首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Phosphorylation of the C terminus SQ motif that defines H2A.X variants is required for efficient DNA double-strand break (DSB) repair in diverse organisms but has not been studied in ciliated protozoa. Tetrahymena H2A.X is one of two similarly expressed major H2As, thereby differing both from mammals, where H2A.X is a quantitatively minor component, and from Saccharomyces cerevisiae where it is the only type of major H2A. Tetrahymena H2A.X is phosphorylated in the SQ motif in both the mitotic micronucleus and the amitotic macronucleus in response to DSBs induced by chemical agents and in the micronucleus during prophase of meiosis, which occurs in the absence of a synaptonemal complex. H2A.X is phosphorylated when programmed DNA rearrangements occur in developing macronuclei, as for immunoglobulin gene rearrangements in mammals, but not during the DNA fragmentation that accompanies breakdown of the parental macronucleus during conjugation, correcting the previous interpretation that this process is apoptosis-like. Using strains containing a mutated (S134A) SQ motif, we demonstrate that phosphorylation of this motif is important for Tetrahymena cells to recover from exogenous DNA damage and is required for normal micronuclear meiosis and mitosis and, to a lesser extent, for normal amitotic macronuclear division; its absence, while not lethal, leads to the accumulation of DSBs in both micro- and macronuclei. These results demonstrate multiple roles of H2A.X phosphorylation in maintaining genomic integrity in different phases of the Tetrahymena life cycle.  相似文献   

2.
During the last decade, chromatin research has been focusing on the role of histone variability as a modulator of chromatin structure and function. Histone variability can be the result of either post-translational modifications or intrinsic variation at the primary structure level: histone variants. In this review, we center our attention on one of the most extensively characterized of such histone variants in recent years, histone H2AX. The molecular phylogeny of this variant seems to have run in parallel with that of the major canonical somatic H2A1 in eukaryotes. Functionally, H2AX appears to be mainly associated with maintaining the genome integrity by participating in the repair of the double-stranded DNA breaks exogenously introduced by environmental damage (ionizing radiation, chemicals) or in the process of homologous recombination during meiosis. At the structural level, these processes involve the phosphorylation of serine at the SQE motif, which is present at the very end of the C-terminal domain of H2AX, and possibly other PTMs, some of which have recently started to be defined. We discuss a model to account for how these H2AX PTMs in conjunction with chromatin remodeling complexes (such as INO80 and SWRI) can modify chromatin structure (remodeling) to support the DNA unraveling ultimately required for DNA repair.  相似文献   

3.
H2AX is a core histone H2A variant that contains an absolutely conserved serine/glutamine (SQ) motif within an extended carboxy-terminal tail. H2AX phosphorylation at the SQ motif (gamma-H2AX) has been shown to increase dramatically upon exogenously introduced DNA double-strand breaks (DSBs). In this study, we use quantitative in situ approaches to investigate the spatial patterning and cell cycle dynamics of gamma-H2AX in a panel of normally growing (unirradiated) mammalian cell lines and cultures. We provide the first evidence for the existence of two distinct yet highly discernible gamma-H2AX focal populations: a small population of large amorphous foci that colocalize with numerous DNA DSB repair proteins and previously undescribed but much more abundant small foci. These small foci do not recruit proteins involved in DNA DSB repair. Cell cycle analyses reveal unexpected dynamics for gamma-H2AX in unirradiated mammalian cells that include an ATM-dependent phosphorylation that is maximal during M phase. Based upon similarities drawn from other histone posttranslational modifications and previous observations in haplo-insufficient (H2AX-/+) and null mice (H2AX-/-), gamma-H2AX may contribute to the fidelity of the mitotic process, even in the absence of DNA damage, thereby ensuring the faithful transmission of genetic information from one generation to the next.  相似文献   

4.
The response of eukaryotic cells to the formation of a double-strand break (DSB) in chromosomal DNA is highly conserved. One of the earliest responses to DSB formation is phosphorylation of the C-terminal tail of H2A histones located in nucleosomes near the break. Histone variant H2AX and core histone H2A are phosphorylated in mammals and budding yeast, respectively. We demonstrate the DSB-induced phosphorylation of histone variant H2Av in Drosophila melanogaster. H2Av is a member of the H2AZ family of histone variants. Ser137 within an SQ motif located near the C- terminus of H2Av was phosphorylated in response to γ-irradiation in both tissue culture cells and larvae. Phosphorylation was detected within 1 min of irradiation and detectable after only 0.3 Gy of radiation exposure. Photochemically induced DSBs, but not general oxidative damage or UV-induced nicking of DNA, caused H2Av phosphorylation, suggesting that phosphorylation is DSB specific. Imaginal disc cells from Drosophila expressing a mutant allele of H2Av with its C-terminal tail deleted, and therefore unable to be phosphorylated, were more sensitive to radiation-induced apoptosis than were wildtype controls, suggesting that phosphorylation of H2Av is important for repair of radiation-induced DSBs. These observations suggest that in addition to providing the function of an H2AZ histone, H2Av is also the functional homolog in Drosophila of H2AX.  相似文献   

5.
6.
Foster ER  Downs JA 《The FEBS journal》2005,272(13):3231-3240
DNA repair must take place within the context of chromatin, and it is therefore not surprising that many aspects of both chromatin components and proteins that modify chromatin have been implicated in this process. One of the best-characterized chromatin modification events in DNA-damage responses is the phosphorylation of the SQ motif found in histone H2A or the H2AX histone variant in higher eukaryotes. This modification is an early response to the induction of DNA damage, and occurs in a wide range of eukaryotic organisms, suggesting an important conserved function. One function that histone modifications can have is to provide a unique binding site for interacting factors. Here, we review the proteins and protein complexes that have been identified as H2AS129ph (budding yeast) or H2AXS139ph (human) binding partners and discuss the implications of these interactions.  相似文献   

7.
Rouse J 《The EMBO journal》2004,23(5):1188-1197
The DNA damage-responsive protein kinases ATM and ATR phosphorylate SQ/TQ motifs that lie in clusters in most of their in vivo targets. Budding yeast Esc4p contains a cluster of SQ/TQ motifs, suggesting that it might be a target of Mec1p/Tel1p (yeast ATR/ATM). Here it is reported that Esc4p is phosphorylated by Mec1p in response to DNA damage during DNA replication and that cells lacking Esc4p are hypersensitive to DNA damage specifically during S phase. Esc4p is not required for the intra-S-phase checkpoint but is essential for resumption of chromosome replication after DNA damage, and its role in promoting restart appears to be distinct from that of Rad53p. Mutation of Esc4p SQ/TQ motifs phosphorylated by Mec1p or mutation of the BRCT domains of Esc4p also renders cells unable to restart DNA replication after DNA damage and causes hypersensitivity to genotoxins. These results identify Esc4p as an important new S-phase-specific target of Mec1p.  相似文献   

8.
Histone variants play important roles in eukaryotic genome organization, the control of gene expression, cell division and DNA repair. Unlike other organisms that employ several H2A variants for different functions, the parsimonious fruit fly Drosophila melanogaster gets along with just a single H2A variant, H2A.V. Remarkably, H2A.V unites within one molecule features and functions of two different mammalian H2A variants, H2A.Z and H2A.X. Accordingly, H2A.V is involved in diverse functions, as an element of a class of active promoter structure, as a foundation for heterochromatin assembly and as a DNA damage sensor. Here, we comprehensively review the current knowledge of this fascinating histone variant.  相似文献   

9.
10.
11.
Marking histone H3 variants: How,when and why?   总被引:2,自引:0,他引:2  
  相似文献   

12.
ATM/ATR-like protein kinases play central roles in the maintenance of genome stability and phosphorylate numerous substrates in response to DNA damage, preferentially on SQ or TQ motifs. ATM/ATR substrates often contain several closely spaced SQ/TQ motifs in regions that have been termed SQ/TQ cluster domains (SCDs). SCDs are now considered a structural hallmark of DNA-damage-response proteins. Mutational analyses of a number of SCD-containing proteins indicate that multisite phosphorylation of SQ/TQ motifs is required for normal DNA-damage responses, most commonly by mediating protein-protein interactions in the formation of DNA-damage-induced complexes. SCD sequences are highly diverse and these domains may be largely unfolded in their native state rather than adopting a common three-dimensional fold. Structural disorder of SCDs could be advantageous for efficient phosphorylation by ATM/ATR kinases and also enable them to be molded into distinct conformations to facilitate flexible interactions with multiple binding partners.  相似文献   

13.
Imprinting Control Regions (ICRs) need to maintain their parental allele-specific DNA methylation during early embryogenesis despite genome-wide demethylation and subsequent de novo methylation. ZFP57 and KAP1 are both required for maintaining the repressive DNA methylation and H3-lysine-9-trimethylation (H3K9me3) at ICRs. In vitro, ZFP57 binds a specific hexanucleotide motif that is enriched at its genomic binding sites. We now demonstrate in mouse embryonic stem cells (ESCs) that SNPs disrupting closely-spaced hexanucleotide motifs are associated with lack of ZFP57 binding and H3K9me3 enrichment. Through a transgenic approach in mouse ESCs, we further demonstrate that an ICR fragment containing three ZFP57 motif sequences recapitulates the original methylated or unmethylated status when integrated into the genome at an ectopic position. Mutation of Zfp57 or the hexanucleotide motifs led to loss of ZFP57 binding and DNA methylation of the transgene. Finally, we identified a sequence variant of the hexanucleotide motif that interacts with ZFP57 both in vivo and in vitro. The presence of multiple and closely located copies of ZFP57 motif variants emerges as a distinct characteristic that is required for the faithful maintenance of repressive epigenetic marks at ICRs and other ZFP57 binding sites.  相似文献   

14.
Efficient repair of DNA double-strand breaks depends on the intact signaling cascade, comprising molecules involved in DNA damage signal pathways and checkpoints. Budding yeast Rad9 (scRad9) is required for activation of scRad53 (mammalian homolog Chk2) and transduction of the signal further downstream in this pathway. In the search for a mammalian homolog, three proteins in the human data base, including BRCA1, 53BP1, and nuclear factor with BRCT domains protein 1 (NFBD1), were found to share significant homology with the BRCT motifs of scRad9. Because BRCA1 and 53BP1 are involved in DNA damage responses, a similar role for NFBD1 was tested. We show that NFBD1 is a 250-kDa nuclear protein containing a forkhead-associated motif at its N terminus, two BRCT motifs at its C terminus, and 13 internal repetitions of a 41-amino acid sequence. Five minutes after gamma-irradiation, NFBD1 formed nuclear foci that colocalized with the phosphorylated form of H2AX and Chk2, two phosphorylation events known to be involved in early DNA damage response. NFBD1 foci are also detected in response to camptothecin, etoposide, and methylmethanesulfonate treatments. Deletion of the forkhead-associated motif or the internal repeats of NFBD1 has no effect on DNA damage-induced NFBD1 foci formation. Conversely, deletion of the BRCT motifs abrogates damage-induced NFBD1 foci. Ectopic expression of the BRCT motifs reduced damage-induced NFBD1 foci and compromised phosphorylated Chk2- and phosphorylated H2AX-containing foci. These results suggest that NFBD1, like BRCA1 and 53BP1, participates in the early response to DNA damage.  相似文献   

15.
16.
Coquelle N  Green R  Glover JN 《Biochemistry》2011,50(21):4579-4589
The BRCA1 BRCT domain binds pSer-x-x-Phe motifs in partner proteins to regulate the cellular response to DNA damage. Approximately 120 distinct missense variants have been identified in the BRCA1 BRCT through breast cancer screening, and several of these have been linked to an increased cancer risk. Here we probe the structures and peptide-binding activities of variants that affect the BRCA1 BRCT phosphopeptide-binding groove. The results obtained from the G1656D and T1700A variants illustrate the role of Ser1655 in pSer recognition. Mutations at Arg1699 (R1699W and R1699Q) significantly reduce peptide binding through loss of contacts to the main chain of the Phe(+3) residue and, in the case of R1699W, to a destabilization of the BRCT fold. The R1835P and E1836K variants do not dramatically reduce peptide binding, in spite of the fact that these mutations significantly alter the structure of the walls of the Phe(+3) pocket.  相似文献   

17.
M Qu  B Yang  L Tao  JR Yates  P Russell  MQ Dong  LL Du 《PLoS genetics》2012,8(7):e1002817
In response to DNA damage, the eukaryotic genome surveillance system activates a checkpoint kinase cascade. In the fission yeast Schizosaccharomyces pombe, checkpoint protein Crb2 is essential for DNA damage-induced activation of downstream effector kinase Chk1. The mechanism by which Crb2 mediates Chk1 activation is unknown. Here, we show that Crb2 recruits Chk1 to double-strand breaks (DSBs) through a direct physical interaction. A pair of conserved SQ/TQ motifs in Crb2, which are consensus phosphorylation sites of upstream kinase Rad3, is required for Chk1 recruitment and activation. Mutating both of these motifs renders Crb2 defective in activating Chk1. Tethering Crb2 and Chk1 together can rescue the SQ/TQ mutations, suggesting that the main function of these phosphorylation sites is promoting interactions between Crb2 and Chk1. A 19-amino-acid peptide containing these SQ/TQ motifs is sufficient for Chk1 binding in vitro when one of the motifs is phosphorylated. Remarkably, the same peptide, when tethered to DSBs by fusing with either recombination protein Rad22/Rad52 or multi-functional scaffolding protein Rad4/Cut5, can rescue the checkpoint defect of crb2Δ. The Rad22 fusion can even bypass the need for Rad9-Rad1-Hus1 (9-1-1) complex in checkpoint activation. These results suggest that the main role of Crb2 and 9-1-1 in DNA damage checkpoint signaling is recruiting Chk1 to sites of DNA lesions.  相似文献   

18.
In eukaryotes, mutations in a number of genes that affect DNA damage checkpoints or DNA replication also affect telomere length [Curr. Opin. Cell Biol. 13 (2001) 281]. Saccharomyces cerevisae strains with mutations in the TEL1 gene (encoding an ATM-like protein kinase) have very short telomeres, as do strains with mutations in XRS2, RAD50, or MRE11 (encoding members of a trimeric complex). Xrs2p and Mre11p are phosphorylated in a Tel1p-dependent manner in response to DNA damage [Genes Dev. 15 (2001) 2238; Mol. Cell 7 (2001) 1255]. We found that Xrs2p, but not Mre11p or Rad50p, is efficiently phosphorylated in vitro by immunopreciptated Tel1p. Strains with mutations eliminating all SQ and TQ motifs in Xrs2p (preferred targets of the ATM kinase family) had wild-type length telomeres and wild-type sensitivity to DNA damaging agents. We also showed that Rfa2p (a subunit of RPA) and the Dun1p checkpoint kinase, which are required for DNA damage repair and which are phosphorylated in response to DNA damage in vivo, are in vitro substrates of the Tel1p and Mec1p kinases. In addition, Dun1p substrates with no SQ or TQ motifs are phosphorylated by Mec1p in vitro very inefficiently, but retain most of their ability to be phosphorylated by Tel1p. We demonstrated that null alleles of DUN1 and certain mutant alleles of RFA2 result in short telomeres. As observed with Xrs2p, however, strains with mutations of DUN1 or RFA2 that eliminate SQ motifs have no effect on telomere length or DNA damage sensitivity.  相似文献   

19.
核小体是构成真核生物染色质的基本结构单位,组蛋白变体H2A.Z及H3.3对染色质结构及基因转录过程发挥着重要的调控作用。体内研究核小体及染色质结构受到诸多因素限制,体外重构含有H2A.Z及H3.3的核小体结构是研究与组蛋白变体相关基因表达调控的重要方法之一。实验表达纯化了6种组蛋白,在复性的过程中装配了含有H2A.Z和H3.3的组蛋白八聚体。基于DNA序列10bp周期性及序列模体设计了3条易于形成核小体的DNA序列,通过PCR大量扩增的方法,回收了标记Cy3荧光分子的目的DNA序列。采用盐透析法体外组装了含有H2A.Z和H3.3的核小体结构,利用荧光标记、EB染色及考马斯亮蓝染色检测了含有组蛋白变体的核小体形成效率及形成过程的吉布斯自由能变化。结果发现,设计的3条DNA序列可以有效地组装形成含有组蛋白电梯的核小体结构,而且随着组蛋白八聚体与DNA比例的增加,核小体的形成效率显著提高;采用Cy3荧光标记可以灵敏且定量地计算组装过程的吉布斯自由能。该方法的建立对研究组蛋白变体相关的结构生物学及转录调控等具有一定的意义。  相似文献   

20.
Histone H3 proteins are highly conserved across all eukaryotes and are dynamically modified by many post-translational modifications (PTMs). Here we describe a method that defines the evolution of the family of histone H3 proteins, including the emergence of functionally distinct variants. It combines information from histone H3 protein sequences in eukaryotic species with the evolution of these species as described by the tree of life (TOL) project. This so-called TOL analysis identified the time when the few observed protein sequence changes occurred and when distinct, co-existing H3 protein variants arose. Four distinct ancient duplication events were identified where replication-coupled (RC) H3 variants diverged from replication-independent (RI) forms, like histone H3.3 in animals. These independent events occurred in ancestral lineages leading to the clades of metazoa, viridiplantae, basidiomycota, and alveolata. The proto-H3 sequence in the last eukaryotic common ancestor (LECA) was expanded to at least 133 of its 135 residues. Extreme conservation of known acetylation and methylation sites of lysines and arginines predicts that these PTMs will exist across the eukaryotic crown phyla and in protists with canonical chromatin structures. Less complete conservation was found for most serine and threonine phosphorylation sites. This study demonstrates that TOL analysis can determine the evolution of slowly evolving proteins in sequence-saturated datasets.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号