首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 359 毫秒
1.
Sex hormones have actions in brain regions important for emotion, including the amygdala and prefrontal cortex. Previous studies have shown that cyclic sex hormones and hormone therapy after menopause modify responses to emotional events. Thus, this study examined whether hormone therapy modified emotion-induced brain activity in older women. Functional magnetic resonance imaging (fMRI), behavioral ratings (valence and arousal), and recognition memory were used to assess responses to emotionally laden scenes in older women currently using hormone therapy (HT) and women not currently using hormone therapy (NONE). We hypothesized that hormones would affect the amount or persistence of emotion-induced brain activity in the amygdala and ventrolateral prefrontal cortex (VLPFC). However, hormone therapy did not affect brain activity with the exception that NONE women showed a modest increase over time in amygdala activity to positive scenes. Hormone therapy did not affect behavioral ratings or memory for emotional scenes. The results were similar when women were regrouped based on whether they had ever used hormone therapy versus had never used hormone therapy. These results suggest that hormone therapy does not modify emotion-induced brain activity, or its persistence, in older women.  相似文献   

2.
Philippe Fossati 《PSN》2005,3(4):178-183
Functional brain imaging studies in healthy subjects suggest that several regions (prefrontal cortex, amygdala, thalamus, hippocampus, anterior cingulate) have specialized functions for emotional operations. Within these regions, the medial prefrontal cortex (MPFC) is considered to have a general role in emotional processing. Using a memory paradigm with verbal material, we recently demonstrated that the MPFC is specifically involved in self-related processing of emotional stimuli. Study with mood induction also suggest that personality traits may modulate the reactivity of the MPFC to emotional Stressors. Taken together these findings support the hypothesis that the MPFC subserve processes involved in emotion regulation. Dysfunction of the MPFC and related structures (i.e. amygdala) may increase the vulnerability to emotional disorders.  相似文献   

3.
Cognitive neuroscience of emotional memory   总被引:11,自引:0,他引:11  
Emotional events often attain a privileged status in memory. Cognitive neuroscientists have begun to elucidate the psychological and neural mechanisms underlying emotional retention advantages in the human brain. The amygdala is a brain structure that directly mediates aspects of emotional learning and facilitates memory operations in other regions, including the hippocampus and prefrontal cortex. Emotion-memory interactions occur at various stages of information processing, from the initial encoding and consolidation of memory traces to their long-term retrieval. Recent advances are revealing new insights into the reactivation of latent emotional associations and the recollection of personal episodes from the remote past.  相似文献   

4.
The aim of this study was to examine changes in rat emotional behavior and determine differences in the expression of GABA-A receptor alpha-2 subunits in brain structures of low- (LR) and high-anxiety (HR) rats after the repeated corticosterone administration. The animals were divided into LR and HR groups based on the duration of their conditioned freezing in a contextual fear test. Repeated daily administration of corticosterone (20 mg/kg) for 21 days decreased activity in a forced swim test, reduced body weight and decreased prefrontal cortex corticosterone concentration in both the LR and HR groups. These effects of corticosterone administration were stronger in the HR group in comparison with the appropriate control group, and compared to LR treated and LR control animals. Moreover, in the HR group, chronic corticosterone administration increased anxiety-like behavior in the open field and elevated plus maze tests. The behavioral effects in HR rats were accompanied by a decrease in alpha-2 subunit density in the medial prefrontal cortex (prelimbic cortex and frontal association cortex) and by an increase in the expression of alpha-2 subunits in the basolateral amygdala. These studies have shown that HR rats are more susceptible to anxiogenic and depressive effects of chronic corticosterone administration, which are associated with modification of GABA-A receptor function in the medial prefrontal cortex and basolateral amygdala. The current data may help to better understand the neurobiological mechanisms responsible for individual differences in changes in mood and emotions induced by repeated administration of high doses of glucocorticoids or by elevated levels of these hormones associated with chronic stress or affective pathology.  相似文献   

5.
Chronic stress produces sex-specific neuromorphological changes in a variety of brain regions, which likely contribute to the gender differences observed in stress-related illnesses and cognitive ability. Here, we review the literature investigating the relationship between chronic stress and sex differences on brain plasticity and function, with an emphasis on morphological changes in dendritic arborization and spines in the hippocampus, prefrontal cortex, and amygdala. These brain structures are highly interconnected and sensitive to stress and gonadal hormones, and influence a variety of cognitive abilities. Although much less work has been published using female subjects than with male subjects, the findings suggest that the relationship between brain morphology and function is very different between the sexes. After reviewing the literature, we present a model showing how chronic stress influences the morphology of these brain regions and changes the dynamic of how these limbic structures interact with each other to produce altered behavioral outcomes in spatial ability, behavioral flexibility/executive function, and emotional arousal.  相似文献   

6.
Biased attention for emotional stimuli has been associated with vulnerability to psychopathology. This study examines the neural substrates of biased attention. Twenty‐three adult women completed high‐resolution structural imaging followed by a standard behavioral measure of biased attention (i.e. spatial cueing task). Participants were also genotyped for the serotonin transporter‐linked promoter region (5‐HTTLPR) gene. Results indicated that lateral prefrontal cortex (lPFC) morphology was inversely associated with maintained attention for positive and negative stimuli, but only among short 5‐HTTLPR allele carriers. No such associations were observed for the medial prefrontal cortex (mPFC) or the amygdala. Results from this study suggest that brain regions involved in cognitive control of emotion are also associated with attentional biases for emotion stimuli among short 5‐HTTLPR allele carriers.  相似文献   

7.
Prospective memory (PM) describes the ability to execute a previously planned action at the appropriate point in time. Although behavioral studies clearly showed that prospective memory performance is affected by the emotional significance attributed to the intended action, no study so far investigated the brain mechanisms subserving the modulatory effect of emotional salience on PM performance. The general aim of the present study was to explore brain regions involved in prospective memory processes when PM cues are associated with emotional stimuli. In particular, based on the hypothesised critical role of the prefrontal cortex in prospective memory in the presence of emotionally salient stimuli, we expected a stronger involvement of aPFC when the retrieval and execution of the intended action is cued by an aversive stimulus. To this aim BOLD responses of PM trials cued by aversive facial expressions were compared to PM trials cued by neutral facial expressions. Whole brain analysis showed that PM task cued by aversive stimuli is differentially associated with activity in the right lateral prefrontal area (BA 10) and in the left caudate nucleus. Moreover a temporal shift between the response of the caudate nucleus that preceded that of aPFC was observed. These findings suggest that the caudate nucleus might provide an early analysis of the affective properties of the stimuli, whereas the anterior lateral prefrontal cortex (BA10) would be involved in a slower and more deliberative analysis to guide goal-directed behaviour.  相似文献   

8.
Smith AP  Stephan KE  Rugg MD  Dolan RJ 《Neuron》2006,49(4):631-638
The ability to remember emotional events is crucial for adapting to biologically and socially significant situations. Little is known, however, about the nature of the neural interactions supporting the integration of mnemonic and emotional information. Using fMRI and dynamic models of effective connectivity, we examined regional neural activity and specific interactions between brain regions during a contextual memory retrieval task. We independently manipulated emotional context and relevance of retrieved emotional information to task demands. We show that retrieval of emotionally valenced contextual information is associated with enhanced connectivity from hippocampus to amygdala, structures crucially involved with encoding of emotional events. When retrieval of emotional information is relevant to current behavior, amygdala-hippocampal connectivity increases bidirectionally, under modulatory influences from orbitofrontal cortex, a region implicated in representation of affective value and behavioral guidance. Our findings demonstrate that both memory content and behavioral context impact upon large scale neuronal dynamics underlying emotional retrieval.  相似文献   

9.
Deamination of dopamine and serotonin by monoamine oxidase was studied in the prefrontal cortex, striatum, hippocampus and amygdaloid complex of the brain of rats during retrieval of conditioned passive avoidance response. Changes in the dopamine and serotonin metabolism were observed in different brain structures. A decrease in dopamine-deaminating activity of monoamine oxidase was found in the hippocampus, striatum and prefrontal cortex. At the same time, serotonin-deaminating activity of the enzyme was decreased in the striatum and increased in the amygdaloid complex, whereas it did not change in the prefrontal cortex and hippocampus. The observed changes in dopamine metabolism in the prefrontal cortex and hippocampus and serotonin metabolism in the amygdaloid complex indicate that dopamine and serotonin are involved in the regulation of two different processes mediating the memory trace retrieval. Dopamine is involved in neuronal mechanisms of information processes providing the strategy of behavior, whereas serotonin is related to emotional mechanisms of memory.  相似文献   

10.
Theta oscillations are considered crucial mechanisms in neuronal communication across brain areas, required for consolidation and retrieval of fear memories. One form of inhibitory learning allowing adaptive control of fear memory is extinction, a deficit of which leads to maladaptive fear expression potentially leading to anxiety disorders. Behavioral responses after extinction training are thought to reflect a balance of recall from extinction memory and initial fear memory traces. Therefore, we hypothesized that the initial fear memory circuits impact behavioral fear after extinction, and more specifically, that the dynamics of theta synchrony in these pathways signal the individual fear response. Simultaneous multi-channel local field and unit recordings were obtained from the infralimbic prefrontal cortex, the hippocampal CA1 and the lateral amygdala in mice. Data revealed that the pattern of theta coherence and directionality within and across regions correlated with individual behavioral responses. Upon conditioned freezing, units were phase-locked to synchronized theta oscillations in these pathways, characterizing states of fear memory retrieval. When the conditioned stimulus evoked no fear during extinction recall, theta interactions were directional with prefrontal cortical spike firing leading hippocampal and amygdalar theta oscillations. These results indicate that the directional dynamics of theta-entrained activity across these areas guide changes in appraisal of threatening stimuli during fear memory and extinction retrieval. Given that exposure therapy involves procedures and pathways similar to those during extinction of conditioned fear, one therapeutical extension might be useful that imposes artificial theta activity to prefrontal cortical-amygdalo-hippocampal pathways that mimics the directionality signaling successful extinction recall.  相似文献   

11.
Working memory is a vital cognitive capacity without which meaningful thinking and logical reasoning would be impossible. Working memory is integrally dependent upon prefrontal cortex and it has been suggested that voluntary control of working memory, enabling sustained emotion inhibition, was the crucial step in the evolution of modern humans. Consistent with this, recent fMRI studies suggest that working memory performance depends upon the capacity of prefrontal cortex to suppress bottom-up amygdala signals during emotional arousal. However fMRI is not well-suited to definitively resolve questions of causality. Moreover, the amygdala is neither structurally or functionally homogenous and fMRI studies do not resolve which amygdala sub-regions interfere with working memory. Lesion studies on the other hand can contribute unique causal evidence on aspects of brain-behaviour phenomena fMRI cannot "see". To address these questions we investigated working memory performance in three adult female subjects with bilateral basolateral amygdala calcification consequent to Urbach-Wiethe Disease and ten healthy controls. Amygdala lesion extent and functionality was determined by structural and functional MRI methods. Working memory performance was assessed using the Wechsler Adult Intelligence Scale-III digit span forward task. State and trait anxiety measures to control for possible emotional differences between patient and control groups were administered. Structural MRI showed bilateral selective basolateral amygdala damage in the three Urbach-Wiethe Disease subjects and fMRI confirmed intact functionality in the remaining amygdala sub-regions. The three Urbach-Wiethe Disease subjects showed significant working memory facilitation relative to controls. Control measures showed no group anxiety differences. Results are provisionally interpreted in terms of a 'cooperation through competition' networks model that may account for the observed paradoxical functional facilitation effect.  相似文献   

12.
Future planning and behavioral modification is thought to require experience-dependent plasticity in neuronal circuits involving the prefrontal cortex, nucleus accumbens and amygdala. Dopamine has been implicated in such plasticity; however, the nature of the adaptive response of dopamine systems to emotionally salient experiences is poorly understood. We determined whether the dopaminergic response to a given stimulus changes after the first exposure to that stimulus and whether this alteration is stimulus specific. Dopamine release was measured in the prefrontal cortex and the nucleus accumbens in response to two aversive but qualitatively distinct stimuli, physical restraint and electrical microstimulation of basolateral amygdala. In the prefrontal cortex, the first exposure to restraint or amygdala stimulation produced similar increases in dopamine release. The second exposure to restraint resulted in an attenuated response (- 36%) whereas the second exposure to amygdala stimulation produced a potentiated response (+ 110%). Cross-modal potentiation of response occurred with both stimuli. These adaptive changes were specific to the prefrontal cortex and were not observed in the nucleus accumbens. These findings demonstrate that prefrontal cortical dopamine output adapts after a single exposure to stimuli with emotional salience. The direction of this adaptation, however, is not uniform and depends on the nature of the stimulus.  相似文献   

13.
Human aggression/impulsivity-related traits have a complex background that is greatly influenced by genetic and non-genetic factors. The relationship between aggression and anxiety is regulated by highly conserved brain regions including amygdala, which controls neural circuits triggering defensive, aggressive, or avoidant behavioral models. The dysfunction of neural circuits responsible for emotional control was shown to represent an etiological factor of violent behavior. In addition to the amygdala, these circuits also involve the anterior cingulated cortex and regions of the prefrontal cortex. Excessive reactivity in the amygdala coupled with inadequate prefrontal regulation serves to increase the likelihood of aggressive behavior. Developmental alterations in prefrontal-subcortical circuitry as well as neuromodulatory and hormonal abnormality appear to play a role. Imbalance in testosterone/serotonin and testosterone/cortisol ratios (e.g., increased testosterone levels and reduced cortisol levels) increases the propensity toward aggression because of reduced activation of the neural circuitry of impulse control and self-regulation. Serotonin facilitates prefrontal inhibition, and thus insufficient serotonergic activity can enhance aggression. Genetic predisposition to aggression appears to be deeply affected by the polymorphic genetic variants of the serotoninergic system that influences serotonin levels in the central and peripheral nervous system, biological effects of this hormone, and rate of serotonin production, synaptic release and degradation. Among these variants, functional polymorphisms in the monoamine oxidase A (MAOA) and serotonin transporter (5-HTT) may be of particular importance due to the relationship between these polymorphic variants and anatomical changes in the limbic system of aggressive people. Furthermore, functional variants of MAOA and 5-HTT are capable of mediating the influence of environmental factors on aggression-related traits. In this review, we consider genetic determinants of human aggression, with special emphasis on genes involved in serotonin and dopamine metabolism and function.  相似文献   

14.
Neuronal signalling of fear memory   总被引:5,自引:0,他引:5  
The learning and remembering of fearful events depends on the integrity of the amygdala, but how are fear memories represented in the activity of amygdala neurons? Here, we review recent electrophysiological studies indicating that neurons in the lateral amygdala encode aversive memories during the acquisition and extinction of Pavlovian fear conditioning. Studies that combine unit recording with brain lesions and pharmacological inactivation provide evidence that the lateral amygdala is a crucial locus of fear memory. Extinction of fear memory reduces associative plasticity in the lateral amygdala and involves the hippocampus and prefrontal cortex. Understanding the signalling of aversive memory by amygdala neurons opens new avenues for research into the neural systems that support fear behaviour.  相似文献   

15.
The ability to empathize with other people is a critical component of human social relationships. Empathic processing varies across the human population, however it is currently unclear how personality traits are associated with empathic processing. This study was designed to test the hypothesis that specific personality traits are associated with behavioral and biological indicators of improved empathy. Extraversion and Agreeableness are personality traits designed to measure individual differences in social-cognitive functioning, however each trait-dimension includes elements that represent interpersonal social functioning and elements that do not represent interpersonal social functioning. We tested the prediction that interpersonal elements of Extraversion (Warmth) and Agreeableness (Altruism) are associated with empathy and non-interpersonal elements of Extraversion and Agreeableness are not associated with empathy. We quantified empathic processing behaviorally (empathic accuracy task using video vignettes) and within the brain (fMRI and an emotional perspective taking task) in 50 healthy subjects. Converging evidence shows that highly warm and altruistic people are well skilled in recognizing the emotional states of other people and exhibit greater activity in brain regions important for empathy (temporoparietal junction and medial prefrontal cortex) during emotional perspective taking. A mediation analysis further supported the association between warm-altruistic personality and empathic processing; indicating that one reason why highly warm-altruistic individuals may be skilled empathizers is that they engage the temporoparietal junction and medial prefrontal cortex more. Together, these findings advance the way the behavioral and neural basis of empathy is understood and demonstrates the efficacy of personality scales to measure individual differences in interpersonal social function.  相似文献   

16.
The concentrations of catecholamine and indoleamine metabolites were measured in intact and adrenalectomized mice to determine whether adrenal hormones mediate or modulate the stress-induced responses. Thirty minutes of footshock resulted in significant increases of the ratios of the dopamine (DA) catabolite, dihydroxyphenylacetic acid (DOPAC), to DA in prefrontal cortex, nucleus accumbens, striatum, hypothalamus, and brainstem, and of homovanillic (HVA)/DA ratios in nucleus accumbens, striatum, amygdala, and hypothalamus. Ratios of 3-methoxy-4-hydroxyphenylethyleneglycol to norepinephrine (NE) were also increased in prefrontal cortex, nucleus accumbens, septum, amygdala, hypothalamus, hippocampus, and brainstem. The concentration of NE was decreased in amygdala. 5-Hydroxyindoleacetic acid (5-HIAA)/5-hydroxytryptamine (5-HT, serotonin) ratios and free tryptophan were also increased in every brain region. Very similar data were obtained from mice restrained for 30 min. Adrenalectomy resulted in increased HVA/DA ratios in prefrontal cortex and striatum, and 5-HIAA/5-HT in septum. The stress-related changes were largely similar in adrenalectomized mice. Significant interactions between adrenalectomy and footshock treatment occurred in prefrontal cortical DOPAC/DA and hypothalamic NE which was depleted only in adrenalectomized mice, suggesting tendencies for these measures to be more responsive in adrenalectomized mice. Corticosterone administration (0.5-2.0 mg/kg s.c.) which resulted in plasma concentrations in the physiological range did not alter the concentrations of the cerebral metabolites measured in any region. We conclude that adrenal hormones do not mediate cerebral catecholamine or indoleamine metabolism in stress, although adrenalectomy may affect HVA and 5-HIAA metabolism, and there was a tendency for catecholamines to be more sensitive to stress in adrenalectomized animals.  相似文献   

17.
The adult brain is capable of considerable structural and functional plasticity and the study of hormone actions in brain has contributed to our understanding of this important phenomenon. In particular, stress and stress-related hormones such as glucocorticoids and mineralocorticoids play a key role in the ability of acute and chronic stress to cause reversible remodeling of neuronal connections in the hippocampus, prefrontal cortex, and amygdala. To produce this plasticity, these hormones act by both genomic and non-genomic mechanisms together with ongoing, experience-driven neural activity mediated by excitatory amino acid neurotransmitters, neurotrophic factors such as brain derived neurotrophic factor, extracellular molecules such as neural cell adhesion molecule, neuropeptides such as corticotrophin releasing factor, and endocannabinoids. The result is a dynamic brain architecture that can be modified by experience. Under this view, the role of pharmaceutical agents, such as antidepressants, is to facilitate such plasticity that must also be guided by experiences.  相似文献   

18.
Latent inhibition (LI) is a behavioral phenomenon, in which repeated presenting of a non-reinforced stimulus retards conditioning to this stimulus when it is coupled with a reinforcer. In order to find specific serotonin (5-HT- and dopamine (DA) changes mediating the LI, the 5-HT and DA metabolism was investigated in certain brain regions. Oxidative deamination of 5-HT and DA by monoamine oxidase (MAO) was determined in the prefrontal cortex, striatim, amygdala, and hippocampus at preexposure and testing stages of the LI using the passive avoidance procedure in rats. Preexposed animals demonstrated high MAO activity for 5-HT deamination in the amygdala and striatum and lower MAO activity for DA deamination in the amygdala and hippocampus. After testing the LI, a high level of 5-HT deamination by MAO was revealed in the amygdala, white the lower level of 5-HT deamination by MAO was shown in the prefrontal cortex. At the same time, no changes in DA metabolism were found in all the brain regions studied. Thus, the role of dopaminergic system in the LI effect may be limited by the preexposure stage. The obtained evidence suggests that the enhanced 5-HT activity in the amygdala and striatum induced by the preexposed stimulus is a principal biochemical mechanism underlying the LI.  相似文献   

19.
Etkin A  Egner T  Peraza DM  Kandel ER  Hirsch J 《Neuron》2006,51(6):871-882
Effective mental functioning requires that cognition be protected from emotional conflict due to interference by task-irrelevant emotionally salient stimuli. The neural mechanisms by which the brain detects and resolves emotional conflict are still largely unknown, however. Drawing on the classic Stroop conflict task, we developed a protocol that allowed us to dissociate the generation and monitoring of emotional conflict from its resolution. Using functional magnetic resonance imaging (fMRI), we find that activity in the amygdala and dorsomedial and dorsolateral prefrontal cortices reflects the amount of emotional conflict. By contrast, the resolution of emotional conflict is associated with activation of the rostral anterior cingulate cortex. Activation of the rostral cingulate is predicted by the amount of previous-trial conflict-related neural activity and is accompanied by a simultaneous and correlated reduction of amygdalar activity. These data suggest that emotional conflict is resolved through top-down inhibition of amygdalar activity by the rostral cingulate cortex.  相似文献   

20.
社交行为对于个体身心健康和社会发展都极其重要。社交行为障碍已成为多种精神类疾病的典型临床表征,对个体的发展有严重不良影响。前额叶皮层作为调节社交行为的关键脑区之一,参与了社交、情绪、决策等高级功能,其内部神经元、神经胶质细胞的活动变化及相互作用对调节社交行为有着重要影响,而且前额叶皮层与其他脑区之间的协作也会影响不同的社会行为。本文回顾了前额叶皮层中神经元、神经胶质细胞以及脑区投射与社交行为关系的最新研究,系统综述了前额叶皮层在社交行为调节中的作用,以期为社交障碍的神经机制和有效诊疗提供参考。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号