首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Real-time PCR was used to detect and quantify Mycobacterium bovis cells in naturally infected soil and badger feces. Immunomagnetic capture, immunofluorescence, and selective culture confirmed species identification and cell viability. These techniques will prove useful for monitoring M. bovis in the environment and for elucidating transmission routes between wildlife and cattle.  相似文献   

2.
In Sweden, mosquitoes are considered the major vectors of the bacterium Francisella tularensis subsp. holarctica, which causes tularaemia. The aim of this study was to investigate whether mosquitoes acquire the bacterium as aquatic larvae and transmit the disease as adults. Mosquitoes sampled in a Swedish area where tularaemia is endemic (Örebro) were positive for the presence of F. tularensis deoxyribonucleic acid throughout the summer. Presence of the clinically relevant F. tularensis subsp. holarctica was confirmed in 11 out of the 14 mosquito species sampled. Experiments performed using laboratory-reared Aedes aegypti confirmed that F. tularensis subsp. holarctica was transstadially maintained from orally infected larvae to adult mosquitoes and that 25 % of the adults exposed as larvae were positive for the presence of F. tularensis-specific sequences for at least 2 weeks. In addition, we found that F. tularensis subsp. holarctica was transmitted to 58 % of the adult mosquitoes feeding on diseased mice. In a small-scale in vivo transmission experiment with F. tularensis subsp. holarctica-positive adult mosquitoes and susceptible mice, none of the animals developed tularaemia. However, we confirmed that there was transmission of the bacterium to blood vials by mosquitoes that had been exposed to the bacterium in the larval stage. Taken together, these results provide evidence that mosquitoes play a role in disease transmission in part of Sweden where tularaemia recurs.  相似文献   

3.
4.
Toxoplasmosis is a health concern for wildlife and humans, particularly in island ecosystems. In the Galápagos Islands, exposure to Toxoplasma gondii has been found in marine avifauna on islands with and without domestic cats. To evaluate potential waterborne transmission of T. gondii, we attempted to use filtration and epifluorescent microscopy to detect autofluorescent T. gondii oocysts in fresh and estuarine surface water samples. T. gondii oocyst-like structures were microscopically visualized but were not confirmed by polymerase chain reaction and sequence analyses. Further research is needed to refine environmental pathogen screening techniques and to evaluate disease risk of waterborne zoonoses such as T. gondii for wildlife and humans, particularly in the Galápagos and other naive island ecosystems.  相似文献   

5.
A novel design of gold-coated iron oxide nanoparticles was fabricated as a potential delivery system to improve the efficiency and stability of d, l-sulforaphane as an anticancer drug. To this purpose, the surface of gold-coated iron oxide nanoparticles was modified for sulforaphane delivery via furnishing its surface with thiolated polyethylene glycol-folic acid and thiolated polyethylene glycol-FITC. The synthesized nanoparticles were characterized by different techniques such as FTIR, energy dispersive X-ray spectroscopy, UV-visible spectroscopy, scanning and transmission electron microscopy. The average diameters of the synthesized nanoparticles before and after sulforaphane loading were obtained ∼ 33 nm and ∼ 38 nm, respectively, when ∼ 2.8 mmol/g of sulforaphane was loaded. The result of cell viability assay which was confirmed by apoptosis assay on the human breast cancer cells (MCF-7 line) as a model of in vitro-cancerous cells, proved that the bare nanoparticles showed little inherent cytotoxicity, whereas the sulforaphane-loaded nanoparticles were cytotoxic. The expression rate of the anti-apoptotic genes (bcl-2 and bcl-xL), and the pro-apoptotic genes (bax and bak) were quantified, and it was found that the expression rate of bcl-2 and bcl-xL genes significantly were decreased when MCF-7 cells were incubated by sulforaphane-loaded nanoparticles. The sulforaphane-loaded into the designed gold-coated iron oxide nanoparticles, acceptably induced apoptosis in MCF-7 cells.  相似文献   

6.

Background

Tularemia is a zoonosis caused by the Francisella tularensis, a highly infectious Gram-negative coccobacillus. Due to easy dissemination, multiple routes of infection, high environmental contamination and morbidity and mortality rates, Francisella is considered a potential bioterrorism threat and classified as a category A select agent by the CDC. Tick bites are among the most prevalent modes of transmission, and ticks have been indicated as a possible reservoir, although their reservoir competence has yet to be defined. Tick-borne transmission of F. tularensis was recognized in 1923, and transstadial transmission has been demonstrated in several tick species. Studies on transovarial transmission, however, have reported conflicting results.

Objective

The aim of this study was to evaluate the role of ticks as reservoirs for Francisella, assessing the transovarial transmission of F. tularensis subsp. holarctica in ticks, using experimentally-infected females of Dermacentor reticulatus and Ixodes ricinus.

Results

Transmission electron microscopy and fluorescence in situ hybridization showed F. tularensis within oocytes. However, cultures and bioassays of eggs and larvae were negative; in addition, microscopy techniques revealed bacterial degeneration/death in the oocytes.

Conclusions

These results suggest that bacterial death might occur in oocytes, preventing the transovarial transmission of Francisella. We can speculate that Francisella does not have a defined reservoir, but that rather various biological niches (e.g. ticks, rodents), that allow the bacterium to persist in the environment. Our results, suggesting that ticks are not competent for the bacterium vertical transmission, are congruent with this view.  相似文献   

7.
Microsporidia, as a group, cause a wide range of infections, though two species of microsporidia in particular, Enterocytozoon bieneusi and Encephalitozoon intestinalis, are associated with gastrointestinal disease in humans. To date, the mode of transmission and environmental occurrence of microsporidia have not been elucidated due to lack of sensitive and specific screening methods. The present study was undertaken with recently developed methods to screen several significant water sources. Water concentrates were subjected to community DNA extraction followed by microsporidium-specific PCR amplification, PCR sequencing, and database homology comparison. A total of 14 water concentrates were screened; 7 of these contained human-pathogenic microsporidia. The presence of Encephalitozoon intestinalis was confirmed in tertiary sewage effluent, surface water, and groundwater; the presence of Enterocytozoon bieneusi was confirmed in surface water; and the presence of Vittaforma corneae was confirmed in tertiary effluent. Thus, this study represents the first confirmation, to the species level, of human-pathogenic microsporidia in water, indicating that these human-pathogenic microsporidia may be waterborne pathogens.  相似文献   

8.
Background Bartonella quintana, the etiologic agent of trench fever and other human diseases, is transmitted by the feces of body lice. Recently, this bacterium has been detected in other arthropod families such as bed bugs, which begs the question of their involvement in B. quintana transmission. Although several infectious pathogens have been reported and are suggested to be transmitted by bed bugs, the evidence regarding their competence as vectors is unclear.ConclusionThe present work demonstrated for the first time that bed bugs can acquire, maintain for more than 2 weeks and release viable B. quintana organisms following a stercorarial shedding. We also observed the vertical transmission of the bacterium to their progeny. Although the biological role of bed bugs in the transmission of B. quintana under natural conditions has yet to be confirmed, the present work highlights the need to reconsider monitoring of these arthropods for the transmission of human pathogens.  相似文献   

9.
Schistosoma japonicum is endemic in the Philippines, China and Indonesia, and infects more than 40 mammalian host species, all of which can act as reservoirs of infection. In China, water buffaloes have been shown to be major reservoirs of human infection. However, in the Philippines, carabao have not been considered important reservoir hosts for S. japonicum due to the low prevalence and infection intensities reported, the only exception being a qPCR-based study indicating 51% of carabao were S. japonicum-positive. However, the low prevalence found for the same animals when using conventional copro-parasitological techniques means that there is still confusion about the role of carabao in the transmission of schistosomiasis japonicum. To address this inconsistency, and to shed light on the potential role of carabao in the transmission of S. japonicum in the Philippines, we undertook a pilot survey, collecting fecal samples from animals in Western Samar Province and we used a combination of molecular and copro-parasitological techniques to determine the prevalence and intensity of S. japonicum. We found a high prevalence of S. japonicum in the carabao using a validated real-time PCR (qPCR) and a copro-parasitological tool, the formalin-ethyl acetate sedimentation (FEA-SD) technique. A much lower prevalence of S. japonicum was recorded for the same fecal samples using conventional PCR, the Kato-Katz technique and miracidial hatching. These results suggest that, due to their low diagnostic sensitivity, traditional copro-parasitological techniques underestimate infection in carabao. The use of FEA-SD and qPCR provides a more accurate diagnosis. Based on these findings, the role of bovines in the transmission of S. japonicum appears to be more important in the Philippines than previously recognized, and this may have significant implications for the future control of schistosomiasis there, particularly as, in contrast with previous surveys, we found an unprecedented high prevalence of S. japonicum in humans.  相似文献   

10.
Candida glabrata has emerged as one of the leading agents of fungal infections and strain typing is essential for epidemiological investigation that is generally achieved by molecular techniques. In this work, we studied twenty-nine C. glabrata strains isolated from different patients, using a phenotypic approach based on Fourier Transform Infrared (FTIR) spectroscopy, which has been in a previous study successfully applied as a rapid typing method for Candida albicans. A two-step procedure was used for the analysis. The first step included sixteen strains for the internal validation phase, which aimed at finding the spectral windows that would provide the best differentiation between strains. In this phase, hierarchical cluster analysis (HCA) carried out using three spectral windows (900–1200, 1540–1800, 2800–3000 cm 1) allowed to obtain the best classification, where each patient strains could be clustered together. A genotypic technique based on randomly amplified polymorphic DNA-analysis (RAPD) confirmed these results. In a second step, the external validation phase, thirteen other clinical strains of C. glabrata isolated from multiple sites in four ICU patients, were tested by FTIR spectroscopy. The analysis was based on the spectral regions previously found in the first step. HCA classification of the strains gave four groups, one group per patient. These results suggest that no inter-human transmission took place. This study shows the potential of FTIR approach for typing of C. glabrata with several advantages compared to other techniques. FTIR typing is fast, effective, and reagent free. Moreover, it is applicable to all micro-organisms and requires a small quantity of biomass.  相似文献   

11.
In nature, parasite transmission from one host to the next takes place within complex biotic communities where non-host organisms can reduce transmission rates, for instance by preying on infective stages. We experimentally investigated the impact of four very different non-host organisms on the transmission of the microphallid trematode Maritrema novaezealandensis from its snail first intermediate host to its crustacean second intermediate host. We show that in laboratory mesocosms, accumulation of parasites in juvenile stalk-eyed mud crabs, Macrophthalmus hirtipes (Ocypodidae), was not reduced in the presence of cockles, Austrovenus stutchburyi, barnacles, Balanus sp., or the algae Enteromorpha spp., three organisms whose feeding mode or general abundance could negatively impact the parasite's infective stages (cercariae). In contrast, the presence of the anemone Anthopleura aureoradiata in the mesocosms caused a more than 4-fold reduction in the number of parasites acquired by crabs when compared to control mesocosms. Observations on fluorescent-dyed cercariae confirmed that they are ingested by anemones. Given the often high densities of anemones on mudflats, they may represent an important regulator of the abundance of M. novaezealandensis, and thus of the impact of this parasite on its hosts. These anemones may decrease cercarial transmission for many other trematode species as well. Our results stress the need for studies of parasite transmission in natural contexts rather than under simplified laboratory conditions.  相似文献   

12.
Angiostrongylus cantonensis is one of the most widespread parasites causing central nervous system (CNS) diseases in mammals. Since the mitochondrion is an essential cell organelle responsible for both physiological and pathological processes, its dysfunction might lead to inflammation and multiple disorders. In this study we aimed to investigate the changes in mitochondrial dynamics that occur in the mouse brain upon infection with A. cantonensis, using molecular biology techniques such as polymerase chain reaction (PCR), western blot analysis, transmission electron microscopy (TEM), and different staining methods. Here, we show that mouse brain infected with A. cantonensis exhibits altered mitochondrial dynamics, including fission, fusion, and biogenesis. Additionally, we demonstrate that caspases and B-cell lymphoma 2 (BCL-2) were significantly upregulated in A. cantonensis-infected brain. These results are indicative of the occurrence of apoptosis during A. cantonensis infection, which was further confirmed by terminal deoxynucleotidyl transferase dUTP nick end labeling (TUNEL) staining. These findings suggest the change in mitochondrial dynamics in A. cantonensis-infected brain, providing another point of view on the pathogenesis of meningoencephalitis caused by A. cantonensis infection.  相似文献   

13.
Bemisia tabaci (Gennadius) is one of the economically most damaging insects to crops in tropical and subtropical regions. Severe damage is caused by feeding and more seriously by transmitting viruses. Those of the genus begomovirus (Geminiviridae) cause the most significant crop diseases and are transmitted by B. tabaci in a persistent circulative mode, a process which is largely unknown. To analyze the translocation and to identify critical determinants for transmission, two populations of B. tabaci MEAM1 were compared for transmitting Watermelon chlorotic stunt virus (WmCSV) and Tomato yellow leaf curl virus (TYLCV). Insect populations were chosen because of their high and respectively low virus transmission efficiency to compare uptake and translocation of virus through insects. Both populations harbored Rickettsia, Hamiltonella and Wolbachia in comparable ratios indicating that endosymbionts might not contribute to the different transmission rates. Quantification by qPCR revealed that WmCSV uptake and virus concentrations in midguts and primary salivary glands were generally higher than TYLCV due to higher virus contents of the source plants. Both viruses accumulated higher in insects from the efficiently compared to the poorly transmitting population. In the latter, virus translocation into the hemolymph was delayed and virus passage was impeded with limited numbers of viruses translocated. FISH analysis confirmed these results with similar virus distribution found in excised organs of both populations. No virus accumulation was found in the midgut lumen of the poor transmitter because of a restrained virus translocation. Results suggest that the poorly transmitting population comprised insects that lacked transmission competence. Those were selected to develop a population that lacks virus transmission. Investigations with insects lacking transmission showed that virus concentrations in midguts were reduced and only negligible virus amounts were found at the primary salivary glands indicating for a missing or modified receptor responsible for virus attachment or translocation.  相似文献   

14.

Background

Severe fever with thrombocytopenia syndrome (SFTS) is caused by SFTS virus (SFTSV), a tick-borne phlebovirus in family Bunyaviridae. Studies have found that humans, domestic and wildlife animals can be infected by SFTSV. However, the viral ecology, circulation, and transmission remain largely unknown.

Methodology/Principal Findings

Sixty seven human SFTS cases were reported and confirmed by virus isolation or immunofluorescence assay between 2011 and 2014. In 2013–2014 we collected 9,984 ticks from either vegetation or small wild mammals in the endemic area in Jiangsu, China, and detected SFTSV-RNA by real-time RT-PCR in both questing and feeding Haemaphysalis longicornis and H. flava. Viral RNA was identified in larvae of H. longicornis prior to a first blood meal, which has never been confirmed previously in nature. SFTSV-RNA and antibodies were also detected by RT-PCR and ELISA, respectively, in wild mammals including Erinaceus europaeus and Sorex araneus. A live SFTSV was isolated from Erinaceus europaeus captured during the off tick-feeding season and with a high SFTSV antibody titer. Furthermore, SFTSV antibodies were detected in the migratory birds Anser cygnoides and Streptopelia chinensis using ELISA.

Conclusions/Significance

The detection of SFTSV-RNA in non-engorged larvae indicated that vertical transmission of SFTSV in H. longicornis might occur in nature, which suggests that H. longicornis is a putative reservoir host of SFTSV. Small wild mammals such as Erinaceus europaeus and Sorex araneus could be infected by SFTSV and may serve as natural amplifying hosts. Our data unveiled that wild birds could be infected with SFTSV or carry SFTSV-infected ticks and thus might contribute to the long-distance spread of SFTSV via migratory flyways. These findings provide novel insights for understanding SFTSV ecology, reservoir hosts, and transmission in nature and will help develop new measures in preventing its rapid spread both regionally and globally.  相似文献   

15.
Molecular biology has provided parasitologists with a fantastic variety of techniques that have had a major impact on research into parasites and parasitism. Molecular tools have revealed the extent and nature of genetic diversity in parasites and this information has made a significant contribution to studies on the population genetics and evolutionary biology of parasites. Similarly, epidemiology has benefited enormously from the application of molecular tools in terms of studying parasite life cycles and transmission, and in the development of specific and sensitive methods for diagnosis and surveillance. However, the theme I wish to develop in this paper is concerned with the contribution molecular tools have made to parasite taxonomy and systematics, and in particular, the fact that in many cases molecular tools are validating the proposals made many years ago by taxonomists and biologists which were discounted or not fully accepted at the time. To do this I have chosen four examples (Echinococcus, Entamoeba, Giardia, Cryptosporidium) where recent research involving molecular characterisation has confirmed observations made many years ago and has resulted in a need to revise the taxonomy of different groups of parasites.  相似文献   

16.

Background

Spiroplasma citri is a wall-less bacterium that colonizes phloem vessels of a large number of host plants. Leafhopper vectors transmit S. citri in a propagative and circulative manner, involving colonization and multiplication of bacteria in various insect organs. Previously we reported that phosphoglycerate kinase (PGK), the well-known glycolytic enzyme, bound to leafhopper actin and was unexpectedly implicated in the internalization process of S. citri into Circulifer haematoceps cells.

Methodology/Principal Findings

In an attempt to identify the actin-interacting regions of PGK, several overlapping PGK truncations were generated. Binding assays, using the truncations as probes on insect protein blots, revealed that the actin-binding region of PGK was located on the truncated peptide designated PGK-FL5 containing amino acids 49–154. To investigate the role of PGK-FL5-actin interaction, competitive spiroplasma attachment and internalization assays, in which His6-tagged PGK-FL5 was added to Ciha-1 cells prior to infection with S. citri, were performed. No effect on the efficiency of attachment of S. citri to leafhopper cells was observed while internalization was drastically reduced. The in vivo effect of PGK-FL5 was confirmed by competitive experimental transmission assays as injection of PGK-FL5 into S. citri infected leafhoppers significantly affected spiroplasmal transmission.

Conclusion

These results suggest that S. citri transmission by its insect vector is correlated to PGK ability to bind actin.  相似文献   

17.
Here, we report a case of direct zoonotic transmission of giardiasis between a pet chinchilla and a human. Microscopic and molecular examinations of stool samples from a child and samples of chinchilla droppings revealed cysts/DNA of Giardia intestinalis. The transmission from the chinchilla to the child has been confirmed as coprophagous after the 1-year-old toddler ingested pet chinchilla droppings. Molecular analysis of the gdh gene from both hosts classified the G. intestinalis cysts into the assemblage B genetic group, which has been previously shown to be characteristic of both human and chinchilla giardiasis. Both Giardia sub-assemblages BIII and BIV were present in the chinchilla droppings, whereas only the sub-assemblage BIV was isolated from the child's stool sample. To the best of our knowledge, this is the first report of a true zoonotic transmission of giardiasis, supporting the zoonotic potential of assemblage B.  相似文献   

18.
While the importance of transmission of pathogens is widely accepted, there is currently little mechanistic understanding of this process. Nasal carriage of Streptococcus pneumoniae (the pneumococcus) is common in humans, especially in early childhood, and is a prerequisite for the development of disease and transmission among hosts. In this study, we adapted an infant mouse model to elucidate host determinants of transmission of S. pneumoniae from inoculated index mice to uninfected contact mice. In the context of co-infection with influenza A virus, the pneumococcus was transmitted among wildtype littermates, with approximately half of the contact mice acquiring colonization. Mice deficient for TLR2 were colonized to a similar density but transmitted S. pneumoniae more efficiently (100% transmission) than wildtype animals and showed decreased expression of interferon α and higher viral titers. The greater viral burden in tlr2−/− mice correlated with heightened inflammation, and was responsible for an increase in bacterial shedding from the mouse nose. The role of TLR2 signaling was confirmed by intranasal treatment of wildtype mice with the agonist Pam3Cys, which decreased inflammation and reduced bacterial shedding and transmission. Taken together, these results suggest that the innate immune response to influenza virus promotes bacterial shedding, allowing the bacteria to transit from host to host. These findings provide insight into the role of host factors in the increased pneumococcal carriage rates seen during flu season and contribute to our overall understanding of pathogen transmission.  相似文献   

19.
Tomato yellow leaf curl virus (TYLCV) is one of the most important plant viruses belonging to the genus Begomovirus of the family Geminiviridae. To identify natural weed hosts that could act as reservoirs of TYLCV, 100 samples were collected at a TYLCV-affected tomato farm in Iksan from 2013 to 2014. The sample weeds were identified as belonging to 40 species from 18 families. TYLCV was detected in 57 samples belonging to 28 species through polymerase chain reaction using root samples including five species (Eleusine indica, Digitaria ciliaris, Echinochloa crus-galli, Panicum dichotomiflorum, and Setaria faberi) from the family Poaceae. Whitefly Bemisia tabaci-mediated TYLCV transmission from TYLCV-infected E. indica plants to healthy tomatoes was confirmed, and inoculated tomatoes showed typical symptoms, such as leaf curling and yellowing. In addition, TYLCV was detected in leaf and root samples of E. indica plants inoculated by both whitefly-mediated transmission using TYLCV-viruliferous whitefly and agro-inoculation using a TYLCV infectious clone. The majority of mastreviruses infect monocotyledonous plants, but there have also been reports of mastreviruses that can infect dicotyledonous plants, such as the chickpea chlorotic dwarf virus. No exception was reported among begomoviruses known as infecting dicots only. This is the first report of TYLCV as a member of the genus Begomovirus infecting monocotyledonous plants.  相似文献   

20.
The transmission and persistence of Mycobacterium tuberculosis within high risk populations is a threat to tuberculosis (TB) control. In the current study, we used whole genome sequencing (WGS) to decipher the transmission dynamics and microevolution of M. tuberculosis ON-A, an endemic strain responsible for an ongoing outbreak of TB in an urban homeless/under-housed population. Sixty-one M. tuberculosis isolates representing 57 TB cases from 1997 to 2013 were subjected to WGS. Sequencing data was integrated with available epidemiological information and analyzed to determine how the M. tuberculosis ON-A strain has evolved during almost two decades of active transmission. WGS offers higher discriminatory power than traditional genotyping techniques, dividing the M. tuberculosis ON-A strain into 6 sub-clusters, each defined by unique single nucleotide polymorphism profiles. One sub-cluster, designated ON-ANM (Natural Mutant; 26 isolates from 24 cases) was also defined by a large, 15 kb genomic deletion. WGS analysis reveals the existence of multiple transmission chains within the same population/setting. Our results help validate the utility of WGS as a powerful tool for identifying genomic changes and adaptation of M. tuberculosis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号