首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
1. We studied relationships between different forms of reproduction and local variation in the reproductive state of colonies of a common freshwater bryozoan Cristatella mucedo Cuvier (Bryozoa: Phylactolaemata). Four sampling locations in central Finland, including both lotic and lentic habitats, were sampled by scuba diving. The traits studied were occurrence of sexual larvae, colony size, number of resting stages (statoblasts) and number of zooids. 2. While 76.9% of the sampled colonies carried statoblasts at the time of sampling, only 4.5% of the colonies were brooding sexual larvae. Most of the colonies were relatively small with a mean colony size of 16.6 mm. 3. In colonies brooding larvae, the number of statoblasts was positively correlated with the number of larvae. We did not detect a colony size threshold for sexual reproduction or formation of statoblasts. Colonies carrying statoblasts had a lower number of zooids per unit dry weight. 4. We found significant variation in reproductive traits of colonies among the sampling locations, and among lotic and lentic habitats. The observed phenotypic differences may reflect broadly distributed, phenotypically plastic clones. Differences in clonal composition of local populations cannot, however, be ruled out and factors that may provide clonal diversity are discussed.  相似文献   

2.
Colony size is a fundamental attribute of insect societies that appears to play an important role in their organization of work. In the harvester ant Pogonomyrmex californicus, division of labor increases with colony size during colony ontogeny and among unmanipulated colonies of the same age. However, the mechanism(s) integrating individual task specialization and colony size is unknown. To test whether the scaling of division of labor is an emergent epiphenomenon, as predicted by self-organizational models of task performance, we manipulated colony size in P. californicus and quantified short-term behavioral responses of individuals and colonies. Variation in colony size failed to elicit a change in division of labor, suggesting that colony-size effects on task specialization are mediated by slower developmental processes and/or correlates of colony size that were missing from our experiment. In contrast, the proportional allocation of workers to tasks shifted with colony size, suggesting that task needs or priorities depend, in part, on colony size alone. Finally, although task allocation was flexible, colony members differed consistently in task performance and spatial tendency across colony size treatments. Sources of interindividual behavioral variability include worker age and genotype (matriline).  相似文献   

3.
4.
Red imported fire ant, Solenopsis invicta, colonies were successfully infected with the microsporidium Vairimorpha invictae by introducing live larvae, pupae, or dead adults from V. invictae-infected field colonies collected in Argentina. Introductions with 4th instar larvae or non-melanized pupae obtained from infected field colonies, resulted in infection of 40% of the inoculated colonies. Introductions of 4th instars or melanized pupae produced from colonies that were initially infected in the laboratory, resulted in infections of 83% of the colonies, thus perpetuating the infection in other colonies. Infection was detected in 2 of 6 colonies after introducing adult worker caste ants that had died with V. invictae. The average number of adults and the volume of immature ants per colony were significantly lower in the infected than in the control colonies. Infected colonies had 86% fewer adults per colony and 82% less immature ants than the controls. A portion of the 16S rRNA gene of the V. invictae identified from these studies was amplified, cloned, and sequenced; the 1251 nucleotide amplicon was 100% identical to the 16S rRNA gene sequence recorded previously in the GenBank database, thus verifying the species as V. invictae. This is the first report of the artificial transmission of this pathogen to uninfected ant colonies, and demonstration of its ability to hinder growth in individual colonies.  相似文献   

5.
Red imported fire ants (RIFA), Solenopsis invicta Buren, are medical, urban, and agricultural pests from South America. They are successful invaders due to their preference for disturbed habitats, high reproductive rates, and the ability to feed on a wide variety of food items (omnivorous). Fourth-instar larvae are used by the colony to digest solid food and then regurgitate it for consumption by workers and queens. Larvae are an ideal source of investigations of endosymbiotic bacteria possibly involved in nutrient distributions. Our study utilized 16S rDNA sequencing to describe the composition of the bacterial community in fourth-instar ant larvae in order to identify possible endosymbiotic bacteria present therein. The 16S rRNA gene was directly amplified from mixed-population DNA of whole fire ant larval guts and cloned into Escherichia coli. Bacterial communities from three geographically separated RIFA colonies were examined. Sequenced bacterial clones from guts were determined to be predominantly from the phylum Proteobacteria and the family Enterobacteriaceae. Our results did not detect the presence of endosymbiotic bacteria in the guts of RIFA larvae among the colonies. In addition, minimal species overlap was found when bacterial inventories were compared among colonies. Thus, bacteria coadapted with red imported fire ant larvae were not detected. Identified bacteria were not closely affiliated with endosymbiotic bacteria common in other insect species. Bacteria communities appeared to be unique to each geographical location and were determined by the foods consumed by the ants.  相似文献   

6.
Social organization enables leaf-cutting ants to keep appropriate micro-ecological nest conditions for the fungus garden (their main food), eggs, larvae and adults. To maintain stability while facing changing conditions, individual ants must perceive destabilising factors and produce a proper behavioral response. We investigated behavioral responses to experimental dehydration in leaf-cutting ants to verify if task specialization exists, and to quantify the ability of ant sub-colonies for water management. Our setup consisted of fourteen sub-colonies, ten of which were randomly assigned to different levels of experimental dehydration with silica gel, whereas the remaining four were controls. The ten experimental sub-colonies were split into two groups, so that five of them had access to water. Diverse ant morphs searched for water in dehydrated colonies, but mainly a caste of small ants collected water after sources had been discovered. Size specialization for water collection was replicable in shorter experiments with three additional colonies. Ants of dehydrated colonies accumulated leaf-fragments on the nest entrance, and covering the fungus garden. Behaviors that may enhance humidity within the nests were common to all dehydration treatments. Water availability increased the life span of dehydrated colonies.  相似文献   

7.
Summary: Genetic theory predicts that workers in monogynous ant colonies with singly-mated queens should capitalize on higher relatedness with sisters than with brothers by altering the sex investment ratio of a colony in favor of females. Sex investment ratios, however, may also be influenced by the amount of resources available to colonies, in part because more mating opportunities might be obtained by investing scarce resources in males, which are much smaller than queens. Female larvae that reach a critical size by a particular point in development become queens while underfed larvae develop into workers, so workers could potentially influence the sex investment ratio of a colony by selectively feeding female larvae. In a previous experiment on the ant, Aphaenogaster rudis, colonies increased female sex investment after their diet was supplemented with elaiosomes, a lipid-rich food gained from a seed dispersal mutualism. In order to investigate the mechanisms producing this shift, we radio-labeled Sanguinaria canadensis elaiosomes with fatty acids and compared uptake among castes within a colony. The experiment was performed in both the laboratory and field. Lab colonies produced female-biased sex investment ratios, while field colonies mainly invested in males. We hypothesize that this discrepancy is related to differing levels of background food availability in the lab and field. The results of the elaiosome distribution experiment do not support a hypothesis that elaiosomes play a qualitative role in queen determination, because all individuals in a colony receive this nutrient. There is, however, support for the hypothesis that elaiosomes have a quantitative effect on larval development because larvae that accumulated more radio-label from elaiosomes tended to develop into gynes (virgin queens), while other female larvae developed into workers.  相似文献   

8.
1. The performance of ant colonies depends on different factors such as nest site, colony structure or the presence of pathogens and social parasites. Myrmica ants host various types of social parasites, including the larvae of Maculinea butterflies and Microdonmyrmicae (Schönrogge) hoverfly. How these social parasites affect host colony performance is still unexplored. 2. It was examined how the presence of Maculinea teleius Bergsträsser, Maculinea alcon (Denis & Schiffermüller), and M. myrmicae larvae, representing different feeding and growth strategies inside host colonies, is associated with worker survival, the number of foragers, and colony productivity parameters such as growth and reproduction. 3. It was found that the presence of social parasites is negatively associated with total colony production and the production of ant larvae and gynes. Male production was lower only in nests infested by M. teleius, whereas the number of worker pupae was significantly higher in all types of infested colonies than in uninfested colonies. Laboratory observations indicated that nests infested by Maculinea larvae are characterised by a higher number of foragers compared to uninfested nests but we did not find differences in worker survival among nest types. 4. The observed pattern of social parasite influence on colony productivity can be explained by the feeding strategies of parasitic larvae. The most negative effect was found for M. teleius, which feeds on the largest host brood and eliminates a high number of sexual forms. The strong, adverse influence of all studied parasite species on gyne production may result in low queen production in Myrmica populations exposed to these social parasites.  相似文献   

9.
Summary Intraspecific interference competition in the harvester ant,Messor aciculatus, was studied. Colonies of this species were found not to have territories. Some nests were located very close to each other, and the foraging areas of the neighbors usually overlapped. Even though the frequency with which alien and resident ants met was very high in the vicinity of the nest entrances, aggressive interactions between them rarely occurred. However, when hostile workers encountered each other, they exhibited a kind of ritualized combat and the winner ejected, but did not injure the loser. If any aliens entered the nest, some of them were pulled out, mainly by the residents.Aliens roaming near a neighbor's nest entrance ferociously attacked the residents carrying seeds in their mandibles and robbed them. On other occasions, aliens entered the nest and stole the collected seed. Although seed robbing and stealing occurred among neighboring colonies, there were remarkable differences in the frequency of their occurrence. The results of field observations and experiments suggest the existence of a dominance order among the neighbors. In one instance, extermination of an inferior colony by its neighbor was observed. The raider colony transferred the stored seeds from the nest of the inferior colony to its own and deposited the larvae and workers some distance away from the nest.The influence of ritualized combat and food robbing on colony activities, and the ecological significance of this interference behavior in terms of spatial distribution and temporal persistence of the nest sites, is discussed.  相似文献   

10.
Previous work with the antCamponotus floridanus demonstrated that perception of competition can be clearly differentiated from effects of mortality and decreased resources. That is, brood biomass in ant colonies decreases as a consequence of a behavioral decision(s) rather than because of limited food availability or reduced numbers of brood tenders. The experiments presented here extend that work. Under experimental conditions, colony growth inC. floridanus is modified by distance between brood and unrelated conspecifics and by worker age distribution. When nonnestmates are encountered at the nest versus at a separate foraging site, less brood is maintained by a colony. Although colonies with older workers maintain a brood biomass similar to that of colonies with younger workers, that biomass is concentrated in fewer, larger, more rapidly maturing larvae. These effects seem to be due entirely to worker control.  相似文献   

11.
Oxytocin/vasopressin-related neuropeptides are highly conserved and play major roles in regulating social behavior across vertebrates. However, whether their insect orthologue, inotocin, regulates the behavior of social groups remains unknown. Here, we show that in the clonal raider ant Ooceraea biroi, individuals that perform tasks outside the nest have higher levels of inotocin in their brains than individuals of the same age that remain inside the nest. We also show that older ants, which spend more time outside the nest, have higher inotocin levels than younger ants. Inotocin thus correlates with the propensity to perform tasks outside the nest. Additionally, increasing inotocin pharmacologically increases the tendency of ants to leave the nest. However, this effect is contingent on age and social context. Pharmacologically treated older ants have a higher propensity to leave the nest only in the presence of larvae, whereas younger ants seem to do so only in the presence of pupae. Our results suggest that inotocin signaling plays an important role in modulating behaviors that correlate with age, such as social foraging, possibly by modulating behavioral response thresholds to specific social cues. Inotocin signaling thereby likely contributes to behavioral individuality and division of labor in ant societies.

The neuropeptides oxytocin and vasopressin modulate social behavior in vertebrates, but their function in invertebrates is not well understood. Using brain staining and pharmacological manipulations, this study shows that a related neuropeptide, inotocin, affects how ants respond to larvae.  相似文献   

12.
The queenless ant, Pristomyrmex punctatus (F. Smith) reproduces parthenogenetically. Workers lay unfertilized eggs, which develop into female workers. This mode of reproduction generates hereditary clones, though a colony is not necessarily constructed from single clonal line. In a previous study, where a colony was separated into two subcolonies, it was found that genetically monomorphic colonies tended to reassemble but genetically polymorphic colonies did not. Here, we used multiple clonal colonies to investigate whether P. punctatus could recognize “individual” relatedness and assemble with subcolony members of the same clonal type. Results show individuals did not assemble with individuals of the same clonal type in each subcolony. This suggests they cannot recognize individual relatedness.  相似文献   

13.
Summary: Do colony attributes modulate individual behavior? The effects of colony size and worker:brood ratio on the rate of worker-to-larva trophallaxis in the fire ant, Solenopsis invicta, were investigated. Neither colony size ranging from 100 to 10,000 nor worker:brood ratio ranging from 1:1 to 16:1 affected the density of workers on the brood pile, nor the rate or duration of worker-to-larva trophallaxis. The demands of hungry larvae were met even in groups as small as 100 workers in worker:brood ratios as small as 1. Only when the worker:brood ratio was less than 1, were larvae tended or fed at reduced rates. Under natural conditions, this occurs only in incipient colonies. Otherwise, in post-incipient colonies, the flow of food to larvae was unmodified by colony attributes. The implications of this finding are two-fold: First, it reinforces previous research demonstrating that social feeding in the fire ant emerges from localized interactions rather than mass communication. Second, it highlights the resiliency of this weedy species. Hypothetically, colonies drastically reduced by catastrophic events such as flooding should still be able to produce sexuals.  相似文献   

14.
Summary The reproductive partitioning generates a persistent conflict within insects societies and a sustained theoretical and empirical attention is devoted to understand its resolution. In that context, thelytokous parthenogenesis by workers is an intriguing phenomenon where each individual is virtually reproducing. This reproductive strategy, scarce among Formicidae, was studied in C. biroi, an obligatory thelytokous cerapachyine ant. Particularly, we searched for a reproductive division of labour in colonies assumed to be clonal. The results revealed that no sterile caste was present in the colonies. However, reproduction was linked both to a temporal polyethism, in which older workers ceased to lay as they became foragers, and to a morphological polyethism, illustrated by two morphological types of individuals displaying different task allocations and ovary capacities. Evolutionary implication of this uncommon social structure, seemingly free of traditional conflict and characterised by a reproduction evenly distributed among nestmates, is discussed from comparisons to other ant species with extreme kin structure.Received 18 June 2003; revised 6 August 2003; accepted 7 August 2003.  相似文献   

15.
The army ant Eciton burchellii is one of the most conspicuous ant species in New World tropical forests, but studies of colony life histories have been hampered by the nomadic lifestyle of these ants, which alternate between a nomadic phase when the colony relocates frequently, and a statary phase when the colony remains at a fixed site. Here we report on a colony from Venezuela that we studied continuously for six weeks, from the time that the queen produced a reproductive brood until the adult reproductives emerged and the colony entered the next cycle. Our findings support the contention that reproductive larvae develop faster than worker larvae, and that the nomadic phases of colonies with reproductive broods are significantly shorter than those of colonies with worker broods. This strongly suggests that the onset of pupation is linked to the onset of the statary phase. We used microsatellite genotyping to accurately identify male and queen larvae and we describe how they can be distinguished morphologically. Using the same genetic markers, we determined the parentage of 81 males produced by this colony. Only one of the males had a genotype that could not be directly derived from the observed queen genotype, but this mismatch is most probably due to a single mutation at one of the microsatellite loci, rather than this male being a worker son. We therefore conclude that this colony provides no evidence that workers lay eggs that develop into adult males in the presence of the queen, confirming the results of an earlier study on male parentage in an Old World army ant. Received 16 November 2006; revised 15 January 2007; accepted 16 January 2007.  相似文献   

16.
Colony size can affect individual- and colony-level behavioral and physiological traits in social insects. Changes in behavior and physiology in response to colony growth and development can affect productivity and fitness. Here, we used respirometry to study the relationship between colony size and colony energy consumption in Temnothorax rugatulus ants. In addition, we examined the relationship between colony size and worker productivity measured as per capita brood production. We found that colony metabolic rate scales with colony size to the 0.78 power and the number of brood scales with the number of workers to the 0.49 power. These regression analyses reveal that larger ant colonies use proportionally less energy and produce fewer brood per worker. Our findings provide new information on the relationships between colony size and energetic efficiency and productivity in a model ant genus. We discuss the potential mechanisms giving rise to allometric scaling of metabolic rate in ant colonies and the influence of colony size on energy consumption and productivity in general.  相似文献   

17.
18.
Environmental conditions and physical constraints both influence an animal's behavior. We investigate whether behavioral variation among colonies of the black harvester ant, Messor andrei, remains consistent across foraging and disturbance situations and ask whether consistent colony behavior is affected by nest site and weather. We examined variation among colonies in responsiveness to food baits and to disturbance, measured as a change in numbers of active ants, and in the speed with which colonies retrieved food and removed debris. Colonies differed consistently, across foraging and disturbance situations, in both responsiveness and speed. Increased activity in response to food was associated with a smaller decrease in response to alarm. Speed of retrieving food was correlated with speed of removing debris. In all colonies, speed was greater in dry conditions, reducing the amount of time ants spent outside the nest. While a colony occupied a certain nest site, its responsiveness was consistent in both foraging and disturbance situations, suggesting that nest structure influences colony personality.  相似文献   

19.
The distribution of resources within habitats affects species abundance, richness and composition, but the role of resource distribution in species interactions is rarely studied. In ant communities, changes in resource distribution within habitats may influence behavioral interactions because many ant species are specialized to efficiently harvest a subset of available resources. This study investigates whether interactions between the behaviorally dominant host ant Pheidole diversipilosa and its specialist parasitoid (Phoridae: Apocephalus orthocladus) depend on resource size distribution around the colony. Using in situ foraging arenas to manipulate parasitoid abundance and resource size distribution around colonies, we tested whether variation in resource size distribution allows P. diversipilosa to alter its foraging behavior in ways that lessen the impact of parasitoid attack. P. diversipilosa colonies do not lower the impact of parasitoid attack by increasing the number of workers foraging individually on small and widely dispersed resources. However, the presence of multiple large resources allows colonies to temporarily redistribute soldier ants from resources patrolled by parasitoids to other resources not patrolled by parasitoids, and to maintain soldier abundance at levels found in the absence of parasitoids. These results highlight the importance of placing behavioral interactions within the context of variation in resource distribution.  相似文献   

20.
Despite the recent interest in animal personality and behavioral syndromes, there is a paucity of explanations for why distinct behavioral traits should evolve to correlate. We investigate whether such correlations across apparently distinct behavioral traits may be explained by variation in life history strategy among individual ant colonies. Life history theory predicts that the way in which individuals allocate energy towards somatic maintenance or reproduction drives several distinct traits in physiology, morphology, and energy use; it also predicts that an individual's willingness to engage in risky behaviors should depend on reproductive strategy. We use Temnothorax ants, which have been shown to exhibit ‘personalities’ and a syndrome that may reflect risk tolerance at the colony level. We measure colonies' relative investment in growth rate (new workers produced) compared to reproductive effort (males and queens produced). Comparing sterile worker production to reproductive alate production provides a direct measure of how colonies are investing their energy, analogous to investment in growth versus reproduction in a unitary organism. Consistently with this idea, we found that behavioral type of ant colonies was associated with their life history strategy: risk‐tolerant colonies grew faster and invested more in reproduction, whereas risk‐averse colonies had lower growth rate but invested relatively more in workers. This provides evidence that behavioral syndromes can be a consequence of life‐history strategy variation, linking the two fields and supporting the use of an integrative approach.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号