist application as a result of this entry pathway. In the present study, we combined pharmacology with ratiometric imaging of fura-2 fluorescence to resolve this issue. We found that 2 microM Gd(3+) significantly inhibits store-mediated Ca(2+) entry. Furthermore, both the protonophore, CCCP (5 microM) and the mitochondrial Ca(2+)-uptake blocker, RU360 (10 microM), led to an enhancement of the plateau phase of the biphasic Ca(2+) response induced by acetylcholine (1 microM). This enhancement was completely abolished by Gd(3+); and as has been previously shown for Gd(3+), RU360 led to a switch to a wortmannin-sensitive form of exocytosis. Using MitoTracker Red staining we found a close association of mitochondria with the lateral plasma membrane. We propose that in rat pancreatic acinar cells, capacitative Ca(2+) entry is targeted directly to mitochondria; and that as a result of Ca(2+) uptake, these mitochondria release "third" messengers which both enhance exocytosis and suppress phosphatidylinositol 3-kinase-dependent secretion.  相似文献   

8.
Induction of a sodium ion influx by progesterone in human spermatozoa   总被引:5,自引:0,他引:5  
In human spermatozoa, progesterone (P(4)) induces a depolarization of the plasma membrane, a rapid calcium (Ca(2+)) influx, and a chloride efflux. The sodium ion (Na(+)) was partly responsible for the P(4)-induced depolarizing effect but was not required for calcium influx. We used fluorescent probes for spectrofluorometry to investigate whether P(4) induced a Na(+) influx and whether voltage-operated channels were involved in Na(+) and/or Ca(2+) entries. We found that 10 microM P(4) significantly increased intracellular Na(+) concentration from 17.8 +/- 2.0 mM to 27.2 +/- 1. 6 mM (P < 0.001). Prior incubation of spermatozoa with 10 microM flunarizine, a Na(+) and Ca(2+) voltage-dependent channel blocker, inhibited the sodium influx induced by 10 microM P(4) by 84.6 +/- 15.4%. The Ca(2+) influx induced by 10 microM P(4) was also significantly inhibited in a Na(+)-containing medium by 10 microM flunarizine or 10 microM pimozide (P < 0.01). In contrast, flunarizine had no inhibitory effect on the Ca(2+) influx induced by 10 microM P(4) in spermatozoa incubated in Na(+)-depleted medium. The P(4)-promoted acrosome reaction (AR) was significantly higher when spermatozoa were incubated in Na(+)-containing medium as compared to Na(+)-depleted medium. These data demonstrate that P(4) stimulates a Na(+) influx that could be involved in the AR completion. They also suggest that voltage-dependent Na(+) and Ca(2+) channels are implicated in P(4)-mediated signaling pathway in human spermatozoa.  相似文献   

9.
Spermatozoa require a preparatory process called capacitation to fertilize mature oocytes. Two events related to capacitation of mammalian spermatozoa are an increase in intracellular Ca(2+) and protein tyrosine phosphorylation. The sites that regulate intracellular Ca(2+) concentration are plasma membrane and mitochondria. There are different systems for mitochondrial Ca(2+) influx and efflux. Our aim was to study the involvement of mitochondrial Ca(2+) cycle during heparin-induced capacitation in cryopreserved bovine spermatozoa. Samples were incubated at 38°C for 45 min, in TALP medium, in the presence of: (a) heparin (H), a well known capacitation inducer; (b) H+CGP 37157, a specific inhibitor of mitochondrial Ca(2+) efflux; (c) H+RU 360, a specific inhibitor of Ca(2+) influx to the mitochondria and (d) H+CGP 37157+RU 360. In every treatment, capacitation (by CTC), progressive motility (by optical microscopy), viability (by the eosin/nigrosin technique) and protein tyrosine phosphorylation (by Western Immuno-blotting), were evaluated. The addition of CGP 37157 (20 μM) decreased progressive motility (p<0.05), without affecting capacitation or protein tyrosine phosphorylation, indicating the importance of calcium efflux for maintaining progressive motility. RU 360 (5 μM) significantly reduced capacitation without affecting progressive motility, sperm viability or protein tyrosine phosphorylation, showing that inhibition of the mitochondrial calcium uptake, negatively affect the capacitation process. The addition of both inhibitors showed the effect of RU 360. According with these results, there would exist a differential participation of the income and outcome mitochondrial calcium carriers, in the capacitation process. In conclusion, this research demonstrates the importance of normal mitochondrial calcium cycle in the achievement of sperm capacitation and the maintenance of progressive motility in cryopreserved bovine spermatozoa.  相似文献   

10.
Y Itzhak  S Alerhand 《FASEB journal》1989,3(7):1868-1872
The existence of multiple receptor sites for the psychotomimetic agents phencyclidine (PCP) and some opiate-benzomorphans such as (+)N-allylnormetazocine ([+]SKF 10,047) in the mammalian central nervous system is well documented. These are: 1) sigma/PCP (sigma p) site, which binds both PCP and psychotomimetic opiates but not antipsychotics such as haloperidol, 2) PCP site, which selectively binds PCP analogs, and 3) sigma/haloperidol (sigma h) site, for which certain antipsychotics and (+)SKF 10,047, but not PCP analogs, display high affinity. In this study we examined the regulation of these receptor sites after chronic treatment of mice with either PCP or haloperidol. The following radiolabeled ligands were used to assess binding to the various receptor subtypes: [3H]-1-[1-[3-hydroxyphenyl)cyclohexyl]piperidine ([3H]PCP-3-OH; sigma p and PCP sites), [3H]thienyl-phencyclidine ([3H]TCP; PCP site), (+)-[3H]SKF 10,047 (sigma p and sigma h sites), and [3H]haloperidol (sigma h and D-2 dopamine receptors). Treatment of mice for 1, 7, 14, and 21 days with PCP (10 mg.kg-1.day-1) failed to induce variations in sigma p, sigma h, and PCP receptor binding. However, similar treatment with haloperidol (4 mg.kg-1.day-1) induced: 1) complete elimination of the binding to sigma h sites, 2) up-regulation of D-2 dopamine receptors, and 3) no change in sigma p and PCP receptor binding after 14 or 21 days of treatment. However, a single day of haloperidol treatment or in vitro incubation of mouse brain membranes with haloperidol failed to alter receptor binding. This study suggests that prolonged treatment of mice with haloperidol induces a loss in sigma h receptors that are presumably associated with certain psychotomimetic effects. This phenomenon is accompanied by an up-regulation of D-2 dopamine receptors.  相似文献   

11.
Mast cells are implicated in the pathogenesis of a broad spectrum of immunological disorders. These cells release inflammatory mediators in response to a number of stimuli, including IgE-Ag complexes. The degranulation of mast cells is modified by PGs. To begin to delineate the pathway(s) used by PGs to regulate mast cell function, we examined bone marrow-derived mast cells (BMMC) cultured from mice deficient in the EP(1), EP(2), EP(3), and EP(4) receptors for PGE(2). Although BMMCs express all four of these PGE(2) receptors, potentiation of Ag-stimulated degranulation and IL-6 cytokine production by PGE(2) is dependent on the EP(3) receptor. Consistent with the coupling of this receptor to G(alphai), PGE(2) activation of the EP(3) receptor leads to both inhibition of adenylate cyclase and increased intracellular Ca(2+). The magnitude of increase in intracellular Ca(2+) induced by EP(3) activation is similar to that observed after activation of cells with IgE and Ag. Although PGE alone is not sufficient to initiate BMMC degranulation, stimulation of cells with PGE along with PMA induces degranulation. These actions are mediated by the EP(3) receptor through signals involving Ca(2+) mobilization and/or decreased cAMP levels. Accordingly, these studies identify PGE(2)/EP(3) as a proinflammatory signaling pathway that promotes mast cell activation.  相似文献   

12.
Calcium entry through Ca(2+)-permeable AMPA/kainate receptors may activate signaling cascades controlling neuronal development. Using the fluorescent Ca(2+)-indicator Calcium Green 1-AM we showed that the application of kainate or AMPA produced an increase of intracellular [Ca(2+)] in embryonic chick retina from day 6 (E6) onwards. This Ca(2+) increase is due to entry through AMPA-preferring receptors, because it was blocked by the AMPA receptor antagonist GYKI 52466 but not by the N-methyl-D-aspartic acid (NMDA) receptor antagonist AP5, the voltage-gated Ca(2+) channel blockers diltiazem or nifedipine, or by the substitution of Na+ for choline in the extracellular solution to prevent the depolarizing action of kainate and AMPA. In dissociated E8 retinal cultures, application of glutamate, kainate, or AMPA reduced the number of neurites arising from these cells. The effect of kainate was prevented by the AMPA/kainate receptor antagonist CNQX and by GYKI 52466 but not by AP5, indicating that the reduction in neurite outgrowth resulted from the activation of AMPA receptors. Blocking Ca(2+) influx through L-type voltage-gated Ca(2+) channels with diltiazem and nifedipine prevented the effect of 10-100 microM kainate but not that of 500 microM kainate. In addition, joro spider toxin-3, a blocker of Ca(2+)-conducting AMPA receptors, prevented the effect of all doses of kainate. Neither GABA, which is depolarizing at this age in the retina, nor the activation of metabotropic glutamate receptors with tACPD mimicked the effects of AMPA receptor activation. Calcium entry via AMPA receptor channels themselves may therefore be important in the regulation of neurite outgrowth in developing chick retinal cells.  相似文献   

13.
Among the four protease-activated receptors (PARs), PAR-1 plays an important role in normal lung functioning and in the development of lung diseases, including fibrosis. We compared the expression and functional activity of PARs in normal and fibrotic human lung fibroblasts. Both normal and fibrotic cells express PAR-1, -2, and -3, with PAR-2 showing the lowest level. There was no significant difference between normal and fibrotic fibroblasts in expression levels of PAR-1 and PAR-3, whereas a fourfold higher expression level of PAR-2 was observed in fibrotic cells compared with normal cells. Ca(2+) imaging studies revealed apparently only PAR-1-induced Ca(2+) signaling in lung fibroblasts. PAR-1 agonists, thrombin and synthetic activating peptide, induced concentration-dependent Ca(2+) mobilization with EC(50) values of 5 nM and 1 microM, respectively. The neutrophil protease cathepsin G produced a transient Ca(2+) response followed by disabling PAR-1, whereas elastase did not affect Ca(2+) level. PAR-1 activation by thrombin or receptor-activating peptide downregulated expression of all three PARs in lung fibroblasts, with maximal effect at 3-6 h, whereas expression returned toward basal level after 24 h. Furthermore, PAR-1 agonists dose dependently increased PGE(2) secretion from lung fibroblasts and induction of cyclooxygenase-2 expression. We then found that PGE(2) downregulated expression of all three PARs. The effect of PGE(2) was continuously growing with time. Furthermore, PGE(2) exerts its effect through the EP2 receptor that was confirmed using the selective EP2 agonist butaprost. This novel autocrine feedback mechanism of PGE(2) in lung fibroblasts seems to be an important regulator in lung physiology and pathology.  相似文献   

14.
Human mesenchymal stem cells (HMSC) have the potential to differentiate into many cell types. The physiological properties of HMSCs including their Ca(2+) signaling pathways, however, are not well understood. We investigated Ca(2+) influx and release functions in HMSCs. In Ca(2+) imaging experiments, spontaneous Ca(2+) oscillations were observed in 36 of 50 HMSCs. The Ca(2+) oscillations were completely blocked by the application of 10 micro M cyclopiazonic acid (CPA) or 1 micro M thapsigargin (TG). A brief application of 1 micro M acetylcholine (ACh) induced a transient increase of [Ca(2+)](i) but the application of caffeine (10 mM) did not induce any Ca(2+) transient. When the stores were depleted with Ca(2+)-ATPase blockers (CPA or TG) or muscarinic agonists (ACh), store-operated Ca(2+) (SOC) entry was observed. Using the patch-clamp technique, store-operated Ca(2+) currents (I(SOC)) could be recorded in cells treated with ACh or CPA, but voltage-operated Ca(2+) currents (VOCCs) were not elicited in most of the cells (17/20), but in 15% of cells examined, small dihydropyridine (DHP)-sensitive Ca(2+) currents were recorded. Using RT-PCR, mRNAs were detected for inositol 1,4,5-trisphosphate receptor (InsP(3)R) type I, II, and III and DHP receptors alpha1A and alpha1H were detected, but mRNA was not detected for ryanodine receptor (RyR) or N-type Ca(2+) channels. These results suggest that in undifferentiated HMSCs, Ca(2+) release is mediated by InsP(3)Rs and Ca(2+) entry through plasma membrane is mainly mediated by the SOCs channels with a little contribution of VOCCs.  相似文献   

15.
Data acquired to date show that some sigma receptor ligands reveal "antidepressant-like" activity in the forced swim test in mice and rats. Moreover, our preliminary results suggested that joint administration of sigma receptor ligands and amantadine (AMA, a glutamatergic/NMDA receptor antagonist) caused a positive interaction in the Porsolt test in rats, as had already been observed in the case of co-treatment with clinically active antidepressants and AMA. The aim of the present study was to examine the effect of combined administration of sigma1 or sigma2 receptor agonists, SA4503 or siramesine, respectively, and AMA or memantine (MEM) (uncompetitive NMDA receptor antagonist). SA4503 or siramesine given jointly with MEM (as well as with AMA) decreased the immobility time in rats. The effect of SA4503 and AMA co-administration was antagonized by progesterone, a sigma1 receptor antagonistic neurosteroid. Combined treatment with siramesine and AMA was modified by neither progesterone nor BD1047 (a novel sigma antagonist with preferential affinity for sigma1 sites); but it was counteracted by sulpiride and prazosin (a dopamine D2- and an alpha1-adrenergic receptor antagonist, respectively). The "antidepressant-like" effect induced by siramesine and MEM was not antagonized by progesterone, but was attenuated by BD1047, sulpiride and prazosin. The obtained results give support to the hypothesis that sigma (particularly sigma1) receptors may be one of the possible mechanisms by which drugs induce antidepressant-like activity in the forced swim test, and that this effect may be enhanced by NMDA receptor antagonists. Combined treatment with sigma ligands and AMA or MEM (applied in the clinic) may be an alternative to the treatment of antidepressant-resistant depressive patients in the future.  相似文献   

16.
17.
D F Skafar 《Biochemistry》1991,30(45):10829-10832
The binding mechanism of the antagonist RU486 to the progesterone receptor was compared with that of the agonists progesterone and R5020. Both progesterone and RU486 bound to the receptor with a Hill coefficient of 1.2, indicating the binding of each ligand is positive cooperative. However, when each ligand was used to compete with [3H]progesterone for binding to the receptor at receptor concentrations near 8 nM, at which the receptor is likely a dimer, the competition curve for RU486 was significantly steeper than the curves for progesterone and R5020 (p less than 0.001). This indicated that a difference in the binding mechanism of RU486 and progesterone can be detected when both ligands are present. In contrast, at receptor concentrations near 1 nM, at which the receptor is likely a monomer, the competition curves for all three ligands were indistinguishable (p = 0.915). These results indicate that RU486 and agonists have different binding mechanisms for the receptor and further suggest that this difference may be related to site-site interactions within the receptor.  相似文献   

18.
Ca(2+) signaling plays an important role in the function of dendritic cells (DC), the specialized antigen-presenting cells of the immune system. Here we describe functional ryanodine receptor (RyR) Ca(2+) release channels in murine, bone marrow-derived DC. RT-PCR analysis identified selective expression of the type 1 RyR, with higher levels detected in immature rather than mature DC. The RyR activators caffeine, FK506, ryanodine and 4-chloro-m-cresol mobilized Ca(2+) in DC, and responses to 4-chloro-m-cresol were inhibited by dantrolene. Furthermore, activation of RyRs both inhibited subsequent inositol trisphosphate-mediated Ca(2+) release and provoked store-operated Ca(2+) entry, suggesting a functional interaction between these intracellular Ca(2+) channels. Thus, the RyR1 channel may play an intrinsic role in Ca(2+) signaling in DC.  相似文献   

19.
20.
We characterized the alpha(1B)-adrenoreceptor (alpha(1B)-AR)-mediated intracellular Ca(2+) signaling involving G alpha(h) (transglutaminase II, TGII) and phospholipase C (PLC)-delta 1 using DDT1-MF2 cell. Expression of wild-type TGII and a TGII mutant lacking transglutaminase activity resulted in significant increases in a rapid peak and a sustained level of intracellular Ca(2+) concentration ([Ca(2+)](i)) in response to activation of the alpha(1B)-AR. Expression of a TGII mutant lacking the interaction with the receptor or PLC-delta 1 substantially reduced both the peak and sustained levels of [Ca(2+)](i). Expression of TGII mutants lacking the interaction with PLC-delta 1 resulted in a reduced capacitative Ca(2+) entry. Reduced expression of PLC-delta 1 displayed a transient elevation of [Ca(2+)](i) and a reduction in capacitative Ca(2+) entry. Expression of the C2-domain of PLC-delta 1, which contains the TGII interaction site, resulted in reduction of the alpha(1B)-AR-evoked peak increase in [Ca(2+)](i), while the sustained elevation in [Ca(2+)](i) and capacitative Ca(2+) entry remained unchanged. These findings demonstrate that stimulation of PLC-delta 1 via coupling of the alpha(1B)-AR with TGII evokes both Ca(2+) release and capacitative Ca(2+) entry and that capacitative Ca(2+) entry is mediated by the interaction of TGII with PLC-delta 1.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号