首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Signaling by the ureteric bud epithelium is essential for survival, proliferation and differentiation of the metanephric mesenchyme during kidney development. Most studies that have addressed ureteric signaling have focused on the proximal, branching, ureteric epithelium. We demonstrate that sonic hedgehog is expressed in the ureteric epithelium of the distal, non-branching medullary collecting ducts and continues into the epithelium of the ureter -- the urinary outflow tract that connects the kidney with the bladder. Upregulation of patched 1, the sonic hedgehog receptor and a downstream target gene of the signaling pathway in the mesenchyme surrounding the distal collecting ducts and the ureter suggests that sonic hedgehog acts as a paracrine signal. In vivo and in vitro analyses demonstrate that sonic hedgehog promotes mesenchymal cell proliferation, regulates the timing of differentiation of smooth muscle progenitor cells, and sets the pattern of mesenchymal differentiation through its dose-dependent inhibition of smooth muscle formation. In addition, we also show that bone morphogenetic protein 4 is a downstream target gene of sonic hedgehog signaling in kidney stroma and ureteral mesenchyme, but does not mediate the effects of sonic hedgehog in the control of mesenchymal proliferation.  相似文献   

2.
Previous work has shown that the posteriorising agent retinoic acid can accelerate anterior neuronal differentiation in Xenopus laevis embryos (Papalopulu, N. and Kintner, C. (1996) Development 122, 3409-3418). To elucidate the role of retinoic acid in the primary neurogenesis cascade, we investigated whether retinoic acid treatment of whole embryos could change the spatial expression of a set of genes known to be involved in neurogenesis. We show that retinoic acid expands the N-tubulin, X-ngnr-1, X-MyT1, X-&Dgr;-1 and Gli3 domains and inhibits the expression of Zic2 and sonic hedgehog in the neural ectoderm, whereas a retinoid antagonist produces opposite changes. In contrast, sonic and banded hedgehog overexpression reduced the N-tubulin stripes, enlarged the neural plate at the expense of the neural crest, downregulated Gli3 and upregulated Zic2. Thus, retinoic acid and hedgehog signaling have opposite effects on the prepattern genes Gli3 and Zic2 and on other genes acting downstream in the neurogenesis cascade. In addition, retinoic acid cannot rescue the inhibitory effect of Notch(ICD), Zic2 or sonic hedgehog on primary neurogenesis. Our results suggest that retinoic acid acts very early, upstream of sonic hedgehog, and we propose a model for regulation of differentiation and proliferation in the neural plate, showing that retinoic acid might be activating primary neurogenesis by repressing sonic hedgehog expression.  相似文献   

3.
During development, spinal cord oligodendrocyte precursors (OPCs) originate from the ventral, but not dorsal, neuroepithelium. Sonic hedgehog (SHH) has crucial effects on oligodendrocyte production in the ventral region of the spinal cord; however, less is known regarding SHH signalling and oligodendrocyte generation from neural stem cells (NSCs). We show that NSCs isolated from the dorsal spinal cord can generate oligodendrocytes following FGF2 treatment, a MAP kinase dependent phenomenon that is associated with induction of the obligate oligogenic gene Olig2. Cyclopamine, a potent inhibitor of hedgehog signalling, did not block the formation of oligodendrocytes from FGF2-treated neurosphere cultures. Furthermore, neurospheres generated from SHH null mice also produced oligodendrocytes, even in the presence of cyclopamine. These findings are compatible with the idea of a hedgehog independent pathway for oligodendrocyte generation from neural stem cells.  相似文献   

4.
Currently, few factors have been identified that provide the inductive signals necessary to transform the simple otic placode into the complex asymmetric structure of the adult vertebrate inner ear. We provide evidence that Hedgehog signalling from ventral midline structures acts directly on the zebrafish otic vesicle to induce posterior otic identity. We demonstrate that two strong Hedgehog pathway mutants, chameleon (con(tf18b)) and slow muscle omitted (smu(b641)) exhibit a striking partial mirror image duplication of anterior otic structures, concomitant with a loss of posterior otic domains. These effects can be phenocopied by overexpression of patched1 mRNA to reduce Hedgehog signalling. Ectopic activation of the Hedgehog pathway, by injection of sonic hedgehog or dominant-negative protein kinase A RNA, has the reverse effect: ears lose anterior otic structures and show a mirror image duplication of posterior regions. By using double mutants and antisense morpholino analysis, we also show that both Sonic hedgehog and Tiggy-winkle hedgehog are involved in anteroposterior patterning of the zebrafish otic vesicle.  相似文献   

5.
Sonic hedgehog and the molecular regulation of mouse neural tube closure   总被引:8,自引:0,他引:8  
Neural tube closure is a fundamental embryonic event whose molecular regulation is poorly understood. As mouse neurulation progresses along the spinal axis, there is a shift from midline neural plate bending to dorsolateral bending. Here, we show that midline bending is not essential for spinal closure since, in its absence, the neural tube can close by a 'default' mechanism involving dorsolateral bending, even at upper spinal levels. Midline and dorsolateral bending are regulated by mutually antagonistic signals from the notochord and surface ectoderm. Notochordal signaling induces midline bending and simultaneously inhibits dorsolateral bending. Sonic hedgehog is both necessary and sufficient to inhibit dorsolateral bending, but is neither necessary nor sufficient to induce midline bending, which seems likely to be regulated by another notochordal factor. Attachment of surface ectoderm cells to the neural plate is required for dorsolateral bending, which ensures neural tube closure in the absence of sonic hedgehog signaling.  相似文献   

6.
The genetic basis of mammalian neurulation   总被引:2,自引:0,他引:2  
More than 80 mutant mouse genes disrupt neurulation and allow an in-depth analysis of the underlying developmental mechanisms. Although many of the genetic mutants have been studied in only rudimentary detail, several molecular pathways can already be identified as crucial for normal neurulation. These include the planar cell-polarity pathway, which is required for the initiation of neural tube closure, and the sonic hedgehog signalling pathway that regulates neural plate bending. Mutant mice also offer an opportunity to unravel the mechanisms by which folic acid prevents neural tube defects, and to develop new therapies for folate-resistant defects.  相似文献   

7.
8.
Perlecan, an extracellular matrix proteoglycan, regulates signaling by a variety of growth factors through protein-protein and protein-carbohydrate interactions. Recent evidence demonstrates that Perlecan modulates sonic hedgehog signaling during both development and neoplasia, in particular in prostate cancer. Perlecan directly binds to sonic hedgehog and is required for its signaling. Increased sonic hedgehog signaling due to Perlecan in aggressive and metastatic prostate cancer cells can be attributed to increased Perlecan expression or changes in Perlecan glycan structure. Additional co-localization studies suggest that other tumor types may also have a Perlecan-modulated hedgehog signaling pathway. Inhibitors of Perlecan function at either the protein or glycan level would be ideal drug candidates for anti-cancer therapies.  相似文献   

9.
10.
Signaling by the sonic hedgehog (Shh) pathway is essential for neural precursor population expansion during normal central nervous system (CNS) development, and is implicated in the childhood brain tumor, medulloblastoma. The proto-oncogene N-myc plays essential roles as a downstream effector of Shh proliferative effects in neural precursors of the cerebellum, where medulloblastomas arise. It is likely that N-Myc has analogous functions in medulloblastomas and other CNS tumors where it is highly expressed due to altered regulation or gene amplification. Myc destabilization occurs in response to phosphorylation by GSK-3β. N-Myc degradation is required for cerebellar neural precursors to exit the cell cycle. During mitosis in cerebellar neural precursors, levels of N-Myc primed for phosphorylation by GSK-3β increase, due to cdk1 complex activity towards N-Myc. GSK-3β is kept in check by insulin-like growth factor signaling, which also plays critical roles in brain development and cancer. These findings indicate that therapeutic strategies targeting N-myc and the IGF pathway might be effective against medulloblastoma.  相似文献   

11.
12.
Microenvironmental hypoxia-mediated drug resistance is responsible for the failure of cancer therapy. To date, the role of the hedgehog pathway in resistance to temozolomide (TMZ) under hypoxia has not been investigated. In this study, we discovered that the increasing hypoxia-inducible factor 1α (HIF-1α) activated the hedgehog pathway in hypoxic microenvironment by promoting autocrine secretion of sonic hedgehog protein (Shh), and then upregulating transfer of Gli1 to the nucleus, finally contributed to TMZ resistance in glioma cells. Oroxylin A (C16H12O5), a bioactive flavonoid, could induce HIF-1α degradation via prolyl-hydroxylases–VHL signaling pathway, resulting in the inactivation of the hedgehog. Besides, oroxylin A increased the expression of Sufu, which is a negative regulator of Gli1. By this mechanism, oroxylin A sensitized TMZ on glioma cells. U251 intracranial transplantation model and GL261 xenograft model were used to confirm the reversal effects of oroxylin A in vivo. In conclusion, our results demonstrated that HIF-1α/hedgehog pathway conferred TMZ resistance under hypoxia, and oroxylin A was capable of increasing the sensitivity of TMZ on glioma cells in vitro and in vivo by inhibiting HIF-1α/hedgehog pathway and depressing the activation of Gli1 directly.  相似文献   

13.
Hedgehog signaling has been implicated in the development of several human cancers, including small cell lung carcinomas, medulloblastomas, basal cell carcinomas, and digestive tract tumors. Elevated levels of pathway components are observed in pancreatic ductal adenocarcinoma (PDAC) precursor lesions, and these levels increase further as lesions progress to more advanced stages. Yet the mechanisms by which hedgehog signaling contributes to pancreatic tumorigenesis were poorly understood. We recently published results showing that activated hedgehog signaling enhances the proliferation and survival of pancreatic duct epithelial cells, the presumptive target cells for PDAC development. We also demonstrated that sonic hedgehog (Shh) expression, in cooperation with loss of the Trp53 and Ink4a/Arf tumor suppressor loci, was sufficient to initiate the formation of early pancreatic lesions. Furthermore, Shh signaling enhanced K-Ras-mediated pancreatic tumorigenesis and reduced the dependence of tumor cells on the sustained activation of Ras-stimulated signaling pathways. Here we discuss the significance of these findings and the implications for therapy.  相似文献   

14.
Gli proteins and the control of spinal-cord patterning   总被引:5,自引:0,他引:5  
Jacob J  Briscoe J 《EMBO reports》2003,4(8):761-765
  相似文献   

15.
To directly test the requirement for hedgehog signaling in the telencephalon from early neurogenesis, we examined conditional null alleles of both the Sonic hedgehog and Smoothened genes. While the removal of Shh signaling in these animals resulted in only minor patterning abnormalities, the number of neural progenitors in both the postnatal subventricular zone and hippocampus was dramatically reduced. In the subventricular zone, this was partially attributable to a marked increase in programmed cell death. Consistent with Hedgehog signaling being required for the maintenance of stem cell niches in the adult brain, progenitors from the subventricular zone of floxed Smo animals formed significantly fewer neurospheres. The loss of hedgehog signaling also resulted in abnormalities in the dentate gyrus and olfactory bulb. Furthermore, stimulation of the hedgehog pathway in the mature brain resulted in elevated proliferation in telencephalic progenitors. These results suggest that hedgehog signaling is required to maintain progenitor cells in the postnatal telencephalon.  相似文献   

16.
Environmental chemicals have been proposed to impact endocrine or retinoid pathways, causing developmental abnormalities in humans and other vertebrates. Presented evidence shows that exposure of zebrafish embryos to sunlight-induced photolytic products of the pesticide methoprene results in developmental defects in the head, heart, pectoral fins, and somites, and in spinal motor and optic nerve axons. Exposed embryos are phenocopies of zebrafish you-type mutants and, as in the mutant sonic-you, show underexpression of the signaling protein sonic hedgehog. Reduced expression of sonic hedgehog is also displayed in embryos treated with the retinoic acid synthesis inhibitor citral. This study identifies citral-related compounds as embryonic signaling disruptors of potential environmental concern.  相似文献   

17.
Tail regeneration in urodeles requires the coordinated growth and patterning of the regenerating tissues types, including the spinal cord, cartilage and muscle. The dorsoventral (DV) orientation of the spinal cord at the amputation plane determines the DV patterning of the regenerating spinal cord as well as the patterning of surrounding tissues such as cartilage. We investigated this phenomenon on a molecular level. Both the mature and regenerating axolotl spinal cord express molecular markers of DV progenitor cell domains found during embryonic neural tube development, including Pax6, Pax7 and Msx1. Furthermore, the expression of Sonic hedgehog (Shh) is localized to the ventral floor plate domain in both mature and regenerating spinal cord. Patched1 receptor expression indicated that hedgehog signaling occurs not only within the spinal cord but is also transmitted to the surrounding blastema. Cyclopamine treatment revealed that hedgehog signaling is not only required for DV patterning of the regenerating spinal cord but also had profound effects on the regeneration of surrounding, mesodermal tissues. Proliferation of tail blastema cells was severely impaired, resulting in an overall cessation of tail regeneration, and blastema cells no longer expressed the early cartilage marker Sox9. Spinal cord removal experiments revealed that hedgehog signaling, while required for blastema growth is not sufficient for tail regeneration in the absence of the spinal cord. By contrast to the cyclopamine effect on tail regeneration, cyclopamine-treated regenerating limbs achieve a normal length and contain cartilage. This study represents the first molecular localization of DV patterning information in mature tissue that controls regeneration. Interestingly, although tail regeneration does not occur through the formation of somites, the Shh-dependent pathways that control embryonic somite patterning and proliferation may be utilized within the blastema, albeit with a different topography to mediate growth and patterning of tail tissues during regeneration.  相似文献   

18.
19.
The hedgehog (hh) genes encode secreted signaling proteins that have important developmental functions in vertebrates and invertebrates. In Drosophila, expression of hh coordinates retinal development by propagating a wave of photoreceptor differentiation across the eye primordium. Here we report that two vertebrate hh genes, sonic hedgehog (shh) and tiggy-winkle hedgehog (twhh), may perform similar functions in the developing zebrafish. Both shh and twhh are expressed in the embryonic zebrafish retinal pigmented epithelium (RPE), initially in a discrete ventral patch which then expands outward in advance of an expanding wave of photoreceptor recruitment in the subjacent neural retina. A gene encoding a receptor for the hedgehog protein, ptc-2, is expressed by retinal neuroepithelial cells. Injection of a cocktail of antisense (alphashh/alphatwhh) oligonucleotides reduces expression of both hh genes in the RPE and slows or arrests the progression of rod and cone photoreceptor differentiation. Zebrafish strains known to have mutations in Hh signaling pathway genes similarly exhibit retardation of photoreceptor differentiation. We propose that hedgehog genes may play a role in propagating photoreceptor differentiation across the developing eye of the zebrafish.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号