首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Most yeast species can ferment sugars to ethanol, but only a few can grow in the complete absence of oxygen. Oxygen availability might, therefore, be a key parameter in spoilage of food caused by fermentative yeasts. In this study, the oxygen requirement and regulation of alcoholic fermentation were studied in batch cultures of the spoilage yeast Zygosaccharomyces bailii at a constant pH, pH 3.0. In aerobic, glucose-grown cultures, Z. bailii exhibited aerobic alcoholic fermentation similar to that of Saccharomyces cerevisiae and other Crabtree-positive yeasts. In anaerobic fermentor cultures grown on a synthetic medium supplemented with glucose, Tween 80, and ergosterol, S. cerevisiae exhibited rapid exponential growth. Growth of Z. bailii under these conditions was extremely slow and linear. These linear growth kinetics indicate that cell proliferation of Z. bailii in the anaerobic fermentors was limited by a constant, low rate of oxygen leakage into the system. Similar results were obtained with the facultatively fermentative yeast Candida utilis. When the same experimental setup was used for anaerobic cultivation, in complex YPD medium, Z. bailii exhibited exponential growth and vigorous fermentation, indicating that a nutritional requirement for anaerobic growth was met by complex-medium components. Our results demonstrate that restriction of oxygen entry into foods and beverages, which are rich in nutrients, is not a promising strategy for preventing growth and gas formation by Z. bailii. In contrast to the growth of Z. bailii, anaerobic growth of S. cerevisiae on complex YPD medium was much slower than growth in synthetic medium, which probably reflected the superior tolerance of the former yeast to organic acids at low pH.  相似文献   

2.
Survival of Neisseria gonorrhoeae in the Mail   总被引:3,自引:0,他引:3       下载免费PDF全文
Cultures of Neisseria gonorrhoeae, which used Thayer-Martin slants as transport medium, survived at least 1 day in the mail.  相似文献   

3.
Anaerobic Spirochete from a Deep-Sea Hydrothermal Vent   总被引:2,自引:2,他引:0       下载免费PDF全文
An obligately anaerobic spirochete, designated strain GS-2, was selectively isolated from samples collected at a deep-sea (2,550 m) hydrothermal vent of the Galapagos Rift ocean floor spreading center. The morphological and physiological characteristics of strain GS-2 resembled those of Spirochaeta strains. However, strain GS-2 failed to grow consistently in any liquid medium tested. In addition, strain GS-2 grew more slowly and to lower yields than other Spirochaeta species. The occurrence of obligately anaerobic bacteria in hydrothermal vents indicates that the water in at least some of the vent areas is anoxic. The presence of strain GS-2 shows that these areas are favorable for anaerobic marine spirochetes.  相似文献   

4.
It was found that the de novo synthesis of not only sulfur:ferric ion oxidoreductase (ferric ion-reducing system) but also iron oxidase was absolutely required when Thiobacillus ferrooxidans AP19-3 was grown on sulfur-salts medium. The results strongly suggest that iron oxidase is involved in sulfur oxidation. This bacterium could not grow on sulfur-salts medium under anaerobic conditions with Fe3+ as a terminal electron acceptor, suggesting that energy conservation by electron transfer between elemental sulfur and Fe3+ is not available for this bacterium.  相似文献   

5.
In Saccharomyces cerevisiae, the cytosolic and promitochondrial isoenzymes of fumarate reductase are encoded by the FRDS and OSM1 genes, respectively. The product of the OSM1 gene is reported to be required for growth in hypertonic medium. Simultaneous disruption of the FRDS and OSM1 genes resulted in the inability of the yeasts to grow anaerobically on glucose as a carbon source, and disruption of the OSM1 gene caused poor growth under anaerobic conditions. However, the disruption of both the FRDS and/or OSM1 genes had no effect on aerobic growth or growth under hypertonic conditions. These results suggest that the fumarate reductase isoenzymes in Saccharomyces cerevisiae are essential for anaerobic growth but not for growth under hypertonic conditions.  相似文献   

6.
Little is known about the ability of methanogens to grow and produce methane in estuarine environments. In this study, traditional methods for cultivating strictly anaerobic microorganisms were combined with Fluorescence in situ hybridization (FISH) technique to enrich and identify methanogenic Archaea cultures occurring in highly polluted sediments of tropical Santos–São Vicente Estuary (São Paulo, Brazil). Sediment samples were enriched at 30°C under strict anaerobic and halophilic conditions, using a basal medium containing 2% of sodium chloride and amended with glucose, methanol, and sodium salts of acetate, formate and lactate. High methanogenic activity was detected, as evidenced by the biogas containing 11.5 mmol of methane at 20 days of incubation time and methane yield of 0.138-mmol CH4/g organic matter/g volatile suspense solids. Cells of methanogenic Archaea were selected by serial dilution in medium amended separately with sodium acetate, sodium formate, or methanol. FISH analysis revealed the presence of Methanobacteriaceae and Methanosarcina sp. cells.  相似文献   

7.
We characterized the inhibition of Neisseria gonorrhoeae type II topoisomerases gyrase and topoisomerase IV by AZD0914 (AZD0914 will be henceforth known as ETX0914 (Entasis Therapeutics)), a novel spiropyrimidinetrione antibacterial compound that is currently in clinical trials for treatment of drug-resistant gonorrhea. AZD0914 has potent bactericidal activity against N. gonorrhoeae, including multidrug-resistant strains and key Gram-positive, fastidious Gram-negative, atypical, and anaerobic bacterial species (Huband, M. D., Bradford, P. A., Otterson, L. G., Basrab, G. S., Giacobe, R. A., Patey, S. A., Kutschke, A. C., Johnstone, M. R., Potter, M. E., Miller, P. F., and Mueller, J. P. (2014) In Vitro Antibacterial Activity of AZD0914: A New Spiropyrimidinetrione DNA Gyrase/Topoisomerase Inhibitor with Potent Activity against Gram-positive, Fastidious Gram-negative, and Atypical Bacteria. Antimicrob. Agents Chemother. 59, 467–474). AZD0914 inhibited DNA biosynthesis preferentially to other macromolecules in Escherichia coli and induced the SOS response to DNA damage in E. coli. AZD0914 stabilized the enzyme-DNA cleaved complex for N. gonorrhoeae gyrase and topoisomerase IV. The potency of AZD0914 for inhibition of supercoiling and the stabilization of cleaved complex by N. gonorrhoeae gyrase increased in a fluoroquinolone-resistant mutant enzyme. When a mutation, conferring mild resistance to AZD0914, was present in the fluoroquinolone-resistant mutant, the potency of ciprofloxacin for inhibition of supercoiling and stabilization of cleaved complex was increased greater than 20-fold. In contrast to ciprofloxacin, religation of the cleaved DNA did not occur in the presence of AZD0914 upon removal of magnesium from the DNA-gyrase-inhibitor complex. AZD0914 had relatively low potency for inhibition of human type II topoisomerases α and β.  相似文献   

8.
A device is presented for the laboratory monitoring of spore outgrowth under controlled temperature and anaerobic conditions. Alterations in pH, redox potential, headspace composition, and optical density are followed as the activated spores grow out into vegetative cells. An interlock system allows the addition of test solutions or the removal of medium under anaerobic conditions. The device may also be used for rapid (<4 h) chemical inhibition studies or adapted for temperature injury studies of aerobic or anaerobic cells. Data on outgrowth of Clostridium sporogenes and inhibition by nitrite solutions are presented.  相似文献   

9.
Neisseria gonorrhoeae is one of the most prevalent sexually transmitted diseases worldwide with more than 100 million new infections per year. A lack of intense research over the last decades and increasing resistances to the recommended antibiotics call for a better understanding of gonococcal infection, fast diagnostics and therapeutic measures against N. gonorrhoeae. Therefore, the aim of this work was to identify novel immunogenic proteins as a first step to advance those unresolved problems. For the identification of immunogenic proteins, pHORF oligopeptide phage display libraries of the entire N. gonorrhoeae genome were constructed. Several immunogenic oligopeptides were identified using polyclonal rabbit antibodies against N. gonorrhoeae. Corresponding full-length proteins of the identified oligopeptides were expressed and their immunogenic character was verified by ELISA. The immunogenic character of six proteins was identified for the first time. Additional 13 proteins were verified as immunogenic proteins in N. gonorrhoeae.  相似文献   

10.
The photosynthetic bacterium, Rhodopseudomonas capsulata, could be cultured anaerobically in the absence of light on a synthetic medium with glucose as the carbon source only when dimethyl sulfoxide (DMSO) was added. The extent of growth was proportional to both DMSO and glucose concentrations. Optimal growth was achieved with 20 mm DMSO and 0.25% glucose. Under the best conditions, cells divided with a doubling time of 12 h. Pyruvate also supported the anaerobic dark growth of R. capsulata when DMSO was present. R. capsulata, R. sphaeroides, and R. palustris strains were all able to grow under anaerobic dark conditions with DMSO. Experiments using [14C]DMSO showed that more than 95% of the 14C was converted by cultures of R. capsulata to a volatile compound, identified as dimethyl sulfide (DMS) by gas chromatography, thus demonstrating that DMSO was being reduced to DMS during growth. These results indicate that R. capsulata requires a terminal electron acceptor for anaerobic dark growth and that DMSO can serve that function.  相似文献   

11.
Complete genome sequence of Neisseria gonorrhoeae NCCP11945   总被引:1,自引:0,他引:1  
Chung GT  Yoo JS  Oh HB  Lee YS  Cha SH  Kim SJ  Yoo CK 《Journal of bacteriology》2008,190(17):6035-6036
Neisseria gonorrhoeae is an obligate human pathogen that is the etiological agent of gonorrhea. We explored variations in the genes of a multidrug-resistant N. gonorrhoeae isolate from a Korean patient in an effort to understand the prevalence, antibiotic resistance, and importance of horizontal gene transfer within this important, naturally competent organism. Here, we report the complete annotated genome sequence of N. gonorrhoeae strain NCCP11945.  相似文献   

12.
The Neisseria gonorrhoeae Type IV pilus is a multifunctional, dynamic fiber involved in host cell attachment, DNA transformation, and twitching motility. We previously reported that the N. gonorrhoeae pilus is also required for resistance against hydrogen peroxide-, antimicrobial peptide LL-37-, and non-oxidative, neutrophil-mediated killing. We tested whether the hydrogen peroxide, LL-37, and neutrophil hypersensitivity phenotypes in non-piliated N. gonorrhoeae could be due to elevated iron levels. Iron chelation in the growth medium rescued a nonpiliated pilE mutant from both hydrogen peroxide- and antimicrobial peptide LL-37-mediated killing, suggesting these phenotypes are related to iron availability. We used the antibiotic streptonigrin, which depends on free cytoplasmic iron and oxidation to kill bacteria, to determine whether piliation affected intracellular iron levels. Several non-piliated, loss-of-function mutants were more sensitive to streptonigrin killing than the piliated parental strain. Consistent with the idea that higher available iron levels in the under- and non-piliated strains were responsible for the higher streptonigrin sensitivity, iron limitation by desferal chelation restored resistance to streptonigrin in these strains and the addition of iron restored the sensitivity to streptonigrin killing. The antioxidants tiron and dimethylthiourea rescued the pilE mutant from streptonigrin-mediated killing, suggesting that the elevated labile iron pool in non-piliated bacteria leads to streptonigrin-dependent reactive oxygen species production. These antioxidants did not affect LL-37-mediated killing. We confirmed that the pilE mutant is not more sensitive to other antibiotics showing that the streptonigrin phenotypes are not due to general bacterial envelope disruption. The total iron content of the cell was unaltered by piliation when measured using ICP-MS suggesting that only the labile iron pool is affected by piliation. These results support the hypothesis that piliation state affects N. gonorrhoeae iron homeostasis and influences sensitivity to various host-derived antimicrobial agents.  相似文献   

13.
Some properties of the inducible α-glucosidase system of Mucor rouxii were investigated. This enzymatic activity was induced after resuspending glucose-grown cells in a maltose-supplemented medium. The wall-bound activity of α-glucosidase was determined by using intact cells in the enzymatic assay; this activity represented from 80 to 90% of the total activity present in the induced cells. The addition of glucose before, or during, the induction period repressed α-glucosidase synthesis. α-Glucosidase induction was tested under aerobic and anaerobic conditions. It was found that the enzyme synthesis and the appearance of wall-bound activity were not affected by changing the gaseous environment. On the other hand, it was observed that anaerobically grown yeast-like cells were much less efficient than aerobic mycelia to develop wall-bound α-glucosidase activity. This could explain earlier observations about the incapacity of M. rouxii to utilize maltose as a substrate for anaerobic growth. This idea was strengthened by the fact that, if an anaerobic culture was induced to develop under a mycelial morphology by adding to the medium the chemical agent EDTA, these cells also acquired the capacity to grow on maltose and concomitantly possessed wall-bound α-glucosidase activity. The relevance of the structure of the cell wall on the capacity of M. rouxii to metabolize maltose is discussed.  相似文献   

14.
Glycerol has become an attractive substrate for bio-based production processes. However, Escherichia coli, an established production organism in the biotech industry, is not able to grow on glycerol under strictly anaerobic conditions in defined minimal medium due to redox imbalance. Despite extensive research efforts aiming to overcome these limitations, anaerobic growth of wild-type E. coli on glycerol always required either the addition of electron acceptors for anaerobic respiration (e.g. fumarate) or the supplementation with complex and relatively expensive additives (tryptone or yeast extract). In the present work, driven by model-based calculations, we propose and validate a novel and simple strategy to enable fermentative growth of E. coli on glycerol in defined minimal medium. We show that redox balance could be achieved by uptake of small amounts of acetate with subsequent reduction to ethanol via acetyl-CoA. Using a directed laboratory evolution approach, we were able to confirm this hypothesis and to generate an E. coli strain that shows, under anaerobic conditions with glycerol as the main substrate and acetate as co-substrate, robust growth (μ = 0.06 h−1), a high specific glycerol uptake rate (10.2 mmol/gDW/h) and an ethanol yield close to the theoretical maximum (0.92 mol per mol glycerol). Using further stoichiometric calculations, we also clarify why complex additives such as tryptone used in previous studies enable E. coli to achieve redox balance. Our results provide new biological insights regarding the fermentative metabolism of E. coli and offer new perspectives for sustainable production processes based on glycerol.  相似文献   

15.
The abundance of Geobacter species in contaminated aquifers in which benzene is anaerobically degraded has led to the suggestion that some Geobacter species might be capable of anaerobic benzene degradation, but this has never been documented. A strain of Geobacter, designated strain Ben, was isolated from sediments from the Fe(III)-reducing zone of a petroleum-contaminated aquifer in which there was significant capacity for anaerobic benzene oxidation. Strain Ben grew in a medium with benzene as the sole electron donor and Fe(III) oxide as the sole electron acceptor. Furthermore, additional evaluation of Geobacter metallireducens demonstrated that it could also grow in benzene-Fe(III) medium. In both strain Ben and G. metallireducens the stoichiometry of benzene metabolism and Fe(III) reduction was consistent with the oxidation of benzene to carbon dioxide with Fe(III) serving as the sole electron acceptor. With benzene as the electron donor, and Fe(III) oxide (strain Ben) or Fe(III) citrate (G. metallireducens) as the electron acceptor, the cell yields of strain Ben and G. metallireducens were 3.2 × 109 and 8.4 × 109 cells/mmol of Fe(III) reduced, respectively. Strain Ben also oxidized benzene with anthraquinone-2,6-disulfonate (AQDS) as the sole electron acceptor with cell yields of 5.9 × 109 cells/mmol of AQDS reduced. Strain Ben serves as model organism for the study of anaerobic benzene metabolism in petroleum-contaminated aquifers, and G. metallireducens is the first anaerobic benzene-degrading organism that can be genetically manipulated.  相似文献   

16.

Objectives

The long-term use of intrauterine devices (IUDs) may lead to biofilm formation on the surface. The aim of this study was to perform the culture- and PCR-based detection of bacteria/fungi from the biofilm of the removed IUDs with different time periods in place.

Methods

For a 2-year period, 100 IUD users were involved in the study. In the majority of the cases, IUDs were removed because of the patients’ complaints. Beside the aerobic and anaerobic culture, species-specific PCR was carried out to detect Chlamydia trachomatis Neisseria gonorrhoeae and the “signalling” bacteria of bacterial vaginosis (BV) in the biofilm removed by vortexing.

Results

Sixty-eight percent of IUDs were used for more than 5 years, 32% were removed after 10 years in place. In 28% of the IUDs?≥?3 different anaerobic species typically found in BV with or without other aerobic bacteria were found by culture method. Streptococcus agalactiae (14%) and Actinomyces spp. (18%) were also isolated frequently. The PCR detection of Gardnerella vaginalis, Atopobium vaginae, Mobiluncus spp. and Ureaplasma urealyticum were 62%, 32%, 23% and 16%, respectively. Seventy-six percent of the IUDs were PCR positive at least for one “signalling” bacterium of BV. C. trachomatis was detected by PCR only in one IUD together with other aerobic and anaerobic bacteria, while the presence of N. gonorrhoeae could not be confirmed from the biofilm of these removed devices.

Conclusion

Sexually transmitted infections (STI)-related bacteria—except for one patient—were not detected on the IUDs removed due to different reasons including clinical symptoms of infection. Presence of any BV “signaling” anaerobic bacteria were detected in a much higher number in the biofilm of the removed IUDs by PCR-based method compared to use culture method (76 versus 28 samples). Different aerobic and anaerobic bacteria colonized an equal number of IUDs, independent of the time-period in place, which may be relevant, if the IUD is removed due to planned pregnancy or due to a fear from upper genital tract infection caused by anaerobic bacteria including Actinomyces spp.
  相似文献   

17.

Background

Quinolone-resistant Neisseria gonorrhoeae has swiftly emerged in Canada. We sought to determine its prevalence in the province of Ontario and to investigate risk factors for quinolone-resistant N. gonorrhoeae infection in a Canadian setting.

Methods

We used records from the Public Health Laboratory of the Ontario Agency for Health Protection and Promotion in Toronto, Ontario, and the National Microbiology Laboratory in Winnipeg, Manitoba, to generate epidemic curves for N. gonorrhoeae infection. We extracted limited demographic data from 2006 quinolone-resistant N. gonorrhoeae isolates and from a random sample of quinolone-susceptible isolates. We also extracted minimum inhibitory concentrations for commonly tested antibiotics.

Results

Between 2002 and 2006, the number of N. gonorrhoeae infections detected by culture decreased by 26% and the number of cases detected by nucleic acid amplification testing increased 6-fold. The proportion of N. gonorrhoeae isolates with resistance to quinolones increased from 4% to 28% over the same period. Analysis of 695 quinolone-resistant N. gonorrhoeae isolates and 688 quinolone-susceptible control isolates from 2006 showed a higher proportion of men (odds ratio [OR] 3.1, 95% confidence interval [CI] 2.3–4.1) and patients over 30 years of age (OR 3.1, 95% CI 2.4–3.8) in the quinolone-resistant group. The proportion of men who have sex with men appeared to be relatively similar in both groups (OR 1.4, 95% CI 1.1–1.8). Quinolone-resistant strains were more resistant to penicillin (p < 0.001), tetracycline (p < 0.001) and erythromycin (p < 0.001). All isolates were susceptible to cefixime, ceftriaxone, azithromycin and spectinomycin.

Interpretation

During 2006 in Ontario, 28% of N. gonorrhoeae isolates were resistant to quinolones. Infections in heterosexual men appear to have contributed significantly to the quinolone resistance rate. Medical practitioners should be aware of the widespread prevalence of quinolone-resistant N. gonorrhoeae and avoid quinolone use for empiric therapy.After declining for a number of years, Neisseria gonorrhoeae infections are once more on the rise in Canada. Between 1997 and 2007, reported incidence of the disease more than doubled, from 15 to 35 cases per 100 000.1 To address the emergence of quinolone-resistant N. gonorrhoeae strains, the empiric treatment regimens for N. gonorrhoeae infection were recently revised in the 2006 Canadian Guidelines on Sexually Transmitted Infections.2,3 Quinolones are no longer recommended for empiric therapy for N. gonorrhoeae infection.3In Canada, quinolone resistance in N. gonorrhoeae isolates increased from an estimated 2% in 2001 to 16% in 2005.4 Demographic risk factors for quinolone-resistant N. gonorrhoeae infection have not been studied. American studies have associated quinolone-resistant N. gonorrhoeae infection with men who have sex with men,5,6 antibiotic use,5,7 age above 35 years,5 HIV infection5 and travel to Asia.6 Public health data from the provinces of Quebec8 and Alberta2 have also suggested an association between quinolone-resistant infection and men who have sex with men. In this study we generated epidemic curves for N. gonorrhoeae and quinolone-resistant N. gonorrhoeae infection in the province of Ontario. We also investigated demographic risk factors for quinolone-resistant N. gonorrhoeae infection.  相似文献   

18.
Gonorrhea is one of the most prevalent sexually transmitted diseases in the world. A naturally occurring variation of the terminal carbohydrates on the lipooligosaccharide (LOS) molecule correlates with altered disease states. Here, we investigated the interaction of different stable gonoccocal LOS phenotypes with human dendritic cells and demonstrate that each variant targets a different set of receptors on the dendritic cell, including the C-type lectins MGL and DC-SIGN. Neisseria gonorrhoeae LOS phenotype C constitutes the first bacterial ligand to be described for the human C-type lectin receptor MGL. Both MGL and DC-SIGN are locally expressed at the male and female genital area, the primary site of N. gonorrhoeae infection. We show that targeting of different C-type lectins with the N. gonorrhoeae LOS variants results in alterations in dendritic cell cytokine secretion profiles and the induction of distinct adaptive CD4+ T helper responses. Whereas N. gonorrhoeae variant A with a terminal N-acetylglucosamine on its LOS was recognized by DC-SIGN and induced significantly more IL-10 production, phenotype C, carrying a terminal N-acetylgalactosamine, primarily interacted with MGL and skewed immunity towards the T helper 2 lineage. Together, our results indicate that N. gonorrhoeae LOS variation allows for selective manipulation of dendritic cell function, thereby shifting subsequent immune responses in favor of bacterial survival.  相似文献   

19.
Deoxyribonucleate (DNA) preparations were extracted from Neisseria meningitidis (four isolates from spinal fluid and blood) and N. gonorrhoeae strains, all of which were resistant to sulfadiazine upon primary isolation. These DNA preparations, together with others from in vitro mutants of N. meningitidis and N. perflava, were examined in transformation tests by using as recipient a drug-susceptible strain of N. meningitidis (Ne 15 Sul-s Met+) which was able to grow in a methionine-free defined medium. The sulfadiazine resistance typical of each donor was introduced into the uniform constitution of this recipient. Production of p-aminobenzoic acid was not significantly altered thereby. Transformants elicited by DNA from the N. meningitidis clinical isolates were resistant to at least 200 μg of sulfadiazine/ml, and did not show a requirement for methionine (Sul-r Met+). DNA from six strains of N. gonorrhoeae, which were isolated during the period of therapeutic use of sulfonamides, conveyed lower degrees of resistance and, invariably, a concurrent methionine requirement (Sul-r/Met). The requirement of these transformants, and that of in vitro mutants selected on sulfadiazine-agar, was satisfied by methionine, but not by vitamin B12, homocysteine, cystathionine, homoserine, or cysteine. Sul-r Met+ and Sul-r/Met loci could coexist in the same genome, but were segregated during transformation. On the other hand, the dual Sul-r/Met properties were not separated by recombination, but were eliminated together. DNA from various Sul-r/Met clones tested against recipients having nonidentical Sul-r/Met mutant sites yielded Sul-s Met+ transformants. The met locus involved is genetically complex, and will be a valuable tool for studies of genetic fine structure of members of Neisseria, and of genetic homology between species.  相似文献   

20.
Infection with Neisseria gonorrhoeae (N. gonorrhoeae) can trigger an intense local inflammatory response at the site of infection, yet there is little specific immune response or development of immune memory. Gonococcal surface epitopes are known to undergo antigenic variation; however, this is unlikely to explain the weak immune response to infection since individuals can be re-infected by the same serotype. Previous studies have demonstrated that the colony opacity-associated (Opa) proteins on the N. gonorrhoeae surface can bind human carcinoembryonic antigen-related cellular adhesion molecule 1 (CEACAM1) on CD4+ T cells to suppress T cell activation and proliferation. Interesting in this regard, N. gonorrhoeae infection is associated with impaired HIV-1 (human immunodeficiency virus type 1)-specific cytotoxic T-lymphocyte (CTL) responses and with transient increases in plasma viremia in HIV-1-infected patients, suggesting that N. gonorrhoeae may also subvert immune responses to co-pathogens. Since dendritic cells (DCs) are professional antigen presenting cells (APCs) that play a key role in the induction of an adaptive immune response, we investigated the effects of N. gonorrhoeae Opa proteins on human DC activation and function. While morphological changes reminiscent of DC maturation were evident upon N. gonorrhoeae infection, we observed a marked downregulation of DC maturation marker CD83 when the gonococci expressing CEACAM1-specific OpaCEA, but not other Opa variants. Consistent with a gonococcal-induced defect in maturation, OpaCEA binding to CEACAM1 reduced the DCs’ capacity to stimulate an allogeneic T cell proliferative response. Moreover, OpaCEA-expressing N. gonorrhoeae showed the potential to impair DC-dependent development of specific adaptive immunity, since infection with OpaCEA-positive gonococci suppressed the ability of DCs to stimulate HIV-1-specific memory CTL responses. These results reveal a novel mechanism to explain why infection of N. gonorrhoeae fails to trigger an effective specific immune response or develop immune memory, and may affect the potent synergy between gonorrhea and HIV-1 infection.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号