首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
In a previous study (Spanova et al., 2010, J. Biol. Chem., 285, 6127-6133) we demonstrated that squalene, an intermediate of sterol biosynthesis, accumulates in yeast strains bearing a deletion of the HEM1 gene. In such strains, the vast majority of squalene is stored in lipid particles/droplets together with triacylglycerols and steryl esters. In mutants lacking the ability to form lipid particles, however, substantial amounts of squalene accumulate in organelle membranes. In the present study, we investigated the effect of squalene on biophysical properties of lipid particles and biological membranes and compared these results to artificial membranes. Our experiments showed that squalene together with triacylglycerols forms the fluid core of lipid particles surrounded by only a few steryl ester shells which transform into a fluid phase below growth temperature. In the hem1? deletion mutant a slight disordering effect on steryl esters was observed indicated by loss of the high temperature transition. Also in biological membranes from the hem1? mutant strain the effect of squalene per se is difficult to pinpoint because multiple effects such as levels of sterols and unsaturated fatty acids contribute to physical membrane properties. Fluorescence spectroscopic studies using endoplasmic reticulum, plasma membrane and artificial membranes revealed that it is not the absolute squalene level in membranes but rather the squalene to sterol ratio which mainly affects membrane fluidity/rigidity. In a fluid membrane environment squalene induces rigidity of the membrane, whereas in rigid membranes there is almost no additive effect of squalene. In summary, our results demonstrate that squalene (i) can be well accommodated in yeast lipid particles and organelle membranes without causing deleterious effects; and (ii) although not being a typical membrane lipid may be regarded as a mild modulator of biophysical membrane properties.  相似文献   

2.
Spermatogenesis is known to be vulnerable to temperature. Exposures of rat testis to moderate hyperthermia result in loss of germ cells with survival of Sertoli cells (SC). Because SC provide structural and metabolic support to germ cells, our aim was to test the hypothesis that these exposures affect SC functions, thus contributing to germ cell damage. In vivo, regularly repeated exposures (one of 15 min per day, once a day during 5 days) of rat testes to 43°C led to accumulation of neutral lipids. This SC-specific lipid function took 1–2 weeks after the last of these exposures to be maximal. In cultured SC, similar daily exposures for 15 min to 43°C resulted in significant increase in triacylglycerol levels and accumulation of lipid droplets. After incubations with [3H]arachidonate, the labeling of cardiolipin decreased more than that of other lipid classes. Another specifically mitochondrial lipid metabolic function, fatty acid oxidation, also declined. These lipid changes suggested that temperature affects SC mitochondrial physiology, which was confirmed by significantly increased degrees of membrane depolarization and ROS production. This concurred with reduced expression of two SC-specific proteins, transferrin, and Wilms'' Tumor 1 protein, markers of SC secretion and differentiation functions, respectively, and with an intense SC cytoskeletal perturbation, evident by loss of microtubule network (α-tubulin) and microfilament (f-actin) organization. Albeit temporary and potentially reversible, hyperthermia-induced SC structural and metabolic alterations may be long-lasting and/or extensive enough to respond for the decreased survival of the germ cells they normally foster.  相似文献   

3.
Torsin proteins are AAA+ ATPases that localize to the endoplasmic reticular/nuclear envelope (ER/NE) lumen. A mutation that markedly impairs torsinA function causes the CNS disorder DYT1 dystonia. Abnormalities of NE membranes have been linked to torsinA loss of function and the pathogenesis of DYT1 dystonia, leading us to investigate the role of the Caenorhabditis elegans torsinA homologue OOC-5 at the NE. We report a novel role for torsin in nuclear pore biology. In ooc-5–mutant germ cell nuclei, nucleoporins (Nups) were mislocalized in large plaques beginning at meiotic entry and persisted throughout meiosis. Moreover, the KASH protein ZYG-12 was mislocalized in ooc-5 gonads. Nups were mislocalized in adult intestinal nuclei and in embryos from mutant mothers. EM analysis revealed vesicle-like structures in the perinuclear space of intestinal and germ cell nuclei, similar to defects reported in torsin-mutant flies and mice. Consistent with a functional disruption of Nups, ooc-5–mutant embryos displayed impaired nuclear import kinetics, although the nuclear pore-size exclusion barrier was maintained. Our data are the first to demonstrate a requirement for a torsin for normal Nup localization and function and suggest that these functions are likely conserved.  相似文献   

4.
5.
Virus-like particles (VLPs) have not been observed in Caenorhabditis germ cells, although nematode genomes contain low numbers of retrotransposon and retroviral sequences. We used electron microscopy to search for VLPs in various wild strains of Caenorhabditis, and observed very rare candidate VLPs in some strains, including the standard laboratory strain of C. elegans, N2. We identified the N2 VLPs as capsids produced by Cer1, a retrotransposon in the Gypsy/Ty3 family of retroviruses/retrotransposons. Cer1 expression is age and temperature dependent, with abundant expression at 15°C and no detectable expression at 25°C, explaining how VLPs escaped detection in previous studies. Similar age and temperature-dependent expression of Cer1 retrotransposons was observed for several other wild strains, indicating that these properties are common, if not integral, features of this retroelement. Retrotransposons, in contrast to DNA transposons, have a cytoplasmic stage in replication, and those that infect non-dividing cells must pass their genomic material through nuclear pores. In most C. elegans germ cells, nuclear pores are largely covered by germline-specific organelles called P granules. Our results suggest that Cer1 capsids target meiotic germ cells exiting pachytene, when free nuclear pores are added to the nuclear envelope and existing P granules begin to be removed. In pachytene germ cells, Cer1 capsids concentrate away from nuclei on a subset of microtubules that are exceptionally resistant to microtubule inhibitors; the capsids can aggregate these stable microtubules in older adults, which exhibit a temperature-dependent decrease in egg viability. When germ cells exit pachytene, the stable microtubules disappear and capsids redistribute close to nuclei that have P granule-free nuclear pores. This redistribution is microtubule dependent, suggesting that capsids that are released from stable microtubules transfer onto new, dynamic microtubules to track toward nuclei. These studies introduce C. elegans as a model to study the interplay between retroelements and germ cell biology.  相似文献   

6.
Lipolysis is a delicate process involving complex signaling cascades and sequential enzymatic activations. In Caenorhabditis elegans, fasting induces various physiological changes, including a dramatic decrease in lipid contents through lipolysis. Interestingly, C. elegans lacks perilipin family genes which play a crucial role in the regulation of lipid homeostasis in other species. Here, we demonstrate that in the intestinal cells of C. elegans, a newly identified protein, lipid droplet protein 1 (C25A1.12; LID-1), modulates lipolysis by binding to adipose triglyceride lipase 1 (C05D11.7; ATGL-1) during nutritional deprivation. In fasted worms, lipid droplets were decreased in intestinal cells, whereas suppression of ATGL-1 via RNA interference (RNAi) resulted in retention of stored lipid droplets. Overexpression of ATGL-1 markedly decreased lipid droplets, whereas depletion of LID-1 via RNAi prevented the effect of overexpressed ATGL-1 on lipolysis. In adult worms, short-term fasting increased cyclic AMP (cAMP) levels, which activated protein kinase A (PKA) to stimulate lipolysis via ATGL-1 and LID-1. Moreover, ATGL-1 protein stability and LID-1 binding were augmented by PKA activation, eventually leading to increased lipolysis. These data suggest the importance of the concerted action of lipase and lipid droplet protein in the response to fasting signals via PKA to maintain lipid homeostasis.  相似文献   

7.
Across all kingdoms of life, cells store energy in a specialized organelle, the lipid droplet. In general, it consists of a hydrophobic core of triglycerides and steryl esters surrounded by only one leaflet derived from the endoplasmic reticulum membrane to which a specific set of proteins is bound. We have chosen the unicellular organism Dictyostelium discoideum to establish kinetics of lipid droplet formation and degradation and to further identify the lipid constituents and proteins of lipid droplets. Here, we show that the lipid composition is similar to what is found in mammalian lipid droplets. In addition, phospholipids preferentially consist of mainly saturated fatty acids, whereas neutral lipids are enriched in unsaturated fatty acids. Among the novel protein components are LdpA, a protein specific to Dictyostelium, and Net4, which has strong homologies to mammalian DUF829/Tmem53/NET4 that was previously only known as a constituent of the mammalian nuclear envelope. The proteins analyzed so far appear to move from the endoplasmic reticulum to the lipid droplets, supporting the concept that lipid droplets are formed on this membrane.  相似文献   

8.
Cytosolic lipid droplets are versatile, evolutionarily conserved organelles that are important for the storage and utilization of lipids in almost all cell types. To obtain insight into the physiological importance of lipid droplet size, we isolated and characterized a new S-adenosyl methionine synthetase 1 (SAMS-1)-deficient Caenorhabditis elegans mutant, which have enlarged lipid droplets throughout its life cycle. We found that the sams-1 mutant showed a markedly reduced body size and progeny number; impaired synthesis of phosphatidylcholine, a major membrane phospholipid; and elevated expression of key lipogenic genes, such as dgat-2, resulting in the accumulation of triacylglyceride in fewer, but larger, lipid droplets. The sams-1 mutant store more than 50 % (wild type: 10 %) of its intestinal fat in large lipid droplets, ≥10 μm3 in size. In response to starvation, SAMS-1 deficiency causes reduced depletion of a subset of lipid droplets located in the anterior intestine. Given the importance of liberation of fatty acids from lipid droplets, we propose that the physiological function of SAMS-1, a highly conserved enzyme involved in one-carbon metabolism, is the limitation of fat storage to ensure proper growth and reproduction.

Electronic supplementary material

The online version of this article (doi:10.1007/s12263-014-0386-6) contains supplementary material, which is available to authorized users.  相似文献   

9.
Autophagy is an evolutionarily conserved mechanism that mediates the degradation of cytoplasmic components in eukaryotic cells. In plants, autophagy has been extensively associated with the recycling of proteins during carbon-starvation conditions. Even though lipids constitute a significant energy reserve, our understanding of the function of autophagy in the management of cell lipid reserves and components remains fragmented. To further investigate the significance of autophagy in lipid metabolism, we performed an extensive lipidomic characterization of Arabidopsis (Arabidopsis thaliana) autophagy mutants (atg) subjected to dark-induced senescence conditions. Our results revealed an altered lipid profile in atg mutants, suggesting that autophagy affects the homeostasis of multiple lipid components under dark-induced senescence. The acute degradation of chloroplast lipids coupled with the differential accumulation of triacylglycerols (TAGs) and plastoglobuli indicates an alternative metabolic reprogramming toward lipid storage in atg mutants. The imbalance of lipid metabolism compromises the production of cytosolic lipid droplets and the regulation of peroxisomal lipid oxidation pathways in atg mutants.

Autophagy is required for the mobilization of membrane lipid components and lipid droplet dynamics during extended darkness in Arabidopsis.  相似文献   

10.
The pandemic of lipid-related disease necessitates a determination of how cholesterol and other lipids are transported and stored within cells. The first step in this determination is the identification of the genes involved in these transport and storage processes. Using genome-wide screens, we identified 56 yeast (Saccharomyces cerevisiae) genes involved in sterol-lipid biosynthesis, intracellular trafficking, and/or neutral-lipid storage. Direct biochemical and cytological examination of mutant cells revealed an unanticipated link between secretory protein glycosylation and triacylglycerol (TAG)/steryl ester (SE) synthesis for the storage of lipids. Together with the analysis of other deletion mutants, these results suggested at least two distinct events for the biogenesis of lipid storage particles: a step affecting neutral-lipid synthesis, generating the lipid core of storage particles, and another step for particle assembly. In addition to the lipid storage mutants, we identified mutations that affect the localization of unesterified sterols, which are normally concentrated in the plasma membrane. These findings implicated phospholipase C and the protein phosphatase Ptc1p in the regulation of sterol distribution within cells. This study identified novel sterol-related genes that define several distinct processes maintaining sterol homeostasis.  相似文献   

11.
Partitioning of lipid precursors between membranes and storage is crucial for cell growth, and its disruption underlies pathologies such as cancer, obesity, and type 2 diabetes. However, the mechanisms and signals that regulate this process are largely unknown. In yeast, lipid precursors are mainly used for phospholipid synthesis in nutrient-rich conditions in order to sustain rapid proliferation but are redirected to triacylglycerol (TAG) stored in lipid droplets during starvation. Here we investigate how cells reprogram lipid metabolism in the endoplasmic reticulum. We show that the conserved phosphatidate (PA) phosphatase Pah1, which generates diacylglycerol from PA, targets a nuclear membrane subdomain that is in contact with growing lipid droplets and mediates TAG synthesis. We find that cytosol acidification activates the master regulator of Pah1, the Nem1-Spo7 complex, thus linking Pah1 activity to cellular metabolic status. In the absence of TAG storage capacity, Pah1 still binds the nuclear membrane, but lipid precursors are redirected toward phospholipids, resulting in nuclear deformation and a proliferation of endoplasmic reticulum membrane. We propose that, in response to growth signals, activation of Pah1 at the nuclear envelope acts as a switch to control the balance between membrane biogenesis and lipid storage.  相似文献   

12.
13.
Nuclei occupy characteristic positions in most cells. In Caenorhabditis elegans, nuclei can be observed in living animals. Ordinary movements can distort the cells and displace their nuclei, but the extent of displacement is limited and nuclei return to their resting positions when the muscles relax. We have isolated five mutants in which the nuclei of certain epithelial cells are not elastically anchored but float freely within the cytoplasm. These mutations define a single gene, anc1, on linkage group I. Mitochondrial positioning, observed by staining live animals with rhodamine 6G, is also disturbed in these cells. Additional defects, including abnormal tonofilaments and inappropriately positioned desmosomes, have been found by electron microscopy. The anc1 product may be a cytoskeletal component of nematode epithelial cells. Although the Anc1 phenotype is fully expressed in the newly hatched larvae, mutants develop and reproduce normally. Despite mispositioning of organelles, cuticle deposition and moulting are essentially normal. These mutations represent the null phenotype of the gene. At least three independent isolates revert spontaneously at high frequency (10?5 to 10?4). We suggest that anc1 is a member of a family of cytoskeletal genes.  相似文献   

14.
Nuclear migration is a critical component of many cellular and developmental processes. The nuclear envelope forms a barrier between the cytoplasm, where mechanical forces are generated, and the nucleoskeleton. The LINC complex consists of KASH proteins in the outer nuclear membrane and SUN proteins in the inner nuclear membrane that bridge the nuclear envelope. How forces are transferred from the LINC complex to the nucleoskeleton is poorly understood. The Caenorhabditis elegans lamin, LMN-1, is required for nuclear migration and interacts with the nucleoplasmic domain of the SUN protein UNC-84. This interaction is weakened by the unc-84(P91S) missense mutation. These mutant nuclei have an intermediate nuclear migration defect—live imaging of nuclei or LMN-1::GFP shows that many nuclei migrate normally, others initiate migration before subsequently failing, and others fail to begin migration. At least one other component of the nucleoskeleton, the NET5/Samp1/Ima1 homologue SAMP-1, plays a role in nuclear migration. We propose a nut-and-bolt model to explain how forces are dissipated across the nuclear envelope during nuclear migration. In this model, SUN/KASH bridges serve as bolts through the nuclear envelope, and nucleoskeleton components LMN-1 and SAMP-1 act as both nuts and washers on the inside of the nucleus.  相似文献   

15.
The nematode Caenorhabditis elegans has been employed as a model organism to study human obesity due to the conservation of the pathways that regulate energy metabolism. To assay for fat storage in C. elegans, a number of fat-soluble dyes have been employed including BODIPY, Nile Red, Oil Red O, and Sudan Black. However, dye-labeled assays produce results that often do not correlate with fat stores in C. elegans. An alternative label-free approach to analyze fat storage in C. elegans has recently been described with coherent anti-Stokes Raman scattering (CARS) microscopy. Here, we compare the performance of CARS microscopy with standard dye-labeled techniques and biochemical quantification to analyze fat storage in wild type C. elegans and with genetic mutations in the insulin/IGF-1 signaling pathway including the genes daf-2 (insulin/IGF-1 receptor), rict-1 (rictor) and sgk-1 (serum glucocorticoid kinase). CARS imaging provides a direct measure of fat storage with unprecedented details including total fat stores as well as the size, number, and lipid-chain unsaturation of individual lipid droplets. In addition, CARS/TPEF imaging reveals a neutral lipid species that resides in both the hypodermis and the intestinal cells and an autofluorescent organelle that resides exclusively in the intestinal cells. Importantly, coherent addition of the CARS fields from the C-H abundant neutral lipid permits selective CARS imaging of the fat store, and further coupling of spontaneous Raman analysis provides unprecedented details including lipid-chain unsaturation of individual lipid droplets. We observe that although daf-2, rict-1, and sgk-1 mutants affect insulin/IGF-1 signaling, they exhibit vastly different phenotypes in terms of neutral lipid and autofluorescent species. We find that CARS imaging gives quantification similar to standard biochemical triglyceride quantification. Further, we independently confirm that feeding worms with vital dyes does not lead to the staining of fat stores, but rather the sequestration of dyes in lysosome-related organelles. In contrast, fixative staining methods provide reproducible data but are prone to errors due to the interference of autofluorescent species and the non-specific staining of cellular structures other than fat stores. Importantly, both growth conditions and developmental stage should be considered when comparing methods of C. elegans lipid storage. Taken together, we confirm that CARS microscopy provides a direct, non-invasive, and label-free means to quantitatively analyze fat storage in living C. elegans.  相似文献   

16.
The band-legged ground cricket Dianemobius nigrofasciatus enters diapause at an early embryonic stage when adults are reared under short-day conditions or the eggs are exposed to a low temperature. We examined the morphological features of the embryo during early development and determined the exact stage of entry into diapause. In non-diapause eggs, no periplasmic space was observed in the surface region and a small number of nuclei surrounded by cytoplasm (energids) were found among the yolk granules and lipid droplets 12 h after egg laying (AEL) at 25°C. The energids sparsely but evenly populated the surface region at 40 h AEL, but there were some gaps between these energids. A continuous thin layer of nuclei with cytoplasm had completely covered the egg surface at 56 h AEL, suggesting that the blastoderm is formed between 40 and 56 h AEL. At 72 h AEL, we found a germ band at the posterior pole. Electron microscopy revealed clear cell membranes at 40 h AEL. Staining with rhodamine-dextran dye demonstrated that the cell membrane is formed when the nuclei appear on the egg surface at 12–24 h AEL. These results indicate that cellularization occurs before blastoderm formation. In diapause eggs, neither the embryonic rudiment nor germ band was formed, but a continuous layer of cells covered the egg surface. It is concluded that D. nigrofasciatus enters diapause at the cellular blastoderm.  相似文献   

17.
The lactating mammary gland of the African elephant (Loxodonta africana) has been studied with a panel of morphological techniques focusing on (1) the functional changes during the secretory process, (2) proliferative process [by application of proliferating cell nuclear antigen (PCNA) immunohistochemistry] and apoptotic phenomena [by use of the TUNEL technique] in the individual lobules, and (3) components of milk and milk-fat-globule membrane. In the lactating gland, the lobules are variably differentiated; within a lobule, however, the alveoli are usually similarly differentiated. The morphology of their alveoli suggests a classification of the lobules into types 1–3. Lobules of type 1 are composed of immature tubular alveoli with mitotic figures and numerous PCNA-positive nuclei; advanced type 1 alveoli contain abundant glycogen and specific secretory granules. Lobules of type 2 are further subdivided. In type 2a lobules, the epithelial cells of the alveoli form tall apical protrusions, which in part are occupied by small lipid droplets and which are pinched off in an apocrine fashion. The number of lysosomes varies considerably. Type 2b is the most common type, with striking basal membrane foldings, abundant rough endoplasmic reticulum cisterns, large Golgi apparatus, numerous mitochondria, lipid droplets, and protein vesicles with 30- to 90-nm-wide casein micelles. The lipid droplets are pinched off with minimal amounts of cytoplasm. Type 2c is composed of alveoli with a cuboidal epithelium and few signs of secretory activity. Increasing expression of peanut-agglutinin-binding sites parallels the maturation and differentiation of the glandular cells. Type 3 lobules are marked by numerous TUNEL-positive nuclei and large lipid droplets and are apparently degenerating structures. Cytokeratin (CK) 14 is usually present in the myoepithelial cells; CK 19 and CK 7 mark ductal and immature alveolar epithelia. Milk protein content varies between 2.6% and 6.3%, and casein micelles range from 35 to 90 nm in diameter. The diameter of intra-alveolar milk fat globules ranges from 5 to 25 µm and the membranes bear a filamentous surface coat composed of membrane-anchored mucins; gel-electrophoretic analysis of these mucins from different individuals demonstrates the presence of mucin MUC 1, which is expressed with considerable genetic heterogeneity.  相似文献   

18.
Using a yeast model of Parkinson’s disease, we found that alpha-synuclein (αS) binds to lipid droplets in lipid-loaded, wild-type yeast cells but not to lipid droplets in lipid-loaded, peroxisome-deficient cells (pex3Δ). Our analysis revealed that pex3Δ cells have both fewer lipid droplets and smaller lipid droplets than wild-type cells, and that the acyl chains of the phospholipids on the surface of the lipid droplets from pex3Δ cells are on average shorter (C16) than those (C18) on the surface of lipid droplets from wild-type cells. We propose that the shift to shorter (C18 → C16) acyl chains contributes to the reduced binding of αS to lipid droplets in pex3Δ cells.  相似文献   

19.
Oocytes (future egg cells) of various animal groups often contain complex organelle assemblages (Balbiani bodies, yolk nuclei). The molecular composition and function of Balbiani bodies, such as those found in the oocytes of Xenopus laevis, have been recently recognized. In contrast, the functional significance of more complex and highly ordered yolk nuclei has not been elucidated to date. In this report we describe the structure, cytochemical content and evolution of the yolk nucleus in the oocytes of a common spider, Clubiona sp. We show that the yolk nucleus is a spherical, rather compact and persistent cytoplasmic accumulation of several different organelles. It consists predominantly of a highly elaborate cytoskeletal scaffold of condensed filamentous actin and a dense meshwork of intermediate-sized filaments. The yolk nucleus also comprises cisterns of endoplasmic reticulum, mitochondria, lipid droplets and other organelles. Nascent lipid droplets are regularly found in the cortical regions of the yolk nucleus in association with the endoplasmic reticulum. Single lipid droplets become surrounded by filamentous cages formed by intermediate filaments. Coexistence of the forming lipid droplets with the endoplasmic reticulum in the cortical zone of the yolk nucleus and their later investment by intermediate-sized filamentous cages suggest that the yolk nucleus is the birthplace of lipid droplets.  相似文献   

20.
Fatty acid desaturation regulates membrane function and fat storage in animals. To determine the contribution of stearoyl-CoA desaturase (SCD) activity on fat storage and development in the nematode Caenorhabditis elegans, we analyzed the lipid composition and lipid droplet size in the fat-6;fat-7 desaturase mutants independently and in combination with mutants disrupted in conserved lipid metabolic pathways. C. elegans with impaired SCD activity displayed both reduced fat stores and decreased lipid droplet size. Mutants in the daf-2 (insulin-like growth factor receptor), rsks-1 (homolog of p70S6kinase, an effector of the target of rapamycin signaling pathway), and daf-7 (transforming growth factor β) displayed high fat stores, the opposite of the low fat observed in the fat-6;fat-7 desaturase mutants. The metabolic mutants in combination with fat-6;fat-7 displayed low fat stores, with the exception of the daf-2;fat-6;fat-7 triple mutants, which had increased de novo fatty acid synthesis and wild-type levels of fat stores. Notably, SCD activity is required for the formation of large-sized lipid droplets in all mutant backgrounds, as well as for normal ratios of phosphatidylcholine (PC) to phosphatidylethanolamine (PE). These studies reveal previously uncharacterized roles for SCD in the regulation of lipid droplet size and membrane phospholipid composition.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号