首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Venom from the parasitoid wasp Pimpla hypochondriaca contains numerous proteins, has potent in vitro anti-haemocytic properties, and disrupts host encapsulation responses. By sequencing 500 cDNAs randomly isolated from a venom gland library, we have identified 60 clones that encode proteins containing potential secretory signal sequences. To identify cDNAs encoding particular venom proteins, N-terminal amino acid sequences were determined for large (>30 kDa) venom proteins that had been separated using a combination of gel filtration and SDS-PAGE. We describe five of these cDNAs, which encoded residues that matched with the N-terminal sequences of previously undescribed venom proteins. cDNAs vpr1 and vpr3 encoded related proteins of approximately 32 kDa that were found in widely different fractions of gel filtration-separated venom. Neither vpr1 nor vpr3 were closely related to any other protein in the GenBank database, suggesting that they are highly specialised venom components. vpr2 encoded a 57-kDa polypeptide that was similar to a Drosophila protein, of unknown function, which lacks a signal sequence. A fourth clone, tre1, encoded a 61-kDa protein with extensive sequence similarity to trehalases. The 76-kDa sequence encoded by lac1 contained three regions which were very similar to histidine-rich copper-binding motifs, and could be aligned with the laccase from the fungus Coprinus cinereus. This study represents a significant step towards a holistic view of the molecular composition of a parasitoid wasp venom.  相似文献   

2.
Venom from the parasitoid wasp Pimpla hypochondriaca has potent in vivo activity against insect haemocytes and disrupts host immune responses. Using hybridisation techniques, and more recently random sequence analysis, we had previously identified cDNAs encoding 10 venom proteins from this wasp and deduced their primary structures. We have now extended the random sequence analysis and discovered a further nine cDNAs encoding proteins with predicted signal sequences. The mature proteins were calculated to have masses of between 4 and 22 kDa. Post-signal sequence residues predicted from the cDNAs matched those derived by Edman degradation from venom proteins separated using gel filtration and reverse phase chromatography, confirming that the cloned cDNAs encode proteins which are secreted into the venom sac. Proteins containing at least six cysteine residues were abundant and seven of these cysteine-rich venom proteins, cvp1-7, were identified. The sequences of some of these proteins were similar, or contained similar cysteine arrangements, to Kunitz type protease inhibitors, pacifastin, the trypsin inhibitor domain protein family, atracotoxin and omega-conotoxin, respectively, which occur in a diverse range of animals including spiders, molluscs, humans and grasshoppers. Two small venom proteins, svp1 and svp2, as well as cvp7 did not have similar sequences to proteins in the GenBank protein database suggesting they may be highly specialised venom components. The random sequencing approach has provided a rapid means of determining the primary structure of the majority of Pimpla hypochondriaca venom proteins.  相似文献   

3.
Venom from Pimpla hypochondriaca, an endoparasitoid of pupae, was size-fractionated using gel filtration chromatography and analysed by SDS-PAGE in the presence and absence of reducing agent. A complex mixture of more than 20 venom constituents was identified which ranged in M(r) between approximately 5 and 100 kDa. Venom from a wide range of size fractions inhibited the motility of larval haemocytes and prevented the formation of cell aggregates when analysed in vitro, indicating that anti-haemocytic activity is mediated by multiple venom components. Sephadex A25 beads injected into the haemocoel of pupae were encapsulated within 24h. This reaction was abolished when the pupae were injected with 30 microg of venom protein, equivalent to one-fifth of a venom sac, 1h prior to implantation of the beads, confirming that venom suppresses encapsulation in pupae. Using random 5' end sequencing of a P. hypochondriaca venom gland cDNA library, we have isolated a cDNA encoding a 25.3 kDa protein containing a signal peptide and having sequence similarity to serine proteases. The N-terminal sequence of six residues from two venom proteins of 28 and 30 kDa was the same and identical to amino acids encoded by the cDNA, confirming that two mass forms of the protein are secreted into the venom sac. The N-terminal sequence of both venom proteins began nine residues towards the C terminus following the predicted signal sequence cleavage site, suggesting that the proteins are proteolytically processed before or during storage in the venom sac. The general applicability of using random 5' sequencing to identify cDNAs encoding secretory products is discussed.  相似文献   

4.
The ants use their venom for predation, defense, and communication. The venom of these insects is rich in peptides and proteins, and compared with other animal venoms, ant venoms remain poorly explored. The objective of this study was to evaluate the protein content of the venom in the Ponerinae ant Pachycondyla striata. Venom samples were collected by manual gland reservoir dissection, and samples were submitted to two‐dimensional gel electrophoresis and separation by ion‐exchange and reverse‐phase high‐performance liquid chromatography followed by mass spectrometry using tanden matrix‐assisted laser desorption/ionization with time‐of‐flight (MALDI‐TOF/TOF) mass spectrometry and electrospray ionization‐quadrupole with time‐of‐flight (ESI‐Q/TOF) mass spectrometry for obtaining amino acid sequence. Spectra obtained were searched against the NCBInr and SwissProt database. Additional analysis was performed using PEAKS Studio 7.0 (Sequencing de novo). The venom of P. striata has a complex mixture of proteins from which 43 were identified. Within the identified proteins are classical venom proteins (phospholipase A, hyaluronidase, and aminopeptidase N), allergenic proteins (different venom allergens), and bioactive peptides (U10‐ctenitoxin Pn1a). Venom allergens are among the most expressed proteins, suggesting that P. striata venom has high allergenic potential. This study discusses the possible functions of the proteins identified in the venom of P. striata.  相似文献   

5.
Wasps are a diverse group of insects that possess a sting apparatus associated with a venom gland, which is used for predation and colony defense. The biochemistry of Hymenoptera venom has been evaluated in relation to allergy and immunology, and proteomics has been shown to be a powerful tool for the identification of compounds with pharmacological potential. Data on wasps venom the of genus Apoica are scarce, so the objective of the present work was to identify the venom proteins of the eusocial wasp Apoica pallens, as a first step towards further investigation of applied uses of the venom and its protein constituents. The venom proteins were separated by two-dimensional gel electrophoresis, followed by MALDI-TOF/TOF mass spectrometry. A total of 259 spots were detected, with molecular weights from 4.9 to 141 kDa. Thirty of these proteins were identified and classified into eight functional categories: allergen, enzyme, metabolism, structural, environmental response, proteoglycan, active in DNA and RNA, and unknown function. Due to the few available proteomic data for wasp venom, many proteins could not be identified, which makes studies with proteomic analysis of Hymenoptera venom even more important.  相似文献   

6.
《Fly》2013,7(3):164-171
The availability of complete genome sequence information for diverse organisms including model genetic organisms has ushered in a new era of protein sequence comparisons making it possible to search for commonalities among entire proteomes using the Basic Local Alignment Search Tool (BLAST). Although the identification and analysis of proteins shared by humans and model organisms has proven an invaluable tool to understanding gene function, the sets of proteins unique to a given model organism's proteome have remained largely unexplored. We have constructed a searchable database that allows biologists to identify proteins unique to a given proteome. The Negative Proteome Database (NPD) is populated with pair-wise protein sequence comparisons between each of the following proteomes: Homo sapiens, Mus musculus, Drosophila melanogaster, Caenorhabditis elegans, Saccharomyces cerevisiae, Dictyostelium discoideum, Chlamydomonus reinhardti, Escherichia coli K12, Arabidopsis thaliana and Methanoscarcina acetivorans. Our analysis of negative proteome datasets using the NPD has thus far revealed 107 proteins in humans that may be involved in motile cilia function, 1628 potential pesticide target proteins in flies, 659 proteins shared by flies and humans that are not represented in the less neurologically complex worm proteome, and 180 nuclear encoded human disease associated proteins that are absent from the fly proteome. The NPD is the only online resource where users can quickly perform complex negative and positive comparisons of model organism proteomes. We anticipate that the NPD and the adaptable algorithm which can readily be used to duplicate this analysis on custom sets of proteomes will be an invaluable tool in the investigation of organism specific protein sets.  相似文献   

7.
Reiter LT  Do LH  Fischer MS  Hong NA  Bier E 《Fly》2007,1(3):164-171
The availability of complete genome sequence information for diverse organisms including model genetic organisms has ushered in a new era of protein sequence comparisons making it possible to search for commonalities among entire proteomes using the Basic Local Alignment Search Tool (BLAST). Although the identification and analysis of proteins shared by humans and model organisms has proven an invaluable tool to understanding gene function, the sets of proteins unique to a given model organism's proteome have remained largely unexplored. We have constructed a searchable database that allows biologists to identify proteins unique to a given proteome. The Negative Proteome Database (NPD) is populated with pair-wise protein sequence comparisons between each of the following proteomes: Homo sapiens, Mus musculus, Drosophila melanogaster, Caenorhabditis elegans, Saccharomyces cerevisiae, Dictyostelium discoideum, Chlamydomonus reinhardti, Escherichia coli K12, Arabidopsis thaliana and Methanoscarcina acetivorans. Our analysis of negative proteome datasets using the NPD has thus far revealed 107 proteins in humans that may be involved in motile cilia function, 1628 potential pesticide target proteins in flies, 659 proteins shared by flies and humans that are not represented in the less neurologically complex worm proteome, and 180 nuclear encoded human disease associated proteins that are absent from the fly proteome. The NPD is the only online resource where users can quickly perform complex negative and positive comparisons of model organism proteomes. We anticipate that the NPD and the adaptable algorithm which can readily be used to duplicate this analysis on custom sets of proteomes will be an invaluable tool in the investigation of organism specific protein sets.  相似文献   

8.
9.
10.
To improve the utility of increasingly large numbers of available unannotated and initially poorly annotated genomic sequences for proteome analysis, we demonstrate that effective protein identification can be made on a large and unannotated genome. The strategy developed is to translate the unannotated genome sequence into amino acid sequence encoding putative proteins in all six reading frames, to identify peptides by tandem mass spectrometry (MS/MS), to localize them on the genome sequence, and to preliminarily annotate the protein via a similarity search by BLAST. These tasks have been optimized and automated. Optimization to obtain multiple peptide matches in effect extends the searchable region and results in more robust protein identification. The viability of this strategy is demonstrated with the identification of 223 cilia proteins in the unicellular eukaryotic model organism Tetrahymena thermophila, whose initial genomic sequence draft was released in November 2003. To the best of our knowledge, this is the first demonstration of large-scale protein identification based on such a large, unannotated genome. Of the 223 cilia proteins, 84 have no similarity to proteins in NCBI's nonredundant (nr) database. This methodology allows identifying the locations of the genes encoding these novel proteins, which is a necessary first step to downstream functional genomic experimentation.  相似文献   

11.
A novel gene, RTVP-1, which shows significant sequence identity to the mammalian testis-specific proteins, a family of plant pathogenesis-related proteins and the vespid venom allergen, antigen-5, has been isolated from a cDNA library of the human glioblastoma brain tumor cell line, U-251 MG. The highest degree of sequence identity was with the human testis-specific protein, TPX1 (38.7% over 119 amino acids). Northern hybridization analysis revealed that in fetal tissue RTVP-1 RNA was detected only in the kidney, but its expression was ubiquitous in adult tissues including brain. Multiple mRNAs encoded by RTVP-1 were highly expressed in a panel of cell lines from nervous system tumors arising from glia, although expression was low or absent in non-glial-derived nervous system tumour cell lines. The GenBank DNA database accession number for this sequence is X91911.  相似文献   

12.
13.
Soybean rust is caused by the obligate fungal pathogen Phakopsora pachyrhizi Sydow. A unidirectional cDNA library was constructed using mRNA isolated from germinating P. pachyrhizi urediniospores to identify genes expressed at this physiological stage. Single pass sequence analysis of 908 clones revealed 488 unique expressed sequence tags (ESTs, unigenes) of which 107 appeared as multiple copies. BLASTX analysis identified 189 unigenes with significant similarities (Evalue<10(-5)) to sequences deposited in the NCBI non-redundant protein database. A search against the NCBI dbEST using the BLASTN algorithm revealed 32 ESTs with high or moderate similarities to plant and fungal sequences. Using the Expressed Gene Anatomy Classification, 31.7% of these ESTs were involved in primary metabolism, 14.3% in gene/protein expression, 7.4% in cell structure and growth, 6.9% in cell division, 4.8% in cell signaling/cell communication, and 4.8% in cell/organism defense. Approximately 29.6% of the identities were to hypothetical proteins and proteins with unknown function.  相似文献   

14.
Mass spectrometric identification of proteins in species lacking validated sequence information is a major problem in veterinary science. In the present study, we used ochratoxin A producing Penicillium verrucosum to identify and quantitatively analyze proteins of an organism with yet no protein information available. The work presented here aimed to provide a comprehensive protein identification of P. verrucosum using shotgun proteomics. We were able to identify 3631 proteins in an “ab initio” translated database from DNA sequences of P. verrucosum. Additionally, a sequential window acquisition of all theoretical fragment‐ion spectra analysis was done to find differentially regulated proteins at two different time points of the growth curve. We compared the proteins at the beginning (day 3) and at the end of the log phase (day 12).  相似文献   

15.
We tested the capacity of leaf (Urera baccifera, Loasa speciosa, Urtica leptuphylla, Chaptalia nutans, and Satureja viminea) and root (Uncaria tomentosa) extracts to inhibit edema induced by Bothrops asper snake venom. Edema-forming activity was studied plethysmographically in the rat hind paw model. Groups of rats were injected intraperitoneally with various doses of each extract and, one hour later, venom was injected subcutaneously in the right hind paw. Edema was assessed at various time intervals. The edematogenic activity was inhibited in those animals that received an injection U. tomentosa, C. nutans or L. speciosa extract. The extract of U. baccifera showed a slight inhibition of the venom effect. Extract from S. viminea and, to a lesser extent that of U. leptuphylla, induced a pro-inflammatory effect, increasing the edema at doses of 250 mg/kg at one and two hours.  相似文献   

16.
The compatibility of the venom from the parasitic species Euplectrus comstockii Howard (Hymenoptera: Eulophidae) with the pathogenicity of Autographa californica (Speyer) (Lepidoptera: Noctuidae) MNPV baculovirus (AcMNPV) was tested in third and fourth instar larvae of Trichoplusia ni (Hübner) (Lepidoptera: Noctuidae). The presence of AcMNPV did not alter the ability of the venom to arrest ecdysis in T. ni larvae. The presence of the venom delayed the rate of viruses by AcMNPV but increased the total mortality rates from days 9 to 14 in both third and fourth instar T. ni larvae. The delay in viruses was minimized by administering the virus prior to envenomation. In the presence of the venom, the final LD50 values were lower for fourth instar larvae than for third instar larvae. Surface response equations were developed to visualize the effect of the venom on the viruses caused by AcMNPV.  相似文献   

17.
18.
根据蛋白质的氨基酸组成实现其快速鉴定   总被引:1,自引:0,他引:1  
常规进行蛋白质鉴定的方法是测定其氨基酸顺序,它需要蛋白质顺序分析仪,对蛋白质的纯度要求高,费时和花费大,与之相比,蛋白质的氨基酸组成和分子量是容易实验测定的。本文描述了一个基于蛋白质的组成和分子量进行其快速鉴定的方法。其基本出发点是,通过统计蛋白质序列数据库中每个序列的氨基酸组成和分子量,得到一个含蛋白质长度、组成和分子量的数据库,将靶蛋白质的组成等数据与该数据库进行对比,可以检出组成和分子量与之接近的蛋白质。从而对该蛋白质进行初步鉴定。在有些情况下,甚至能相当准确地确定靶蛋白质与数据库中的某个(些)蛋白质相关。根据这一原理本文设计了根据氨基酸组成检索蛋白质组成数据库的程序,通过对胰岛素原、细胞肿瘤抗原P53和泛肽等多种蛋白质的组成分析,证实根据氨基酸组成能较好地进行蛋白质鉴定。  相似文献   

19.
20.
The solitary spider wasp Cyphononyx dorsalis is well known to hunt spiders: it uses its stinger to paralyze its prey to feed its larva. This wasp venom was fractionated by bioassay-guided chromatography. Cation-exchange chromatography indicated that the pI value of the active principle was >6.5. 2D-PAGE analysis of the active fraction obtained by gel permeation chromatography showed three major spots of proteins. Two that appeared at pI of >6.5 were analyzed by in-gel digestion and protein sequencing. Three proteins were identified: an arginine kinase-like protein that was highly homologous to that of honeybee, an elastase like-protein that was homologous to that of fire ant, and an unknown protein that was not homologous to any protein in the database. Recombinant proteins expressed in E. coli were purified and used for bioassay. The results showed that the arginine kinase-like protein exhibited paralytic activity against spiders with the same characteristic symptoms as the crude venom.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号